Applying Data Science – Business Cases Case

Studies using SAS = $-\eta \frac{v_t}{\sqrt{s_t + \epsilon}} * g$

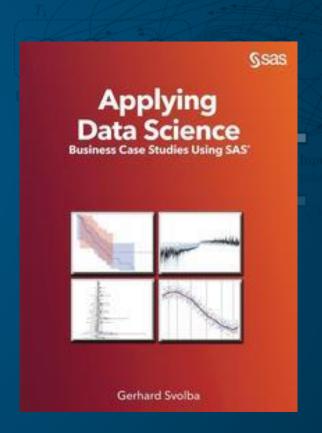
$$\frac{d}{d\theta_1}J(\theta_0,\theta_1) = \frac{1}{m} \sum_{i=1}^m \frac{\partial}{\partial \theta_0} \left(h_\theta(x^{(i)}) - y^{(i)}\right)^2$$

$$\frac{d}{d\theta_1}J(\theta_0,\theta_1) = \frac{1}{m} \sum_{i=1}^m 2(h_\theta(x^{(i)}) - y^{(i)}) \frac{\partial}{\partial \theta_0} (h_\theta(x^{(i)}) - y^{(i)})$$

$$\frac{d}{d\theta_1}J(\theta_0,\theta_1) = \frac{2}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)$$

$$\omega_{t+1} = \omega_t + \Delta \omega_t$$

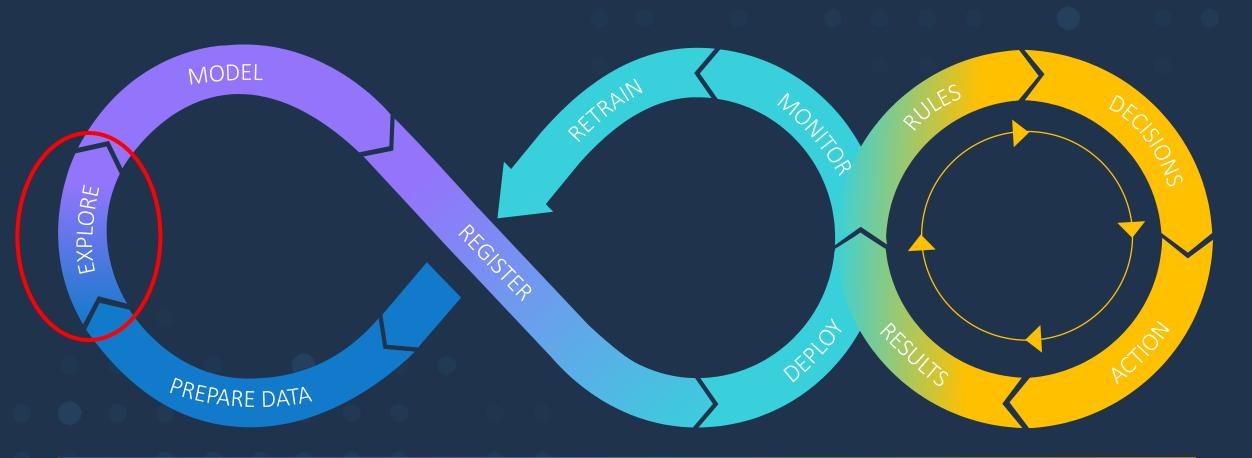
By Gerhard Svolba


 s_t : Exponential Average of squares of gradients along ω_j

 $\beta_1, \beta_2 : Hyperparameters$

 u_t : Exponential Average of gradien s_t : Exponential Average of squares o

Presented by Jacob Mardfelt


Agenda – 2 Use Cases

Data exploration by using Association Analysis

A quick look at finding Fraud with the Benford Distribution

THE DECISIONING PROCESS

ANALYTICS — BUSINESS

Can our data tell us something about or subject with us not asking any explicit questions?

