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Abstract—Given a set of directional visual sensors, the k-
coverage problem determines the orientation of minimal di-
rectional sensors so that each target is covered at least k
times. As the problem is NP-complete, a number of heuristics
have been devised to tackle the issue. However, the existing
heuristics provide imbalance coverage of the targets–some targets
are covered k times while others are left totally uncovered
or singly covered. The coverage imbalance is more serious in
under-provisioned networks where there do not exist enough
sensors to cover all the targets k times. Therefore, we address
the problem of covering each target at least k times in a
balanced way using minimum number of sensors. We study
the existing Integer Linear Programming (ILP) formulation for
single coverage and extend the idea for k-coverage. However, the
extension does not balance the coverage of the targets. We further
propose Integer Quadratic Programming (IQP) and Integer Non-
Linear Programming (INLP) formulations that are capable of
addressing the coverage balancing. As the proposed formulations
are computationally expensive, we devise a faster Centralized
Greedy k-Coverage Algorithm (CGkCA) to approximate the
formulations. Finally, through rigorous simulation experiments
we show the efficacy of the proposed formulations and the
CGkCA.

I. INTRODUCTION

A visual sensor network (VSN), also known as a Smart
Camera Network (SCN), consists of a set of targets to be
monitored by a set of smart (visual) sensors capable of self-
controlling their orientations and ranges. Such VSNs have
drawn considerable attention of researchers due to their enor-
mous applicability in real-world scenarios like surveillance
system, environment monitoring, smart traffic controlling sys-
tem etc., to name a few.

The primary goal of VSNs is to monitor as many targets
as possible [5], [9]. However, if the sensor covering a target
malfunctions, runs out of power, or if the line of sight is
blocked by a perpetrator, a previously covered target may
suddenly become uncovered. The simplest solution to this
problem is to incorporate fault tolerance besides coverage,
i.e., to cover the target by more than one sensor. This joint
fault tolerant coverage problem is well-known as “k-coverage”
problem in the literature.

Formally, our work tackles the k-coverage problem, where
each target is to be covered by at least k sensors (k ≥ 1). The
efficiency of the solution to the problem depends on the extent
of camera usage as fewer number of active sensors implies
lower energy consumption and longer network life time. Thus,
in k-coverage problem one needs to minimize camera-usage
besides covering each target in a fault-tolerant way.

(a) Imbalanced coverage (b) Balanced coverage

Fig. 1: Coverage imbalance in under-provisioned systems

We envision two kinds of visual sensor networks:–(i) under-
provisioned networks and (ii) over-provisioned networks. We
call a VSN is under-provisioned if the number of sensors
is insufficient to cover all the targets at least k times and
over-provisioned otherwise. Consider Fig. 1(a) for an example
of an under-provisioned network. In this figure, there are 4
cameras (rectangular ones) and 4 targets (triangular ones) and
the objective is to cover each target at least 3 times (i.e.,
k = 3). Here, every camera possesses a specific number of
non-overlapping pans, of which only one can be selected in
a particular deployment and each pan is defined by a field
of view (FoV) angle, θ = π

4 . Thus, a camera can pick any
one of eight ( 2π

θ = 2π
π
4

= 8) disjoint pans/orientations. Note
that, no orientation of 4 cameras can produce a 3-coverage
for this scenario, hence the network is consequently called
“under-provisioned”.

When it is impossible to provide a complete k-coverage for
an under-provisioned network, we need to provide a more fault
resilient solution instead. For example, let’s re-consider the
under-provisioned network in Fig. 1(a) and Fig. 1(b). Although
both the figures show the same deployment of cameras and
targets but the orientation of the cameras are different. In
Fig. 1(a) the targets are covered by 3, 3, 1, and 1 sensors
respectively, while in Fig. 1(b), each of the targets are covered
by 2 sensors. However, the coverage in Fig. 1(b) is more fault
resilient than the coverage in Fig. 1(a) because in Fig. 1(a)
two targets are covered once, while in Fig. 1(b) all the targets
are covered twice. We say the coverage in Fig. 1(b) is more
balanced than coverage in Fig. 1(a).

In this paper, we focus on under-provisioned systems and
provide solutions for coverage balancing using minimum
number of sensors. The problem is eventually an instance
of the classical set multi-cover problem whose optimization
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version is known to be NP-hard [1]. In order to define coverage
balancing, we borrow the concept of fairness in resource
allocation systems proposed by Jain et al. [10] and modify
it for our purpose (the modification is described in a later
section). The Fairness Index, FI, is defined as follows [10].
Suppose we have 1, 2, 3, ..,m components in a system and xi
is the resource allocated to the ith component. The fairness
index of such system will be:

FI =
(
∑
xi)

2

m
∑
x2
i

(1)

In VSN, the sensors are the resources and the targets are the
components of the system. Therefore, we can use the fairness
index to judge by how much a system is balanced. Here, the
number of times each target is covered is considered as the
number of resources allocated to that target. Thus, the fairness
index value of Fig. 1(a) is:

FI =
(3 + 3 + 1 + 1)2

4× (32 + 32 + 12 + 12)
= 0.8

and, for Fig. 1(b) is:

FI =
(2 + 2 + 2 + 2)2

4× (22 + 22 + 22 + 22)
= 1.0

Consequently, the camera orientations in Fig. 1(b) has more
coverage balancing than the camera orientations in Fig. 1(a).

