

8/26-2020 – in Teams

Webinar: Open Source Follow-Up and Q&A

Introduction

• Follow-up and summary of presentation

Agenda

• Q&A

Host: Frans Holm

Presenter Daniel Ringqvist

Whom am I

- Responsible for FANS in Denmark
- Working +15 years in SAS

- Responsible for FANS in Sweden
- + 25 years experience of SAS

Open Source Follow-Up 26aug2020 Summary slides

Daniel.ringqvist@sas.com

Summary - Open Source in Viya

- Why Open Source code, what are we trying to solve?
 - Data Management
 - Analytics
 - Results (plots, lists, ...)
- We learned
 - what we CAN do (and some what we can not)
 - How we set things up on server, for this to work
- Great documentation in the end of the slide deck

Summary - Open Source in Viya

What CAN we do

- Code nodes in Pipelines for R and Py
 - Data prep, analytics and results
- SWAT in Jupyter Notebooks for R and Py
- Model Manager
- REST APIs
- Proc FCMP to build functions running Py
- Base SAS Java Object
- Calling R from SAS/IML (SAS9 and possibly Viya)

Model Studio Pipelines

Open Source Code Node

Open Source Code node CAN

- Support execution of Python/R code
 - Downloads data sample from Cloud Analytic Services (CAS)
- Display results from Python/R code execution
- Produce assessment statistics of Python/R models
- Enable comparison of Python/R models within Model Studio pipeline

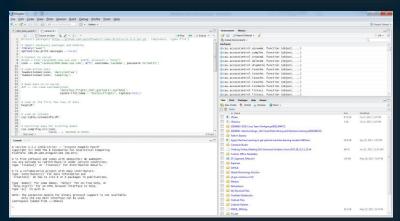
Open Source Code node CAN NOT

Be part of an Ensemble

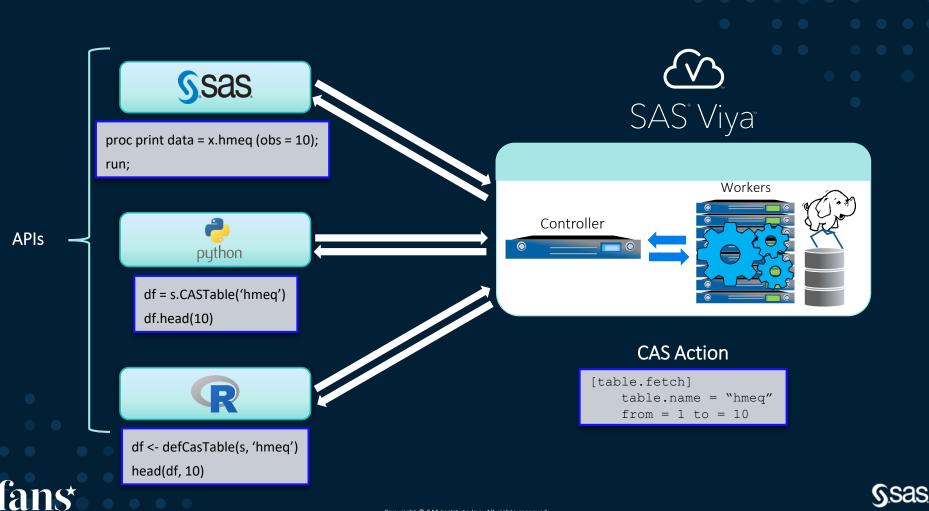
Support Register, Publish or Download score code or score API

SWAT

For R and Python


SAS[®] Scripting Wrapper for Analytics Transfer

Python and R

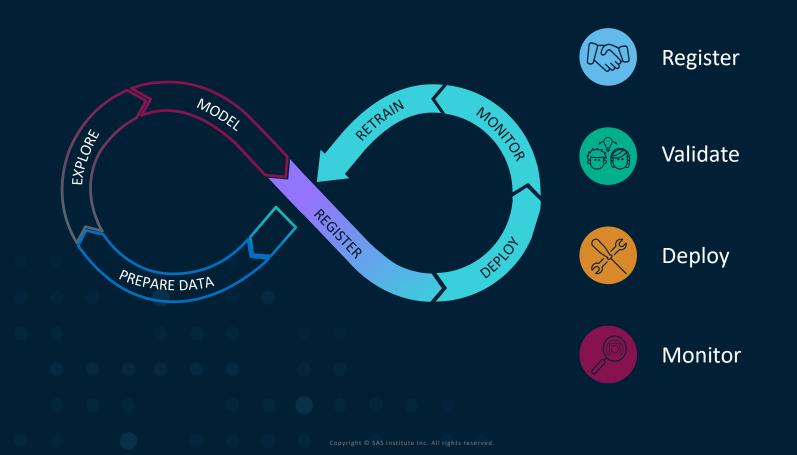

- Integration of SAS[®] Analytics in Python and R code
- R Studio and Jupyter Notebook support
- SWAT packages are available for Python and R free on GitHub or developer.sas.com.
- Download and install SWAT, connect to a CAS server, then write code to drive CAS actions.
- The SWAT package mimics much of the APIs of the native packages making it an easy addition for programmers familiar these languages.

