Linear Mixed Models

Ina Conrado, SAS Institute

Overview of Linear Mixed Models

What are they?

A mixed linear model:

- is a generalization of the standard linear model used in the GLM procedure.
- provides flexibility of modeling not only the means of your data, but their variances and covariances as well.
- useful when we need to analyze data that is nonindependent, hierarchical, longitudinal, or correlated.

Uses of Linear Mixed Models

 The experimental units on which the data are measured can be grouped into clusters, and the data from a common cluster are correlated.

 Repeated measurements are taken on the same experimental unit, and these repeated measurements are correlated or exhibit variability that changes.

Uses in Longitudinal Studies

Longitudinal studies: are widely used in a variety of fields.

 Longitudinal survey data: has multiple observations per subject across waves and subjects are grouped into clusters.

 Mixed-effects models: are able to account for probability weights, clusters, or strata.

Advantages of Mixed Models

Mixed Models are capable of:

- handling data that may violate the assumptions of standard methods
- handling missing data (missing at random)
- handling uneven spacing of repeated measures

Fixed Effects vs. Random Effects

Fixed effects: describes how population means differ across subject characteristics

Random effects: capture the variability among subjects or other units

Random Effects

- Random effects allow us to account for:
 - correlation of observations within the same subject
 - correlation of subjects within the same cluster or strata

Important Concepts

PROC MIXED:

- provides easy accessibility to numerous mixed linear models that are useful in many common statistical analyses.
- fits the specified mixed linear model and produces appropriate statistics.

Features of PROC MIXED used in SAS

- covariance structures, including variance components, compound symmetry, unstructured, AR(1), Toeplitz, spatial, general linear, and factor analytic
- GLM-type grammar, by using MODEL, RANDOM, and REPEATED statements for model specification and CONTRAST, ESTIMATE, and LSMEANS statements for inferences
- appropriate standard errors for all specified estimable linear combinations of fixed and random effects, and corresponding t and F tests
- subject and group effects that enable blocking and heterogeneity, respectively
- REML and ML estimation methods implemented with a Newton-Raphson algorithm
- capacity to handle unbalanced data
- ability to create a SAS data set corresponding to any table

Primary Assumptions in PROC MIXED used in SAS

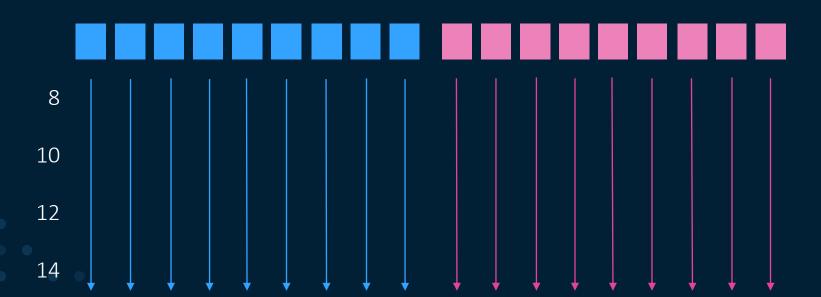
• The data are normally distributed (Gaussian).

 The means (expected values) of the data are linear in terms of a certain set of parameters.

 The variances and covariances of the data are in terms of a different set of parameters, and they exhibit a structure matching one of those available in PROC MIXED.

Covariance Structures

		,	_
Structure	Description	# of Parameters	{i,j}th element
AR(1)	Autoregressive(1)	2	$\sigma_{ij} = \sigma^2 \rho^{ i-j }$
CS	Compound Symmetry	2	$\sigma_{ij} = \sigma_1 + \sigma^2 1(i=j)$
UN	Unstructured	t(t+1)/2	$\sigma_{ij} = \sigma_{ij}$
TOEP	Toeplitz	t	$\sigma_{ij} = \sigma_{ i-j +1}$
VC	Variance Components	q	$\sigma_{ij} = \sigma_k^2 1(i=j)$ and i
			corresponds to the kth effect
ARH(1)	Heterogeneous AR(1)	t+1	$\sigma_{ij} = \sigma_i \sigma_j \rho^{ i-j }$
CSH	Heterogeneous CS	t+1	$\sigma_{ij} = \sigma_i \sigma_j [\rho 1(i \neq j) + 1(i = j)]$
ТОЕРН	Heterogeneous TOEP	2t-1	$\sigma_{ij} = \sigma_i \sigma_j \rho_{ i-j }$