The major contributions of this paper are as follows:
(i) We introduce a novel balanced k-coverage problem for

visual sensor networks (VSNs).
(ii) We study the existing exact Integer Linear Programming

(ILP) formulation for single coverage and extend the idea
for k-coverage. Then we show that this natural extension
provides imbalance coverage of the targets in a sense that
some targets are covered k-times while some targets are left
totally uncovered or singly covered. The imbalance is more
serious in under-provisioned networks.

(iii) We propose a novel Integer Quadratic Programming
(IQP) formulation that improves fairness by balancing cover-
age while trying to achieve k-coverage. We further improve
the fairness by providing another novel Integer Non-Linear
Programming (INLP) formulation.

(iv) The proposed ILP, IQP, and INLP formulations are
computationally expensive. Therefore, we formulate a novel
computationally faster Centralized Greedy k-Coverage Algo-
rithm (CGkCA) to approximate our formulations. Finally, we
measure the relative performance of our formulations and the
CGkCA algorithm in terms of coverage balancing.

The road map of the paper is as follows. This section
introduces the coverage balancing problem and the motivation
behind this work. Section II introduces the description and
parameters of a Visual Sensor Network and formally defines
the problem that we solve in this paper. Section II also
discusses the shortcomings of Fairness Index in capturing
coverage balance and introduces a new metric Balancing
Index. Section III shows how to formulate Integer Linear
Programming (ILP) for the k-coverage problem and discusses

Fig. 2: Camera coverage parameters

ILP’s incapability in coverage balancing. Section IV modi-
fies ILP to formulate Integer Quadratic Programming (IQP)
and Integer Non-Linear Programming (INLP) that incorporate
coverage balancing besides k-coverage. Section V discusses
the Centralized Greedy k-Coverage Algorithm (CGkCA).
Section VI presents the simulation results and analyzes the
results. Section VII provides a brief literature review on the
subject matter and finally Section VIII concludes the paper.
Throughout the paper we use the terms “camera” and “sensor”
interchangeably.

II. PRELIMINARIES

In this section we formally introduce the VSN with relevant
parameters and provide a formal description of the problem.

A. Visual Sensor Network Description and Parameters

The sensing region of a camera can be characterized by its
Field of View (FoV) which is defined as the extent of the
observable/sensing region that can be captured at any given
direction. Some cameras come with fixed-FoV and for some,
FoVs are adjustable. The smart cameras used in current VSNs
are known as Pan-Tilt-Zoom (PTZ) cameras where FoV can
be self-adjusted in three dimensions: (i) horizontal movement
in pan, (ii) vertical movement or tilt, and (iii) change in depth-
of-field by changing zoom. In this paper, we limit ourselves
to pan-only cameras, i.e., we assume that a camera can move
only in horizontal direction and its FoV is only described by
its pan. The pan of a camera is formally defined using the
following two parameters:

(a) Rs: Maximum coverage range of the camera beyond
which a target can not be detected with acceptable
accuracy in a binary detection test.

(b) θ: The maximum sensing/coverage angle of a camera on
a certain direction. This angle is also known as Angle
of View (AoV).

Thus, when a camera is oriented towards a particular
direction, it can cover a circular sector (called a pan) defined
by Rs and θ. We assume that every camera possesses a
specific number of non-overlapping pans, of which, only one
can be selected in a particular deployment. For example: a
camera with FoV defined by θ = π

4 can pick any one of
eight disjoint orientations. Fig. 2 depicts these parameters of
camera coverage. Here, two cameras c1 and c2 have eight
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pans each and can be oriented towards any of these eight
pans. We assume that cameras are homogeneous in terms of
parameters. Position of a target and a sensor are expressed
through Cartesian coordinates (x, y) in a two-dimensional
plane.

−→
dij is a unit vector which cuts each pan (i.e., the

sensing sector) into half representing the orientation of camera
ci towards pan pj . −→vit is a vector in the direction from camera
ci to target gt.
Target in Sector (TIS) Test: With TIS test [1], one can verify
whether a target gt is coverable by a given sensor si. To
conduct this test, at first we calculate the angle φit between
camera orientation

−→
dij of pan pj and the target vector −→vit.

φit = cos−1

( −→
dij · −→vit
|
−→
dij || −→vit |

)
(2)

A target is coverable by a camera’s FoV if the span of its FoV
contains the target and the target is located within the sensing
range of the camera. Geometrically,

−→
dij divides the pan pj into

two equal halves and if a target is located in either of them,
it is coverable by that camera on the pan pj . Thus, the angle
φit needs to be less than half of the AoV, i.e., φit ≤ θ

2 . The
other condition requires that the target has to be inside the
maximum sensing range of the camera, i.e.,: |vit| ≤ Rs.

