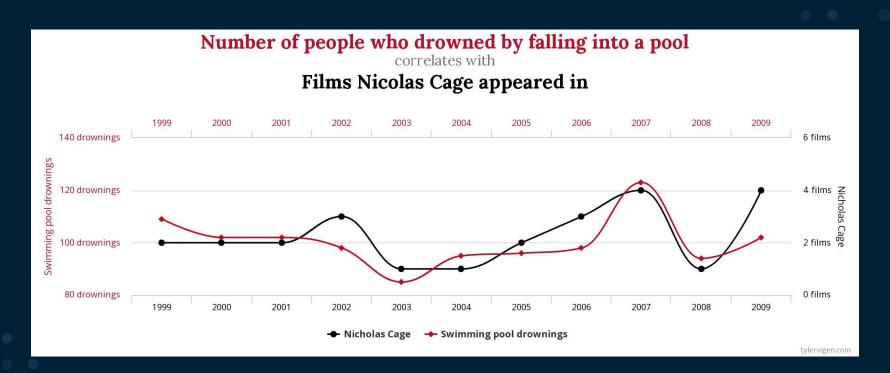
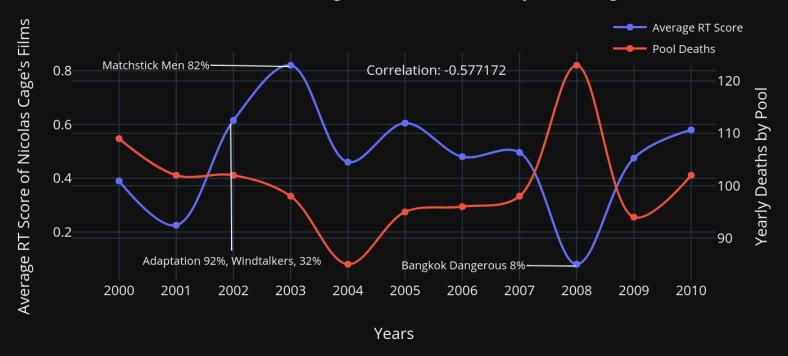

Timeseries Analysis

From ABT to modelling


by Rune Hjort Nielsen, SAS & Pasi Helenius, SAS



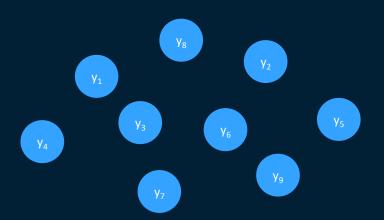
http://tylervigen.com/spurious-correlations

Rotten Tomato Scores of Nicholas Cage Movies vs. Deaths by Drowning in Pool in the US.

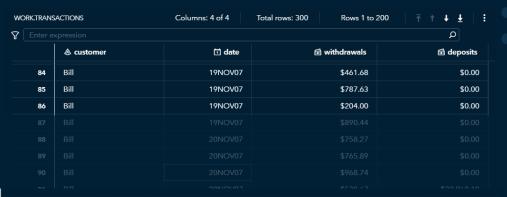
https://towardsdatascience.com/nicholas-cage-pool-saviour-9c13feafff6f

Agenda

Rune Hjorth Nielsen, PhD


Data scientist & Al
specialist at SAS Institute

- Time series data
- Unit root warning
- A more flexible approach



Cross sectional

Time series


```
proc timeseries data=transactions
    out=timeseries;
```

by customer;
id date interval=day accumulate=total;
var withdrawals deposits;

run;

Y Enter e					
	⊗ customer	☐ date	d withdrawals	🙃 deposits	
1	Bill	05NOV2007	\$2,230.72	\$2,537.91	
2	Bill	06NOV2007	\$3,080.24	\$4,369.05	
3	Bill	07NOV2007	\$3,061.54	\$1,471.90	
4	Bill	08NOV2007	\$3,548.72	\$169,691.41	
5	Bill	09NOV2007	\$2,908.35	\$0.00	
6	Bill	10NOV2007	\$2,281.90	\$0.00	
7	Bill	11NOV2007	\$4,162.34	\$173,012.45	
8	Bill	12NOV2007	\$2,211.12	\$40,922.81	
9	Bill	13NOV2007	\$2,287.67	\$0.00	
10	Bill	14NOV2007	\$3,232.42	\$127,847.00	
11	Bill	15NOV2007	\$2,636.91	\$195,691.39	
12	Bill	16NOV2007	\$3,854.54	\$0.00	
13	Bill	17NOV2007	\$5,202.28	\$42,951.14	
14	Bill	18NOV2007	\$1,600.47	\$27,664.44	
15	Bill	19NOV2007	\$2,637.30	\$0.00	
16	Bill	20NOV2007	\$3,682.39	\$32,960.10	
17	Bill	21NOV2007	\$2,626.56	\$9,547.37	
18	Bill	22NOV2007	\$1,384.46	\$0.00	
19	Carlos	05NOV2007	\$3,638.82	\$4,694.41	
20	Carlos	06NOV2007	\$3,632.56	\$112,855.03	
21	Carlos	07NOV2007	\$2,159.47	\$103,467.96	
22	Carlos	08NOV2007	\$1,165.49	\$123,615.00	
23	Carlos	09NOV2007	\$2,654.67	\$0.00	
24	Carlos	10NOV2007	\$1,400.61	\$62,766.47	
25	Carlos	11NOV2007	\$3,689.09	\$0.00	
26	Carlos	12NOV2007	\$2,759.42	\$75,073.20	
27	Carlos	13NOV2007	\$3,654.53	\$144,668.59	
28	Carlos	14NOV2007	\$3,811.02	\$85,707.47	

