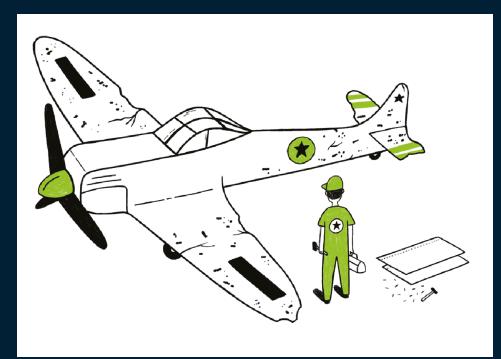


Rune Hjorth Nielsen, PhD Data scientist & Al specialist at SAS Institute


Agenda

- Prerequisites for optimization
- Different approaches to solving it
- An example

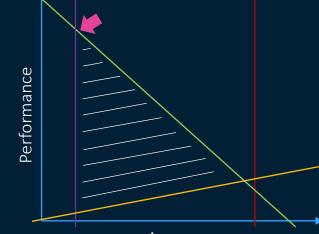
Data understanding

Survivorship bias

https://www.geckoboard.com/best-practice/statistical-fallacies/

Data understanding

Understanding the parameters


Optimizing plane armor

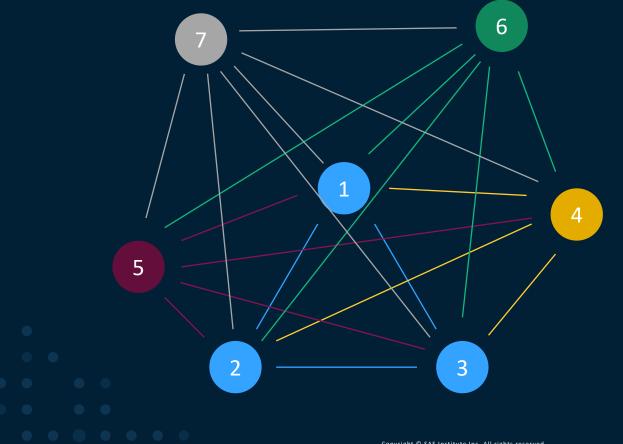
2-dimensional example

Objective function: airplane performance

Restrictions:

- Maximum weight
- Maneuverability
- Minimum level of pilot protection
- Mission stability

Armor

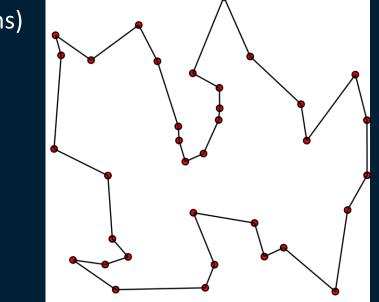


Travelling salesman

Travelling salesman

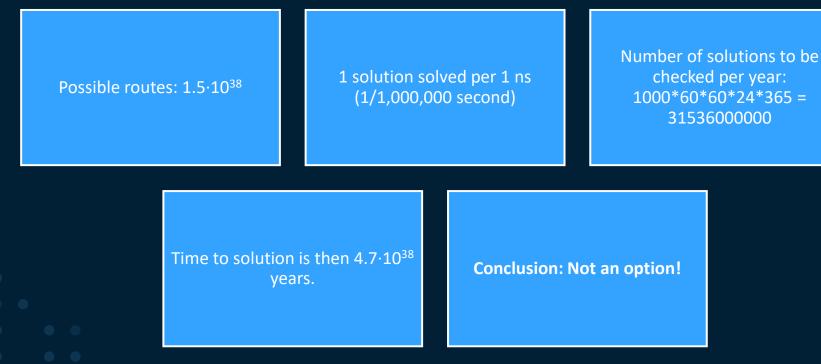
Solutions: 3

60 360



Brute force

Brute force


§sas

Combinatorial problem (n = number of locations) Number of combinations = (n-1)! / 2

- 10 cities = 1.8.10⁵ combinations
- 20 cities = $6.1 \cdot 10^{16}$ combinations
- 30 cities = $4.4 \cdot 10^{30}$ combinations
- 35 cities = ...