Conducting TIS tests over every pan pj of camera si and
every target gt, we can build a binary coverage matrix AMN×Q
of the network comprising of M targets and N cameras with
Q pans where an entry in the matrix can be calculated as:

atij =

{
1 if target gt is covered by camera si at pan pj
0 otherwise

(3)

B. Fairness Index and Balancing Index in k-coverage

Although the objective of the k-coverage problem is to cover
each target at least k times, it may not be achievable if enough
sensors are not available (i.e., in under-provisioned networks).
Therefore, for under-provisioned networks a new metric needs
to be defined to determine the superiority of one solution to an-
other. The Fairness index proposed by Jain et al. [10] has been
traditionally used to measure fairness in resource allocation
systems. The visual sensor network can be thought of a similar
resource allocation system where the sensors are the resources
and the targets are the components of the system. Suppose in
a particular configuration and orientation of sensors, the m
targets are covered ψ1, ψ2, . . . , ψm times respectively. Then
the merit of this solution vector (ψ1, ψ2, . . . , ψm) can be
measured using the following equation:

FI =
(
∑m
t=1 ψt)

2

m
∑m
t=1 ψ

2
t

(4)

Thus, the fairness index of two solution vectors (3, 3, 1, 1)
and (2, 2, 2, 2) each of which tries to cover four targets in a
3-coverage problem is 0.8 and 1.0 respectively which shows
the solution (2, 2, 2, 2) is superior than (3, 3, 1, 1).

Even though fairness index is a good performance metric,
solely focusing on maximizing it can result in reducing the

total coverage. Fairness index usually identifies fairer solutions
in the allocation of resources. Thus, in a 3-coverage problem
with 3 targets, (2, 2, 2) coverage is fairer than (2, 3, 2) although
the second one is preferred because 3-coverage has not been
attained at all in the solution (2, 2, 2) for any of the targets.

Therefore, we modify the concept of fairness index to
fit in to our purpose and introduce a more suitable metric
called Balancing Index, BI, which combines both fairness of
coverage and maximization of the total coverage. It is defined
as the product of fairness index and the ratio of achieved total
coverage (i.e.,

∑m
t=1 ψt) over total attainable coverage (i.e.,

km). Mathematically, the balancing index is:

BI = FI ×
∑m
t=1 ψt
km

=
(
∑m
t=1 ψt)

2

m×
∑m
t=1 ψt

2 ×
∑m
t=1 ψt
km

(5)

where ψt is the number of sensors covering target gt and m
is the total number of targets. The balancing index value for
(2, 2, 2) is:

BI =
(2 + 2 + 2)2

3× (22 + 22 + 22)
× (2 + 2 + 2)

3× 3
= 0.6666

The balancing index value for (2, 3, 2) is:

BI =
(2 + 3 + 2)2

3× (22 + 32 + 22)
× (2 + 3 + 2)

3× 3
= 0.7472

The balancing index reflects that (2, 3, 2) coverage is better
than (2, 2, 2) coverage in a 3-coverage problem. Thus, it can
be used as the performance metric. The higher the value of
the balancing index, the better is the coverage.

C. Problem Formulation

The balanced k-coverage problem can formally be described
as follows:

Given: A set of targets, T = {g1, g2, . . . , gm} to be
covered; a set of homogeneous directional sensors, S =
{s1, s2, . . . , sn}, each of which can be oriented in one di-
rection of q possible non-overlapping pans; the pan set, P =
{p1, p2, . . . , pq}. A collection of subsets, F = {Φ〈i,j〉|si ∈
S, pj ∈ P} can be generated based on a TIS test, where Φ〈i,j〉
is a subset of T and denotes the set of targets covered by
selecting sensor si and oriented in the direction of pan pj .

Problem: Find a sub-collection Z of F , with the constraint
that at most one Φ〈i,j〉 can be chosen for the same sensor
si, and the Balancing Index, BI (defined in Equation 5), gets
maximized.

III. GENERIC K-COVERAGE AND ITS ILP FORMULATION

In [1], the authors elaborate an ILP formulation to solve
the maximization of single coverage using minimum number
of sensors (MCMS). The proposed ILP formulation can be
easily extended for the k-coverage problem. In this section,
at first we describe the necessary modifications and then we
point out its shortcomings in providing a balanced solution for
under-provisioned networks.

