

AMERICAS | MAY 18-20 ASIA PACIFIC | MAY 19-20 EMEA | MAY 25-26

Reporting Correlation Coefficient results and Plots – A SAS[®] Macro that does it all

Zhengming Chen, Weill Cornell Medicine

My Brief bio

I am an Assistant Professor of Biostatistics from Weill Cornell Medicine in New York. I provide statistical support and do biomedical research for the medical school. I also teach a course *Statistical Programming with SAS* for our *Biostatistics and Data Science* graduate program

SAS' GLOBAL FORUM 2021

Outlines

- Background
- SAS implementation of correlation analyses
- Build a SAS Macro to report different types of correlation with table and figure
 - Strategy and workflow
 - The **%CorrReport** Macro
 - Demo how to use the Macro
 - Limitations

#SASGE

Table-1 in medical research

- Summary statistics:
 - Numerical variables: N, Mean(SD), Median(IQR), missing, etc.
 - Categorical variables: N, Proportion, missing
- Bivariate association:
 - Table-1 is often a two-way cross table: all variables stratified by a Categorical variable
 - Significance test and strength of association:

1). Numerical vs. Categorical: *t*-test, ANOVA; nonparametric test; trend test;

2). Categorical vs. Categorical: Chi-squared test (Fisher's exact test); trend test; agreement test;

• Examples of Table-1 in journals

Table 1. Demographic and Clinical Characteristics at Baseline.	*		
Characteristics	Placebo (N=15,170)	mRNA-1273 (N=15,181)	Total (N=30,351)
Sex — no. of participants (%)			
Male	8,062 (53.1)	7,923 (52.2)	15,985 (52.7)
Female	7,108 (46.9)	7,258 (47.8)	14,366 (47.3)
Mean age (range) — yr	51.3 (18-95)	51.4 (18-95)	51.4 (18-95)
Age category and risk for severe Covid-19 — no. of participants (%) †			
18 to <65 yr, not at risk	8,886 (58.6)	8,888 (58.5)	17,774 (58.6)
18 to <65 yr, at risk	2,535 (16.7)	2,530 (16.7)	5,065 (16.7)
≥65 yr	3,749 (24.7)	3,763 (24.8)	7,512 (24.8)

N Engl J Med; 2021 Feb 4;384(5):403-416.

		Total Cohort n=156	Paediatrics (age <21 years) n=38	Adults (age ≥21 years) n=118	p value paediatric vs adult	
Age, years: median (range) Female sex: n (%)		31 (9-70)	16 (9-20)	34 (21-70)	<0.01	
		100 (64.1)	21 (55.3)	79 (66.9)	0.243	
ECOG performance (range)	status: median	1 (0-4)	N/A	1 (0-4)	N/A	
Stage: n (%)	1	26 (16.8)	1 (2.6)	25 (21.4)	N/A*	
	п	68 (43.9)	9 (23.7)	59 (50.4)		
	ш	30 (19.4)	23 (60.5)	7 (6.0)	1	
	IV	31 (20.0)	5 (13.2)	26 (22.2)	1	

Br J Haematol; 2017 Dec; 179(5): 739-747.

#SASGF

SAS' GLOBAL FORUM 2021

SAS and all other SAS Institute Inc. product or service names are registered trademarks of trademarks of SAS Institute Inc. in the USA and other countries. * indicates USA registration. Other brand and product names are trademarks of their respective companies.

- SAS Macro to produce Table-1
 - SAS procedures to produce the results for Table-1:

Proc MEANS; Proc FREQ; Proc TTEST; Proc GLM; Proc NPAR1WAY; etc.

- SAS Macro
 - Run the Procs -> output the results -> combine the outputs -> report with ODS
 - Reproducible, efficient and productive
 - Examples:

```
%Table1Macro; %Table1nDone; %SummaryTable; %Table_summary;
%table1; %ggBaseline, etc.
```

- SAS Macro to produce Table-1
 - Example output from a SAS Macro

		Gro		
		Placebo	Treatment	
Variable	Total			P 1
Gender - no. (%)				
Female	29 (45.3)	6 (60.0)	23 (42.6)	0.4910 🕅
Male	35 (54.7)	4 (40.0)	31 (57.4)	
Age				
Mean(SD)	60.84 (10.38)	60.70 (11.97)	60.87 (10.17)	0.9636 ^m
Race - no. (%)				
Other	2 (3.1)	0 (0.0)	2 (3.7)	1.0000 ^[F]
White	62 (96.9)	10 (100)	52 (96.3)	