Why do we need specific time series tools?

Ordinary least squares (OLS)

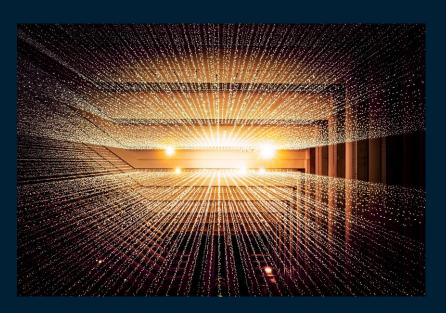
OLS assumptions

- 1. Random sample
- 2. Linear relationship
- 3. No perfectly correlated independent variables
- 4. Conditional mean is zero
- 5. Homoscedasticity and no autocorrelation
- 6. Normally distributed errors

Time series analysis

Choice 1

Classical time series analysis and econometrics


- Follows theory closely
- Needs focus on spurious conclusions
- Have solutions to specific complex problems

Time series analysis

Choice 2

Model selection by forecasting abilities

- Follows the data
- Needs stringent focus on data understanding and data ethics
- Can handle very complex data structures

Spurious regression and unit roots

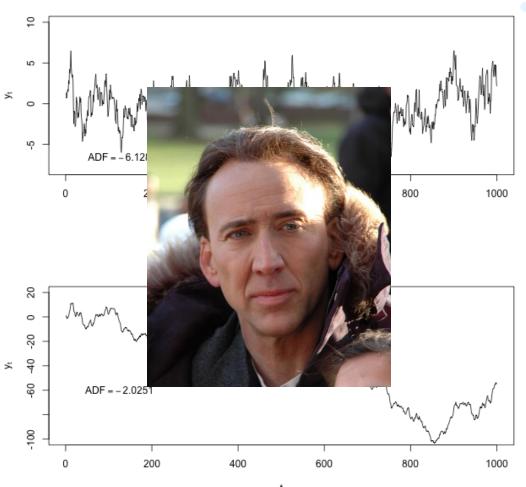
Autoregression of order 1, AR(1):

$$y_t = a_1 y_{t-1} + \varepsilon_t$$

With unit root $a_1 = 1$:

$$y_t = y_{t-1} + \varepsilon_t$$

With repeated substitution:

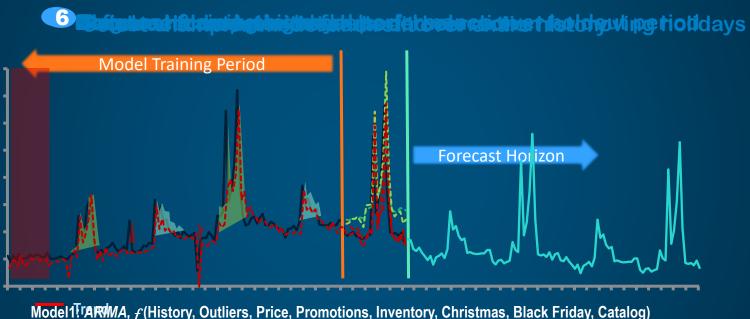

$$y_t = y_0 + \sum_{j=1}^{t} \varepsilon_j$$

The variance of y_t :

$$Var(y_t) = \sum_{j=1}^{t} \sigma^2 = t\sigma^2$$

Stationary Time Series

www.en.wikipedia.org/ wiki/Stationary_process



Dat has a betteridea

Automated Large Scale Time Series Forecasting

Error 13.64% 11.05% 8.58%

Model 1 PARMMA, f (History, Outliers, Price, Promotions, Inventory, Christmas, Black Friday, Catalog)
Model 2 Magazine Mylal Smoothing, f (History, Seasonality)
Model 3 Magazine Mylal F (History, Outliers, Price, Christmas, Catalog)

Outliers

Rune Hjorth Nielsen

Providing insights within data science and Al for SAS customer advisory

SAS Visual Forecasting

Pasi Helenius