The parameters used for the formulation can be summarized
as follows. n: the number of sensors; m: the number of targets;
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q: the number of orientation available for each directional
sensor. The variables in the formulation are as follows. ψt:
an integer variable that has a value equal to the number of
times a target gt is covered by directional sensors, limited up
to a maximum value k; χ〈i,j〉: a binary variable that has value
one if the directional sensor si uses the orientation pj , and
zero otherwise; ξt: an integer variable that counts the number
of the directional sensors covering target gt. Φ〈i,j〉 is the set
of targets that are covered by the sensor si in its pan pj .
Using TIS, for each sensor si, incidence matrix Ai(m×q) can
be generated, where each of its elements would be:

atij =

{
1 t ∈ Φ〈i,j〉
0 otherwise

(6)

Therefore, ξt can be expressed as:

ξt =

n∑
i=1

p∑
j=1

atijχ〈i,j〉

Now, the ILP formulation for k-coverage problem becomes:

maximize
m∑
t=1

ψt − ρ
n∑
i=1

q∑
j=1

χ〈i,j〉 (7)

subject to:

ξt
n
≤ ψt ≤ ξt ∀t = 1 . . .m (8)

ψt ≤ k (9)
q∑
j=1

χ〈i,j〉 ≤ 1 ∀i = 1 . . . n (10)

χ〈i,j〉 = 0 or 1 ∀i = 1 . . . n, ∀j = 1 . . . q (11)

The objective function defined by Equation 7 maximizes the
coverage count of each target and imposes a penalty by
multiplying the number of sensors to be activated by a small
positive penalty coefficient ρ (≤ 1). There are (m + np)
variables and (2m+n+np) constraints for the ILP. Equation
8 represents a set of inequalities to indicate whether any target
gt is covered or not: if none of the sensors cover target gt, i.e.,
ξt = 0, then ψt = 0 to conform the right inequality; if target
gt is covered by at least one directional sensor, i.e., ξt > 0,
since ξt is bounded by n, ξt/n is a real number less than
one, then ψt ≥ 1 to follow the left inequality. Constraints in
Equation 9 make sure that the coverage count of any target
is bounded by k, i.e., even if a target is covered by more
than k times still the coverage count will be considered as k,
no additional benefit for covering a target more than k times.
Equation 10 guarantees that one directional sensor has at most
one orientation depending on whether it is activated or not.
Problem with generic ILP: The ILP formulation mentioned
above for k-coverage problem does not focus on coverage
balancing. To understand the problem, consider the scenario
shown in Fig. 3(a). Here we have shown a 3-coverage problem
with 10 targets (red triangles) and 10 directional sensors (blue
circles). FoV is defined by θ = π

4 . Table I summarizes the

(a) Initial Configuration 10 Targets and 10 Cameras

(b) Pan selection of each camera in ILP

(c) Pan selection in balanced-optimal configuration

Fig. 3: Illustrating imbalance coverage of ILP formulation
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TABLE I: Detail analysis of example scenario in Fig. 3

Target ID Maximum Coverage Coverage achievable
possible coverage achieved in ILP in Balanced-optimal

0 2 1 1
1 3 2 1
2 3 3 1
3 2 0 1
4 5 0 2
5 4 3 3
6 2 0 1
7 2 2 1
8 3 0 1
9 3 3 2

coverage counts under different conditions. Not all targets
are 3-coverable:–it is possible to cover the targets {0, 3, 6, 7}
at most twice. Rest of the targets are at least 3-coverable.
Clearly the network is under-provisioned. After running the
ILP, formulated above, we found a solution which is shown in
Fig. 3(b). The third column of Table I captures the coverage
achieved in ILP. Targets {2, 5, 9} are covered thrice, targets
{1, 7} are covered twice, target {0} is singly covered and
noticeably targets {3, 4, 6, 8} are left totally uncovered.

In summary, 40% targets are not covered by any of the
sensors in the solution provided by the ILP. Fig. 3(c) shows
another possible solution of the same problem which we call
balanced optimal coverage (describe in Section IV-C). The
fourth column of Table I shows the coverage achieved in
this new solution. Only target {5} and targets {2, 9} are 3-
covered and 2-covered respectively however the rest of all
targets are singly covered. Unlike ILP, none of the targets are
left uncovered in this new solution.

IV. BALANCED K-COVERAGE

In order to improve the balancing of coverage, we need to
modify the ILP formulation, specially its objective function.
In particular, the objective function concurrently needs to keep
track of balancing of coverage while pursuing k-coverage. To
keep the problem tractable, we may consider the solutions of
k-coverage problem as vectors in an m-dimensional vector
space. The coverage counts of targets can be considered as
individual dimensions in the m-dimensional space. Fig. 4
shows this typical scenario. Each axis represents the coverage
count of each target and there is a total of m possible targets.
The vector V ≡ (k, k, . . . , k) represents the desired solution
vector. Let us consider the vector P which represents the
achieved coverage by an arbitrary algorithm. Hence vector P
can be represented as P ≡ (ψ1, ψ2, . . . , ψk). Although it is
highly desirable to align the vector P with the vector V, but
practically it may not be achieved by an algorithm. In such
cases, the goal should be to minimize the distance between
these two vectors,

−−→
PV [

−−→
PV = V − P] or to minimize the

angle between them (i.e., the θ). We formally describe both
of these intuitive approaches below.