- One type of bivariate relationship is missing in Table-1
 - Numerical vs. numericcal variable
 - Summary statistics and correlation coefficient
 - No dedicated SAS Macro for general correlation analysis and reporting like the ones for Table-1
 - Some specialized Macro for specific types of coefficients:
 - Intraclass correlation coefficients (%icc9)
 - Compute biserial, point biserial, and rank biserial correlations between a binary and a continuous (or ranked) variable (%BISERIAL)

- A SAS Macro for correlation analysis to supplement Table-1 is needed
 - For practical use: reproducible and productive
 - A teaching example:
 - How to build a SAS Macro from scratch: data step, Proc, ODS, figures, Macro, etc.
 - > A complete cycle of a statistical analysis: prepare data, analyze, report in Table and Figures, etc.

- Pearson Correlation Coefficient
 - A descriptive measure of the degree and direction of linear relationship between two continuous variables when they are random variables and follow bivariate normal distribution
 - Math:
 - Population

$$\rho = Corr(X, Y) = Cov(X, Y)/(\sigma_x \sigma_y) = E[(X - \mu_x)(Y - \mu_y)]/(\sigma_x \sigma_y) = \frac{1}{n} \sum_{i=1}^n \left(\frac{x_i - \mu_x}{\sigma_x}\right) \left(\frac{y_i - \mu_y}{\sigma_y}\right)$$

• Sample

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}} = \frac{1}{(n-1)} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x}\right) \left(\frac{y_i - \bar{y}}{s_y}\right) \qquad Or: \qquad r_{xy} = \pm \sqrt{R^2}$$

• Example

Patient's height vs. weight

#SASGF

- Spearman Rank-Correlation Coefficient
 - A nonparametric measure of correlation based on <u>ranks</u> of the data values
 - Math:

$$\theta = \frac{\sum_{i} ((R_{i} - \bar{R})(S_{i} - \bar{S}))}{\sqrt{\sum_{i} (R_{i} - \bar{R})^{2} \sum (S_{i} - \bar{S})^{2}}}$$

where R_i is the rank of x_i , S_i is the rank of y_i , \overline{R} is the mean of the R_i values, and \overline{S} is the mean of the S_i values.

• Example:

#SASGE

Patient's survival time after treatment vs. Age

Polychoric Correlation

 Correlation between two unobserved continuous variables that have a bivariate normal distribution. The unobserved information is obtained from two observed ordinal variables.

• Math:

The polychoric correlation coefficient is the **maximum likelihood estimate** of the product-moment correlation between the underlying normal variables.

• Example:

Patient's quality of life scale (1 - 10) vs. Severity of Covid-19 symptom (1 - 5)

Polyserial Correlation

- Correlation between two continuous variables that have a bivariate normal distribution, where <u>one variable is observed</u> directly, and <u>the other is unobserved but an ordinal variable</u>.
- Math:

By maximum likelihood estimate of a set of parameters

• Example:

Patient's BMI vs. Patient's satisfaction scale (1 - 10)

- Correlation Coefficients are always between -1 and 1, the correlation is stronger when it is more away from 0.
- The sign of Correlation Coefficient shows the direction of the correlation.

To visualize the correlations

- Thirteen Ways to Look at the Correlation Coefficient (by Joseph Lee Rodgers and W. Alan Nicewander, 1988)
- 7 Ways to view correlation (by *Rick Wicklin*, 2017)
 - <u>https://blogs.sas.com/content/iml/2017/09/05/7-ways-view-correlation.html</u>
 - Graphically:

#SASGF

Scatter plot

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks or trademarks or she institute Inc. in the USA and other countries. * indicates USA registration. Uther brand and product names are trademarks or their respective con

SAS implementation of correlation analyses

Output:

		1	The CORR Pr	ocedure		
		1 1	Vith Variables	: Height	1	
		1 V	ariables:	Weight		
			Simple Sta	tistics		
Variable	N	Mean	Std Dev	Median	Minimum	Maximum
Height	19	62.33684	5.12708	62.80000	51.30000	72.00000
Weight	19	100.02632	22.77393	99.50000	50.50000	150.00000
		Height	o > r under	HU: Kho=0	Weight 0.87779 <.0001	
		Spearman Pro	Correlation C b > r under	Coefficients H0: Rho=0	, N = 19	
					Weight	
		A Real and the			0.05570	