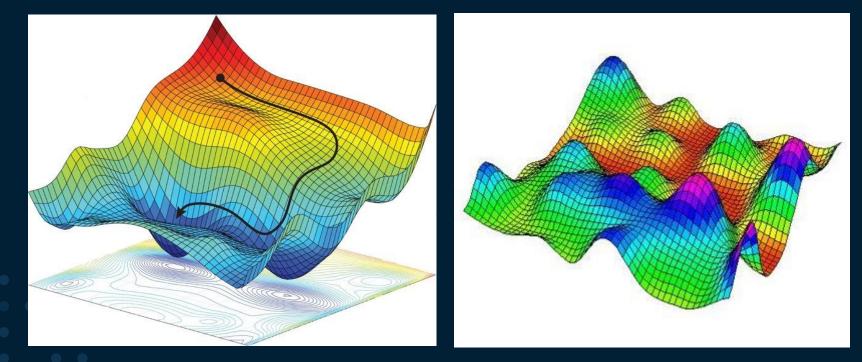
Brut force

Analytical approach

Objective function subject to restrictions

Formulate problem as a mathematical model

Solve with a solver that can find a solution without trying all combinations.



Hard to manage when solutions becomes very large.

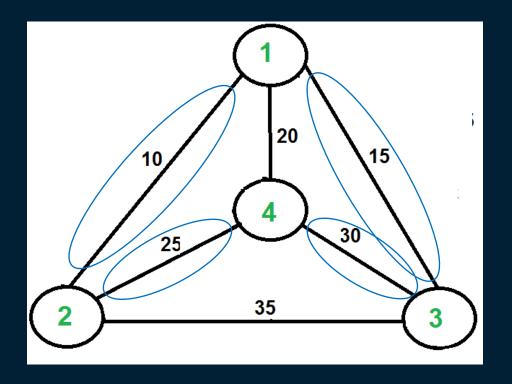
Analytical approach

Objective function subject to restrictions

Specific solutions to specific problems

Tailor made approaches to specific problems.

Often output a good solutions that is directly implementable.



Heuristics does not necissarily provide the optimal solutions.

Heuristics

Specific solutions to specific problems

Example

Proc OptModel

SAS/OR[®] 15.1 User's Guide Mathematical Programming Examples

https://support.sas.com/documen tation/onlinedoc/or/151/ormpex. pdf

Company Confidential – For Internal Use Only Copyright © SAS Institute Inc. All rights reserved

Example

Refining and mixing oil

Cost of oil

Veg1	Veg2	Oil1	Oil2	Oil3
110	120	130	110	115

Hardness of oil

Veg1	Veg2	Oil1	Oil2	Oil3
8.8	6.1	2.0	4.2	5.0

Revenue per unit = 150 Upper bound veg = 200 Upper bound nonveg = 250 Lower bound hardness = 3 Upper bound hardness = 6

Example

Proc OptModel

proc optmodel; /* Declare variables */ veg1, veg2, oil1, oil2, oil3

> /* Declare constraints */ Maximum use of veg an non-veg oils Hardness requirement

/* Declare objective */
max Profit = Revenue - costs

solve;

/* Print results*/
veg1 veg2 oil1 oil2 oil3;
quit;

Example extended

Refining and mixing oil

	Veg1	Veg2	Oil1	Oil2	Oil3
Jan	110	120	130	110	115
Feb	130	130	110	90	115
Mar	110	140	130	100	95
Apr	120	110	120	120	125
May	100	120	150	110	105
Jun	90	100	140	80	135

Cost of oil

Hardness of oil

Veg1	Veg2	Oil1	Oil2	Oil3
8.8	6.1	2.0	4.2	5.0

Revenue per unit = 150 Upper bound veg = 200Upper bound nonveg = 250Lower bound hardness = 3Upper bound hardness = 6 Upper bound store = 1000 Storage cost per unit = 5 Initial storage = 500

§sas

SAS Optimization

Visualization of a travelling salesman type problem

Rune Hjorth Nielsen Providing insights within data science and Al for SAS customer advisory