ψ1

ψ2

ψ3

ψm

V(k,k,...,k)

P(ψ1,ψ2,...,ψm)

V-P

θ

Fig. 4: Coverage displayed in m-dimensional space

A. Minimizing the vector distance
The vector distance between the actual coverage vec-

tor P(ψ1, ψ2, . . . , ψk) and the expected coverage vector
V(k, k, . . . , k) can be calculated as follows:

d(V,P) = ||V −P|| =

√√√√ m∑
t=1

(k − ψt)2

where k is the number of times the targets are to be covered
and ψt is the achieved coverage of target gt. The minimization
problem remains the same even if we ignore the square root.
Thus, the ILP formulation described in Section III can be
easily modified to achieve the goal. We can simply modify
the objective function (Equation 7) and incorporate the square
of the vector distance leaving all constraints (Equations 8 - 11)
unchanged. The new objective function will be as follows:

minimize
m∑
t=1

(k − ψt)2 + ρ

n∑
i=1

q∑
j=1

χ〈i,j〉

The modified objective function is no more linear but quadratic
in nature. Therefore, the new formulation is an integer
quadratic programming problem or IQP in short.

B. Minimizing the angle
Another approach is to minimize the angle between the two

vectors V and P using the following equation:

θ = cos−1

(
V.P

||V ||||P ||

)
= cos−1

( ∑m
t=1 ψt√

m
∑m
t=1 ψ

2
t

)
However, minimizing the angle between vectors can not dif-
ferentiate isomorphic solutions like (1, 1, . . . , 1), (2, 2, . . . , 2),
(3, 3, . . . , 3) ... etc. because all of these vectors make an angle
zero with the ideal solution vector (k, k, . . . , k). Therefore, we
do not explore this issue further in this paper.

C. Maximizing the balancing index
Finally, the objective function of the ILP can be modified

to incorporate balancing index as defined in Section II-B and
achieve true coverage balancing. The necessary modification
is as follows:

maximize
1

km2
×

(
∑m
t=1 ψt)

3∑m
t=1 ψ

2
t

− ρ
n∑
i=1

p∑
j=1

χ〈i,j〉

subjected to the constraints described in Equations 8 - 11.
Note that, the new objective function is non-linear in nature.
Therefore, the modified formulation falls within the domain of
integer non-linear programming problems or INLP in short.
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Algorithm 1 Centralized Greedy k-coverage Algorithm
(CGkCA)

Input: Φ〈i,j〉 {set of targets covered by sensor si in pan pj}
Output: Z {a collection of 〈active sensor, orientation〉 pairs}

1: Z ← ∅
2: Y ← {set of inactive nodes}
3: T ← {g1, g2, . . . gm} {set of all targets}
4: C ← {c1, c2, . . . cm} {ci is the coverage count of gt}
5: repeat
6: maxincentive← 0
7: α← 0 for linear benefit; α← 1 for quadratic benefit
8: for ∀i ∈ Y do
9: for ∀j ∈ P do

10: incentive← BENEFIT(Φ〈i,j〉,Z, α)
11: if incentive > maxincentive then
12: maxincentive← incentive
13: 〈imax, jmax〉 = 〈i, j〉
14: end if
15: end for
16: end for
17: Z ← Z ∪ 〈imax, jmax〉
18: Y ← Y\{imax}
19: until maxincentive = 0
20: return Z

V. BALANCED k-COVERAGE HEURISTICS

The ILP, IQP, and INLP formulation of the problem men-
tioned in the previous section can be used to find the optimal
solutions, however, they are not scalable in large problem in-
stances. Therefore, we present Centralized Greedy k-coverage
Algorithm (CGkCA), a polynomial time greedy heuristic that
would converge faster and by suitably choosing appropriate
set of sensors would also balance the coverage. CGkCA uses
a benefit function, which calculates the incentive of selecting
a particular 〈sensor, pan〉 pair at each step.

The basic idea of CGkCA is to greedily choose and activate
the 〈sensor, pan〉 pair which provides the maximum benefit.
In each iteration, the incentives of all inactive 〈sensor, pan〉
pairs are calculated using the benefit function. The pair with
maximum incentive is selected and the sensor is activated
towards the corresponding pan. Ties are broken arbitrarily
by choosing among the pairs providing maximum incentive.
The algorithm terminates when all the sensors are activated or
when all the targets are at least k-covered. The pseudo code
of CGkCA is given in Algorithm 1.
Benefit function: In order to choose from all inactive sensor-
pan pairs, CGkCA makes a call to a benefit function in step
10 of Algorithm 1. The benefit function, which is defined
in Algorithm 2, calculates two different kinds of benefit:–(i)
linear benefit and (ii) quadratic benefit. The three parameters
of the benefit function is as follows:

Φ〈i,j〉: set of targets covered by sensor-pan pairs 〈i, j〉.
Z: set of sensor-pan pairs activated so far by the greedy

algorithm before this step.

