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Fit Statistics

Validating your models is a crucial step of the modelling 
process.

With a lot of different fit statistics available to us – How do 
we choose which one to use? How do they differ? Are there 
any pitfalls we should be aware of?
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Misclassification

Misclassifying an observation means that you have incorrectly 
predicted the outcome for that observation.

Used for data that aims to predict an event occurring or not.

A smaller misclassification rate is thus better.



Co pyright © SAS  Inst i tute Inc .  A l l  r ights reser ved.

9

Example: Image recognition

We have images of cats and dogs and have trained a convolutional neural 
network to classify these images. 

We would like to validate how well our model is performing by looking at 
the misclassification rate.
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Example: Image Recognition

Actual:  [Cat, Cat, Cat, Cat, Cat, Cat, Cat, Cat, Dog, Dog, Dog, Dog]

Predicted: [Dog, Dog, Cat, Cat, Cat, Cat, Cat, Cat, Dog, Dog, Dog, Cat]
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Example: Image Recognition

Predicted Cat Predicted Dog

Actual Cat 6 2

Actual Dog 1 3

Predicted P Predicted N

Actual P TP FN

Actual N FP TN
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Prediction Cut-offs

Allows you to change the distribution of the TP,FN,FP,TN. Can be utilized if you 
are only interested in detecting for example positives (maybe for virus tests)

Changes in the probability cut-off value (numeric value between 0 and 1) 
decides if a prediction should be counted as an event (yes, infected) or not (no, 
not infected)
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Pitfalls of the misclassification rate

Can in some cases lead to misleading results

Example: Unbalanced data sets
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ROC Chart
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The ROC chart illustrates a tradeoff

between a captured response fraction

and a false positive fraction.
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Statistical Graphics: ROC Index
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ROC

Sensitivity(y-axis) = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

(1-Specificity)(x-axis)= 
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
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Statistical Graphics: ROC Chart
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For example, this point on 

the ROC chart corresponds 

to the 40% of cases with the 

highest predicted values.
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Statistical Graphics: ROC Chart
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The y-coordinate shows the 

fraction of primary outcome

cases captured in the top 

40% of all cases.
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Statistical Graphics: ROC Chart
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Statistical Graphics: ROC Chart
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The x-coordinate shows the 

fraction of secondary

outcome cases captured in 

the top 40% of all cases.
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Statistical Graphics: ROC Chart
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Pitfalls of the ROC curve

• Any attempt to summarize the ROC curve into a single number loses 
information about the pattern of tradeoffs of the particular discriminator 
algorithm

• AUC estimates are quite noisy

• Sometimes it can be more useful to look at a specific region of the ROC Curve 
rather than at the whole curve
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Average Square Error

• Main usage is for estimate predictions. 

• Often used for regression analysis.
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Pitfalls of ASE

28

• Outliers heavily influence the statistic
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Summary

29

Three different prediction types: Decisions, Rankings and Estimates.

Depending on what the goal of the model is – use a fit statistic that is 
favorable for that case.

Be aware of certain pitfalls that apply to the chosen statistic.