Use Case – Car Insurance Claims

<u>Variable</u> <u>Feature</u>

Age Young, Midwife, Old

Gender Male, Female

Density Highly Urban, Urban, Highly Rural, Rural

Car Type Van, Sports Car, SUV, Sedan, Pick Up

Car Usage Private, Commercial

Claim Flag Claim, No Claim

Data exploration outcome from association analysis

Unsupervised learning to find relations between the variables

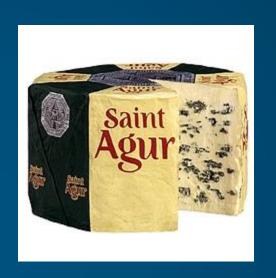
Data Quality from Business Point of view – Does it make sense?

This is explanatory analysis – No hypothese testing

Will uncover obvious rules – Great!

This will give you information before creating a Predictive Model

Association analysis / Market Basket Analysis – How does it work?


<u>Rule</u>: Saint Agur Cheese -> Crackers (LHS -> RHS)

<u>Confindence</u>: Customers who buys Cheese (LHS) buys in 23 % of the cases also Crackers

<u>Support</u>: relative frequency of ,, Cheese + Crackers Combinations is all baskets , eg 2,67 %

<u>Lift</u>: 3.5 factor that the rule "Cheese + Crackers" appear more frequently

Two things to look for: Lift >> 1 and Lift << 1

Association analysis – Transactional structure Needed

Policynumber	Claim flag	Car Use	Car Type	Age	Gender	Density
160	No Claim	Private	Sedan	57	Male	Urban
334	Claim	Private	Van	22	Female	Highly Rural
13431	Claim	Commercial	SUV	45	Male	Rural
1212	No Claim	Private	Sedan	55	Female	Urban
122	No Claim	Private	SUV	34	Male	Rural
3535	No Claim	Private	Sedan	43	Male	Urban
22	Claim	Private	Sedan	57	Male	Urban

One-row-per-subject (ABT)

Policynumber	Feature		
160	Private		
160	Sedan		
160	Old		
160	Male		
160	Urban		
160	No Claim		
334	Claim		
334	Van		
334	young		
334	Female		
334	Highly Rural		
334	Claim		

Multiple-rows-per-subject (Transacational data)

Let's head into SAS Studio!

Association analysis – Discussing the results

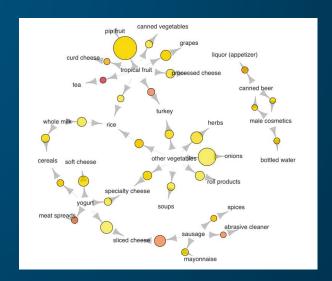
Customer base – Mostly Woman that drives Sports Car?

Data Quality Issue?

The sports car is the 2nd or 3rd vehicle in the family, registrated to the female (German example ©)

Competitors has a better priced policy for men

Association analysis / Market Basket Analysis wrap up

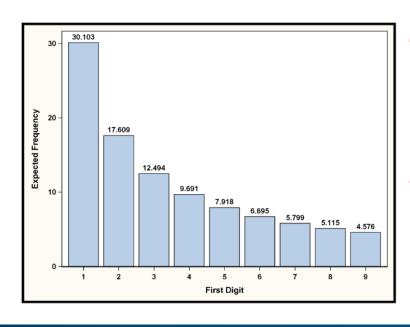

Get a more objective picture of the data

Get explicit result, no needle in a haystack

Recieve findings automatically instead of manually

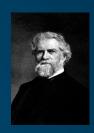
Do you regulary use AA / MBA for data exploration analysis?