Algorithm 2 Benefit Function for k-coverage

Input: Φ〈i,j〉 {set of targets covered by sensor si in pan pj},
Z {set of assigned 〈active sensor, orientation〉 pairs}, α
{α = 0 for linear benefit and α = 1 for quadratic benefit}

Output: incentive {an integer containing the total incentive
for 〈i, j〉 for given Z}

1: function BENEFIT(Φ〈i,j〉,Z, α)
2: incentive← 0
3: for ∀t ∈ Φ〈i,j〉 do
4: Calculate the coverage ct of target t using Z
5: if ct < k then
6: if α = 0 then
7: increment← 1
8: else if α = 1 then
9: increment← (k − ct)2 − (k − ct − 1)2

10: end if
11: incentive← incentive+ increment
12: end if
13: end for
14: end function
15: return incentive

α: a boolean parameter to indicate whether the benefit
function should calculate either linear or quadratic benefit.
α = 0 means linear and quadratic otherwise. The linear benefit
is calculated as follows. For each target gt, let us define a
variable ct which assumes a value equal to the coverage count
of that target by the set of sensor-pan pairs in set Z , i.e.:

ct = number of sensing regions in Z that cover target gt

Then the total linear benefit of activating sensor-pan pair
〈i, j〉 at this stage of CGkCA is:∑

t∈Φ〈i,j〉∧ct<k

min{1, k − ct}

Note that, the linear benefit function ignores the coverage
count of a target at this stage of the greedy algorithm and
assigns same incentive for covering a target irrespective of
its coverage count. The quadratic benefit function eliminates
this drawback and provides more incentive for covering a
less covered target as opposed to highly covered targets. The
incentive of covering a target is quadratic in nature and is
defined by k2 − (k − i)2 for a target that is covered i times.
Thus the quadratic benefit of activating sensor-pan pair 〈i, j〉

TABLE II: Incentive table for 3-coverage problem (k = 3)

Coverage count of a Incentive in linear Incentive in quadratic
target at this stage benefit function benefit function

ct min{1, k − ct} (k − ct)2 − (k − ct − 1)2

0 1 5
1 1 3
2 1 1



7

at this stage of CGkCA becomes:∑
t∈Φ〈i,j〉∧ct<k

(k − ct)2 − (k − ct − 1)2

Table II shows the incentive values for both linear and
quadratic benefit functions that will be rewarded while solving
a 3-coverage problem. Algorithm 2 provides the complete
pseudo-code of the benefit function. For rest of the paper, when
the greedy algorithm runs with the linear benefit function, the
approach is dubbed as Greedy Linear. Similarly, when it runs
with quadratic benefit function, we call it Greedy Quadratic.
Time complexity: CGkCA needs the incidence matrix as
input. To generate the incidence matrix, we need to iterate
over all the n sensors in each of their q pans and check for
each target if they satisfy the TIS test. As the TIS test takes
O(1) time for a specific sensor in its specific pan and a fixed
target, the whole generation would take O(nmq) time.

The major contributor to time complexity of the algorithm is
due to the calculation of maximum incentive. The loop from
line 5 to 20 is executed at most n times to check for each
sensor. In each iteration, the benefit function will be called
O(nq) times. On each call, benefit function will check all the
target within that pan and calculate the coverage counts of
those targets and then the incentive of the 〈sensor, pan〉 pair.
It will cost O(mn). Therefore, the cost of each iteration is
O(n2qm). Thus, the overall time complexity of the algorithm
becomes O(n3qm).

VI. EXPERIMENTAL RESULTS

In order to verify and compare the effectiveness of proposed
ILP, IQP, and INLP formulations and the greedy algorithm
with linear and quadratic benefit functions, we perform rig-
orous simulation experiments. We use balancing index, BI,
defined in Section II-B as the performance metrics of compar-
ison. A higher value of BI indicates highly balanced coverage.
At the end, we also comment on the sensor usage by the
different formulations and greedy heuristics.

A. Simulation Environment

The deployment area is modelled as a 2D grid where targets
are considered points in the grid and the sensors are modelled
as directional sensors with FoV, θ = π

4 . We run two different
types of experiments. In one kind, we keep the number of
sensors fixed at 50 and vary the number of targets from 5 to
125 and in another kind, we keep the number of targets fixed
at 50 and vary the number of available sensors from 20 to 115.
For both scenarios the sensing range Rs = 25 units and the
grid size is 125×125 sq. units. In both cases, the scenarios are
generated in such a way that the smaller scenario is a subset
of a larger scenario. This ensures a consistent evaluation of
the impact of the enlarged population of sensors/targets by
retaining all the “features” of the previous environment and
simply making it better/worse.
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Fig. 5: Effect on Balancing Index

B. Performance comparison of different approaches

We capture performance of the proposed approaches by
measuring BI while changing the network’s state from under-
provisioned to over-provisioned type and vice-versa.

In the first type of environment, when we increase the
number of targets gradually from 5 to 125 keeping number
of sensors fixed at 50, the network’s state changes from over-
provisioned to under-provisioned as the number of targets
slowly overwhelms the number of sensors. As a result, from
Fig. 5(a) it is clearly evident that the curves move farther away
from the ideal coverage (BI = 1). In the whole downward
progress, INLP and IQP clearly outperform all other methods.

In the second type of environment, increasing the number
of available sensors and keeping the number of targets fixed
at 50 shifts the state of the network from under-provisioned
to over-provisioned. This behaviour is reflected in all curves
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Fig. 6: Coverages in Under-provisioned Network

as there is an upward movement toward the ideal coverage
in Fig. 5(b). Also here, the performance of INLP and IQP
formulations exceeds the other approaches.