Case Study

Evaluation of Growth in Males and Females over Time

Generating Dataset of Interest

 Dataset contains growth measurement for 11 girls and 16 boys at the ages of 8,10, 12, and 14.

Model Building

```
proc mixed data=WORK.MIXEDMODELS_SASDAG method=ml plots=(residualPanel)
    alpha=0.05;
    class Person Gender;
    model y=Age Gender Age*Gender / solution;
    repeated / type=UN subject=Person r;
run;
```


Model Building

```
proc mixed data=WORK.MIXEDMODELS_SASDAG method=ml plots=(residualPanel)
    alpha=0.05;
    class Person Gender;
    model y=Age Gender Age*Gender / solution;
    repeated / type=UN subject=Person r;
run;
```

Gender: different intercept for girls and boys

Model Building

Age: Overall linear growth trend

Model Building

```
proc mixed data=WORK.MIXEDMODELS_SASDAG method=ml plots=(residualPanel)
    alpha=0.05;
    class Person Gender;
    model y=Age Gender Age*Gender / solution;
    repeated / type=UN subject=Person r;
run;
```

Age*Gender: Different Slopes over Time

Model Building

```
proc mixed data=WORK.MIXEDMODELS_SASDAG method=ml plots=(residualPanel)
    alpha=0.05;
    class Person Gender;
    model y=Age Gender Age*Gender / solution;
    repeated / type=UN subject=Person r;
run;
```

Takes advantage of the assumption that observations are ordered similarly for each subject

Model Building

```
proc mixed data=WORK.MIXEDMODELS_SASDAG method=ml plots=(residualPanel)
        alpha=0.05;
    class Person Gender;
    model y=Age Gender Age*Gender / solution;
    repeated / type=UN subject=Person r;
run;
```

Specifies an unstructured block design for each subject=Person

Model Building

```
proc mixed data=WORK.MIXEDMODELS_SASDAG method=ml plots=(residualPanel)
          alpha=0.05;
     class Person Gender;
     model y=Age Gender Age*Gender / solution;
     repeated / type=UN subject=Person r;
run;
```

Estimation by maximum likelihood

Model Building

```
proc mixed data=WORK.MIXEDMODELS_SASDAG method=ml plots=(residualPanel)
    alpha=0.05;
    class Person Gender;
    model y=Age Gender Age*Gender / solution;
    repeated / type=UN subject=Person r;
run;
```

Requests the display of the fixed-effects solution vector.

Mixed Models using R and Python

Common Packages to fit Mixed Models

Some of the most common R packages for fitting linear mixed models are:

- ►nlme (lme)
- ►lme4 (lmer)

Option in Python:

>Statsmodels

Other packages in SAS:

- ≽proc glimmix
- >proc nlmixed

Conclusions

Further Reading

- https://support.sas.com/resources/papers/proceedings/proceedings/sugi25/25/aa/25p020.pdf
- https://go.documentation.sas.com/?activeCdc=pgmsascdc&cdcId=sas studiocdc&cdcVersion=5.2&docsetId=statug&docsetTarget=statug mi xed toc.htm&locale=en
- https://go.documentation.sas.com/?docsetId=casactstat&docsetTarge t=casactstat mixed example01.htm&docsetVersion=8.3&locale=en
- https://support.sas.com/resources/papers/proceedings/proceedings/s ugi30/198-30.pdf

Thanks!

- linkedin.com/in/ina-conrado/

sas.com