Agenda – 2 cases


Data exploration by using Association Analysis

A quick look at finding Fraud with the Benford Distribution

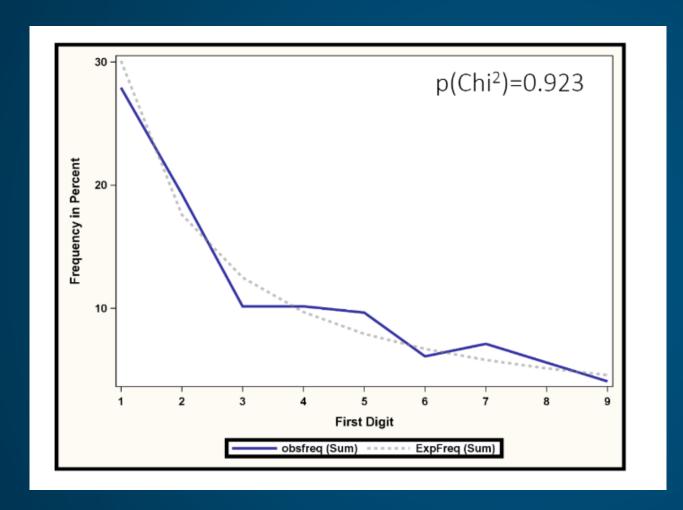
Benford's Law


Benford's Law – Distribution of the Digits 1-9

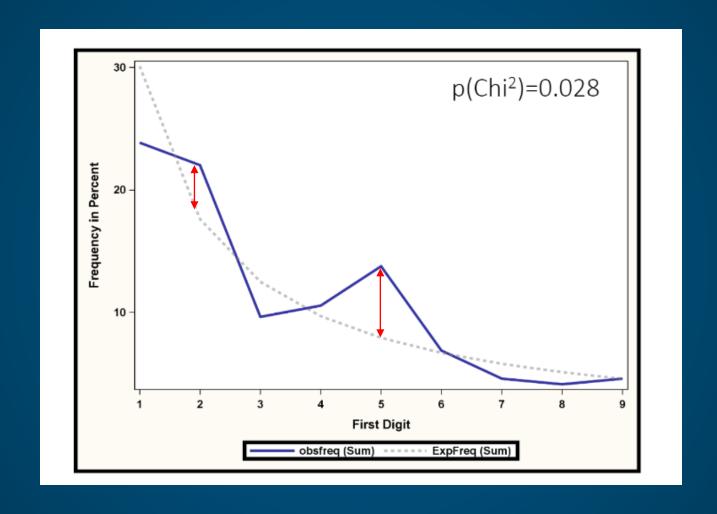
P(d) = log10(1 + 1/d)

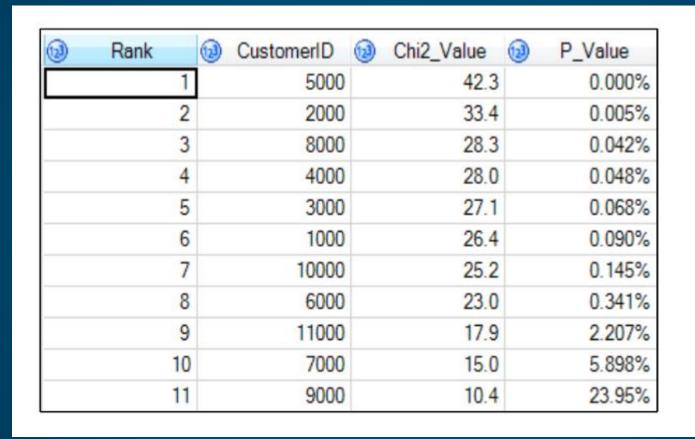
Only in sets of natural occurring numbers!

1881: Simon Newcomb


1938: Frank Benford

1972: Hal Varian

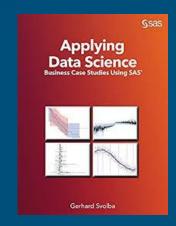

Transactions from an account A vs Benford Distribution


Chi² Independence test

It is used to determine whether there is a significant association between the two variables.

Transactions from an account B vs Benford Distribution

Rank customers by deviation from the expected distribution

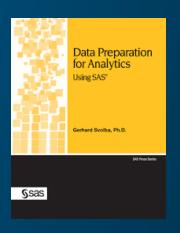

Start by investigation these customers!

Gerhald Svolba

His code is on Github

https://github.com/gerhard1050/Applying-Data-Science-Using-SAS

His book are available online



And case studies are now on youtube

https://www.youtube.com/playlist?list=PLdMxv2SumIKs0A2cQLeXg1xb9OVE8e2Yq