In both cases, the Greedy Quadratic shows greater coverage
and balancing than the ILP formulation in under-provisioned
condition, however when the network starts to contain larger
number of sensors relative to the number of targets, ILP
crosses the Greedy Quadratic curve. In a completely over-
provisioned scenario, ILP almost merges with IQP and INLP
formulations. Greedy Linear fails to keep up with all other
formulations in all cases. One notable point is that, IQP curve
is almost merged with INLP curves throughout the whole
simulation but never exceeds the performance of INLP. We can
conclude that the Greedy Quadratic approximates the optimal
behaviour very closely and with a very reasonable amount of
computational time.

C. Coverage Analysis

Now we present a detailed coverage analysis of both under-
provisioned and over-provisioned networks.

1) Under-provisioned Networks: We have deliberately cre-
ated an under-provisioned network by keeping the number of
targets to 100 and the number of sensors to 50. Clearly there
are not enough sensors available to cover all the targets k times
(k = 3). The detailed coverage ananlysis of such network is
shown in Fig. 6. In this under-provisioned network, INLP as
well as IQP tries to reduce the number of uncovered targets
at the expense of number of higher covered targets. The per-
centage of uncovered targets is 10.4% and 11% for INLP and
IQP respectively. The Greedy Quadratic roughly approximates
this behaviour by reducing the number of uncovered targets to
15%. The other two approaches (ILP and Greedy Linear) do
not focus on coverage balancing and as a result they increase
the coverages of some targets, keeping a large number of
targets totally uncovered.

2) Over-provisioned Network: Next, we have created an
over-provisioned network with 50 sensors and 20 targets.
Clearly this is an over-provisioned network since there are
enough available sensors to cover most of the targets at least
k times. Again the detailed coverage analysis of such network
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Fig. 7: Coverages in Over-provisioned Network

is shown in Fig. 7. INLP and IQP formulations again gives
more importance to targets covered less number of times. As
a consequence, there is no uncovered targets for INLP and
IQP formulations. Due to abundance of available sensors, all
the formulations tries to increase the number of 2-covered and
3-covered targets and INLP and IQP formulations exceeds the
other approaches in doing so. Among the greedy algorithms,
the Greedy Quadratic performs much better as it reduces the
number of lower covered targets.

D. Sensor usage Analysis

Fig. 8(a) shows the percentage of sensor usage for the
scenarios of Fig. 5(a). Percentage of sensors used gradually
increases with the number of targets until all the cameras
are activated. All the formulations perform almost similarly.
Fig. 8(b) is the sensor usage diagram for scenarios in Fig.
5(b). As the number of sensors gradually increases, lesser
percentage of available sensors are activated. Although the
number of sensors used by all formulations are similar when
the number of available sensors is lower, the situation changes
with the increase in available sensors. With 50 to 115 sensors,
sensor usage of Greedy Linear and Greedy Quadratic is less
than others. However in terms of coverage, they were always
outperformed by IQP and INLP.

Interestingly, both Fig. 8(a) and Fig. 8(b) shows a clear
transition from under-provisioned network to over-provisioned
network and the sensor usage phenomena also changes accord-
ingly. In Fig. 8(a) when the number of targets exceeds 50 and
in Fig. 8(b) when the number of sensors falls below 55, the
networks become under-provisioned. We can see that all of
our formulations used up almost all the sensors in such under-
provisioned networks. As a result all the curves become almost
linear and parallel to the x-axis in these regions. Reducing
sensor usage only happened in the over-provisioned networks
(i.e., the other side of the plots). In this region, although all
the formulations used almost the same number of sensors
as shown in Fig. 8(a), but INLP and IQP had much better
coverage balancing over other formulations (see Fig. 5(a)).
Among the variants of the greedy algorithm, Greedy Quadratic
shows better coverage balancing over Greedy Linear, although
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Fig. 8: Analysis of Sensors usage

they use the same number of sensors. From Fig. 8(b) and Fig.
5(b), we can draw a similar conclusion.

VII. RELATED WORKS

A large volume of research exists for the k-coverage prob-
lem where the researchers worked only with omnidirectional
sensors [14] [8] [2] [11]. Li-Hsing Yen et al. [14] formulated
an exact mathematical expression for the expected area that
would be k-covered. Hafeeda and Bagheri [8] modelled k-
coverage problem as optimal hitting set problem which is NP-
hard [7]. Their proposed [8] k-coverage algorithm is inspired
by the approximation algorithm in [4] and they suggested both
centralized randomized k-coverage and distributed randomized
k-coverage algorithms. In [2], the authors has worked with
connectivity and coverage of WSN in 3D space. They proved
that if there are k sensors with spherical sensing range in
a Reuleaux tetrahedron then all the targets in that Reuleaux
tetrahedron will be k-covered. Most of the works discussed
so far assume that the locations are known. The algorithm
presented by Yigal Bejerano in [3] can efficiently verify the
k-coverage without any prior location information.