				Polyserial C	orrelations	•				
					Wald Te	st		LR Test		
Continuo Variable	ous Ordinal Variable	N	Correlation	Standard Error	Chi-Squa	re Pr > Ch	iSq Chi-S	quare	Pr > ChiSc	
Weight	Height	19	0.88964	0.04927	326.05	86 <.0	001 28	.8231	<.000	
				holusharis (•orrelation					
				olychoric (orrelations	•	_			
					Wald Test			LRT	lest	
/ariable	With Variable	N	Correlation	Standard Error	Chi-Squ	are Pr > C	hiSq Chi-s	Square	Pr > Chis	
Neight	Height	19	0.91844	0.03894	556.30	X65 <.(0001 3	1.1204	<.000	
		Pear	son Correlati	on Statistic	s (Fisher's	z Transform	ation)	H0:R	lho=Rho0	
Variable	With Variable	N	Sample Co	rrelation	relation Fisher's z 95% Confidence Lim		dence Limits	Rho0	p Value	
Weight	Height	19		0.87779	1.36603	0.704431	0.704431 0.952310		<.000	
		Snear	man Correlat	ion Statistic	ne (Eleboria	- Transform	nation)			
			Than Softenan		a transiti			H0:R	lho=Rho0	
	With Variable	N	Sample Co	rrelation	Fisher's z	95% Confi	dence Limite	Rho	p Value	
Variable	which wallable									

#SASGF

SAS' GLOBAL FORUM 2021

SAS and all other SAS Institute Inc. product or service names are registered trademarks of SAS Institute Inc. in the USA and other countries. * Indicates USA registration. Other brand and product names are trademarks of their respective companies.

Plots:

SAS and all other SAS Institute Inc. product or service names are registered trademarks of SAS Institute Inc. in the USA and other countries. * indicates USA registration. Other brand and product names are trademarks of their respective companies.

SAS and all other SAS Institute Inc. product or service names are registered trademarks of trademarks of SAS Institute Inc. in the USA and other countries. * indicates USA registration. Other brand and product names are trademarks of their respective companies.

• Features and parameters: Dataset name %macro CorrReport(Dataset=, V1=, Variable names for correlation V2=, type="both" Null *r* to test H0=0, What type of plot="no", correlation V1label=, **Request figures** V2label=, legendPosition=topleft); Customize the figure

The %CorrReport Macro

• Demo how to use the Macro (in SAS Studio)

Table:

	Pearson Correlation Coefficient between Weight and Height AgeAtStart MRW Systolic								
V1	Variable	N	Mean	SD	Median	Min	Max	Pearson Coefficient (95% CI)	P-value ¹
	Weight	199	149.79	27.23	146.00	91.00	236.00		
V2	Height	199	64.67	3.32	64.25	57.00	72.75	0.52 (0.41 - 0.62)	<.0001
	AgeAtStart	200	44.80	8.14	45.00	29.00	59.00	0.11 (-0.03 - 0.24)	0.1342
	MRW	199	118.14	18.47	116.00	80.00	197.00	0.79 (0.73 - 0.83)	<.0001
	Systolic	200	139.37	24.92	134.00	98.00	272.00	0.27 (0.14 - 0.40)	0.0001
	¹ P value of Pearson correlation coefficient, testing Ho: Rho = 0; Note: 1. Only non-missing values are used within each pairs of variable for correlation;								
#SASGE	2. P values and CIs are obtained with Fisher's Z-transformation with biasadi=no: 3. Correlation coefficient (r) is a measure of strength of correlation. As a rule-of-thumb, correlation strength can be categorized as: 0.00 - 0.19: very weak; 0.20 - 0.39: weak; 0.40 - 0.59: moderate; 0.60 - 0.79: strong; 0.80 - 1.00: very strong; } }								

Figure:

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. * indicates USA registration. Other brand and product names are trademarks of their respective companies.

The %CorrReport Macro

- Limitations and improvement
 - No customized error messages yet
 - Kendall's Tau-b Correlation Coefficient
 - Pearson, Spearman, and Kendall partial correlation
 - Cronbach's Coefficient Alpha

Takeaways

- SAS is comprehensive in correlation analyses
- SAS Macro is powerful for reproducible and efficient analysis and reporting
- This SAS Macro is useful tool in real world practice and in class room. It covers a complete cycle of data analysis with SAS.
- The skills in building this Macro are extendable to other Macro...

Thank you!

Contact Information zhc2006@med.cornell.edu