NORDIC SAS USER GROU

SWAT CAN

- Support execution of Python or R code
 Connects to SAS CAS to run SAS Actions
- Can be used with IDE's such as Jupyter Notebooks and R Studio

- Python/R runs where IDE's are configured either locally or on compute server
- Mix SAS programming with Open Source (Python or R)


SAS Model Manager

And SAS Open Model Manager

SAS Model Manager

Ssas

SAS Model Manager CAN

- Supports the registration, validation, deployment and monitoring of Python and R models
- Available using both the point and click in the visual interface and through programming using packages sasctl and pzmm

Other Integration

REST APIs, PROC FCMP, SAS JAVA Object

What is a REST API?

An API is the messenger that takes a request, tells a system what you want to do and then returns the response back to you.

- A **RESTful API** is an application program interface (**API**) that uses HTTP requests to GET, PUT, POST and DELETE data. An **API** for a website is code that allows two software programs to communicate with each other.
- "REST stands for REpresentational State Transfer"
- "API means Application Programming Interface"

Two entry points into SAS Viya

APIs for application developers and admins

- designed for enterprise application developers
- intend to build on the work of model builders and data scientists, to deliver apps based on SAS Viya technology

APIs for analysts and data scientist

- Designed for data scientist, programmers and administrators who need to interact with CAS directly
- Used to executing CAS actions, managing CAS sessions, monitoring the system and inspecting the CAS grid

Scoring API

=	Model Studio - Build Models								
٦	:=		\$						
-2	Data Pipelines Pipeline Comparison Insights								
	Data: Validate •							🕼 Compare	
		Champion \downarrow	Registered	Challenger	Name	Algorithm Name	Pipeline Name	Set as champion	
	v	*			Gradient Boosting (1)	Gradient Boosting	Pipeline 3	Remove challenger models	
					Gradient Boosting	Gradient Boosting	SAS and Open Sou		
					GB Tune Explain	Gradient Boosting	ML with Explanation	Publish models	
					Gradient Boosting (1)	Gradient Boosting	⊖ Pipeline 1	Download score API	
					Decision Tree	Decision Tree	Interactive-Model		
					Python - Random Forest	Open Source Code	SAS and Open Sour	Manage Models	

APIs for analysts and data scientist

=	Model Studio - Build Models									० <i>६</i> (s)	
6	≔ Home Loan Default Demo										
5 2	Data	Data Pipelines Pipeline Comparison Insights									
116	Ø Filter Data: Validate ▼									Batch API	
		Champion ↓		Registered	Challenger	Name	Algorithm Name	Pipeline Name		Project logs	
	✓	*				Gradient Boosting (1)	Gradient Boosting	Pipeline 3			
						Gradient Boosting	Gradient Boosting	SAS and Open Source			
						GB Tune Explain	Gradient Boosting	ML with Explanation			
						Gradient Boosting (1)	Gradient Boosting	⊖ Pipeline 1			
						Decision Tree	Decision Tree	Interactive-Model Pipeline			
					쭈	Python - Random Forest	Open Source Code	SAS and Open Source			

PROC FCMP

Using Python Functions in 5 Steps

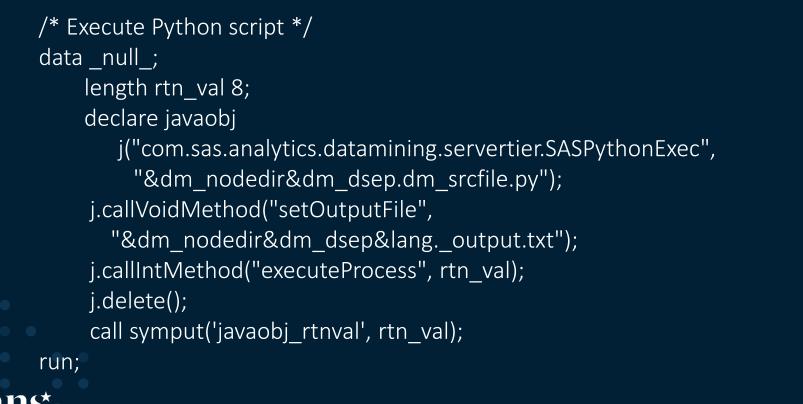
Python Function Workflow

- 1. Declare a Python object & a dictionary object
- 2. Insert Python source code into SAS
- 3. Publish Python source code
- 4. Call the Python source code
- 5. Return results from the dictionary

Results

MyResult=50

proc fcmp; declare object py(python); submit into py; def PyProduct(var1, var2): "Output: MyKey" newvar = var1 * var2 return newvar, endsubmit; rc = py.publish(); rc = py.call("PyProduct", 5, 10); MyResult =py.results["MyKey"]; put MyResult=;



Base SAS Java Object

Base SAS Java Object

Executes a Python or R file

Calling R from SAS/IML

 Comparison of matrix operations in IML and R

 proc iml;

 x = 1:3;
 /* vector of sequence 1,2,3 */

 m = {1 2 3, 4 5 6, 7 8 9};
 /* 3 x 3 matrix */

 q = m * t(x);
 /* matrix multiplication */

 print q;
 /* matrix multiplication */

submit / R; rx <- matrix(1:3, nrow=1) rm <- matrix(1:9, nrow=3, byrow=TRUE) rq <- rm %*% t(rx) print(rq)

andsubmit;

vector of sequence 1,2,3
3 x 3 matrix
matrix multiplication

Q & A

FANS

Webinars

Program 2020

sas.com/fans -> Events -> Webinars

- 18/9 Webinar Migration to Viya
- 1/10 Webinar Visual Analytics for Viya
- 11/11 Webinar Enterprise Guide with Viya

Thank you!

Frans.Holm@sas.com Daniel.Ringqvist@sas.com

S.Sas.