In [13], Tian and Georganas devised a node scheduling
algorithm which would turn off redundant sensors without
reducing the overall coverage of the network. This would be
achieved by turning off only those sensors whose coverage
region is covered by its neighbouring active sensors. In [11],
Kumar et al. provided a solution to k-coverage problem where
at any point of time most of the nodes are in sleep state. The
authors study the lifetime of a network using different types

of node distributions such as
√
n ×
√
n grid model, random

uniform distribution and Poisson distribution.
There exist quite a few works using directional sensors.

Jing and Abouzeid [1] formulate the coverage problem using
directional sensors as Maximum Coverage using Minimum
Sensors (MCMS) problem, and provide both centralized and
decentralized greedy solutions. In [12], Munishwar and Abu-
Ghazaleh present new algorithm which improves the greedy
approaches of [1]. The optimal solution to k-coverage problem
has been proved to be NP-hard by Fusco and Gupta in [6].
They also modelled the sensors to have a fixed viewing angle
and overlapping pans. However, all of these works overlooked
the coverage imbalance issue.

VIII. CONCLUSIONS AND FUTURE WORKS

Our work addresses a novel problem of coverage imbalance
in k-coverage of VSN. Coverage imbalance is a serious
problem in under-provisioned networks, where the networks
does not have enough sensors to ensure k-coverage of all the
targets. We extended the traditional ILP designed for single
coverage and applied it to solve the multi-coverage problem.
However, the extension does not balance the coverage of the
targets. We further designed quadratic (IQP) and non-linear
(INLP) version of the ILP that are capable of addressing
the coverage balancing. IQP minimizes the vector distance
between the attained and expected coverage. INLP maximizes
the Balancing Index, BI, which is the product of Fairness
Index (FI) and average coverage. As ILP, IQP, and INLP
are not scalable for large problem instances, we developed a
greedy approach, CGkCA with two variants of incentive mech-
anism namely Greedy Linear and Greedy Quadratic. Even
though both greedy approaches are outperformed by optimal
algorithms, in under-provisioned networks Greedy Quadratic
closely approximates the optimal solutions. We ran computer
simulations to verify efficacy of the proposed formulations. In
future, we plan to carry out more simulations using different
scenarios, such as different grid sizes and different sensing
ranges. We also plan to run CGkCA under different incentive
mechanisms and in real test beds.
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[4] H. Brönnimann and M. T. Goodrich. Almost optimal set covers in finite
VC-dimension. Discrete & Comp. Geom., 14(1):463–479, 1995.

[5] G. Fan and S. Jin. Coverage problem in wireless sensor network: A
survey. Journal of Networks, 5(9):1033–1040, 2010.

[6] G. Fusco and H. Gupta. Selection and orientation of directional sensors
for coverage maximization. In SECON’09, pages 1–9. IEEE, 2009.

[7] M. R. Garey and D. S. Johnson. Computers and intractability, vol-
ume 29. wh freeman, 2002.

[8] M. Hefeeda and M. Bagheri. Randomized k-coverage algorithms for
dense sensor networks. In IEEE INFOCOM, pages 2376–2380, 2007.

[9] C. Huang and Y. Tseng. The coverage problem in a wireless sensor
network. Mobile Networks and Applications, 10(4):519–528, 2005.



10

[10] R. Jain, D. Chiu, and W. Hawe. A quantitative measure of fairness
and discrimination for resource allocation in shared computer systems.
1998.

[11] S. Kumar, T. H. Lai, and J. Balogh. On k-coverage in a mostly sleeping
sensor network. In Proc. of the 10th annual international conference
on Mobile computing and networking, pages 144–158. ACM, 2004.

[12] V. Munishwar and N. B. Abu-Ghazaleh. Coverage algorithms for visual
sensor networks. ACM Trans. on Sens. Nets. (TOSN), 9(4):45, 2013.

[13] D. Tian and N. D. Georganas. A coverage-preserving node scheduling
scheme for large wireless sensor networks. In Proceedings of the
1st ACM international workshop on Wireless sensor networks and
applications, pages 32–41. ACM, 2002.

[14] L. Yen, C. W. Yu, and Y. Cheng. Expected k-coverage in wireless sensor
networks. Ad Hoc Networks, 4(5):636–650, 2006.


	I Introduction
	II Preliminaries
	II-A Visual Sensor Network Description and Parameters
	II-B Fairness Index and Balancing Index in k-coverage
	II-C Problem Formulation

	III Generic k-coverage and its ILP formulation
	IV Balanced k-coverage
	IV-A Minimizing the vector distance
	IV-B Minimizing the angle
	IV-C Maximizing the balancing index

	V Balanced k-Coverage heuristics
	VI Experimental Results
	VI-A Simulation Environment
	VI-B Performance comparison of different approaches
	VI-C Coverage Analysis
	VI-C1 Under-provisioned Networks
	VI-C2 Over-provisioned Network

	VI-D Sensor usage Analysis

	VII Related Works
	VIII Conclusions and Future Works
	References

