SAS on IBM Power Systems

Camilla Rosendal Madsen Cognitive Solutions IBM Systems DK

Preben Jacobsen HPC/AI Architect IBM Systems Nordics

Agenda

- Experiences with SAS on cloud implementation
- Challenges and successes
- Private cloud vs Public cloud

- SAS and IBM partnership
- What does IBM infrastructure for SAS vs alternatives look like?
- TCO
- Why is IBM better for SAS?

• Q&A

Customer Case

- Moving SAS to the Cloud
 - Customer Scenario
 - The Challenge
 - Why IBM?
 - The Root Cause
 - The Solution
 - Current Status
 - Others do it...

Customer Scenario

Who: Large Pharmaceuticals Company

- Global reach
- Large SAS User
- New Implementation in isolated environment
- External Consultants for architecture and implementation
- Microsoft Consultants Extensive Assistance

The Challenge

Customer wanted to deploy SAS on a public Cloud

- Target was Microsoft Azure
- PoC

- Performance issues
- Availability
- Data Control

Selecting Deployment Target

	Private Cloud	Hybrid	Public Cloud
Computational Workload Control	\$\$∣♥♥♥	\$\$ ♥♥	\$ ♥
Data Access Performance	\$\$ ♥♥♥	\$\$ ♥	\$ ♥
Data Preparation/Upload	\$ ♥♥♥	\$\$ ♥♥	\$ ♥♥
Data PostProces/Download	\$ ♥♥♥	\$\$ ♥♥	\$\$\$ ♥♥
Security / Compliance	\$ ***	\$\$ ♥♥	\$\$\$ ♥♥
Housing	\$\$\$ ♥♥	\$ ***	\$ ♥♥
Power / Cooling	\$\$\$ ♥♥	\$\$ ♥♥♥	\$ ♥♥
Network Connectivity	\$\$ ♥♥	\$ * * *	\$ ♥
Application Environment	\$\$\$ ♥♥	\$\$ ♥♥	\$ ♥♥
Availability and Service	\$\$ ♥♥♥	\$\$ ♥♥	\$ ♥♥
Data Protection (HA, DR, Backup)	\$\$\$ ♥♥	\$\$ ♥	\$ ♥

Why IBM?

- Long Term Partnership w SAS
- Knows Application Deployment
- Knows Infrastructure and Data Interaction
- Has Track Record
- Has the 'medication'

The Root Cause

Infrastructure components

Compute Node Specification: - 4 nodes allocated and installed with Spectrum Scale Client

Size	vCPU	Memory (GiB)	Temp diskl (GiB)	NVMe Disks2	NVMe Disk throughput3 (Read IOPS / MBps)	Host Cache Size4	Max Data Disks	Max NICs Expected network bandwidth (Mbps)
Standard_L32s_v2	32	256	320	4x1.92 TB	1.4M / 9,000	N/A	32	8 / 12,800

Storage Node Specification - 9 to be used – Spectrum Scale NSD node:

					Max cached and temp		
		Memory:	Temp storage (SSD)	Max data	storage throughput: IOPS / MBps (cache size in	Max uncached disk throughput:	Max NICs / Expected network bandwidth
	vCPU	Gib.	Gib	disks	GiB) 64,000 / 512	IOPS / MBps	(Mbps)
Standard_E32s_v3 2	32	256	512	32	(800)	51,200 / 768	8 / 16,000

The Solution

Architecture design with Spectrum Scale

Aggregated Network Bandwidth - 12,8GB/s ~ 128 GbE

Spectrum Scale High Performance Filesystem – One namespace – single filesystem Compute nodes connected by GPFS protocol

Storage Server Array

Aggregated served performance of 12.800 MB/s Hw req: min 24 core and 256GB RAM, redundant 25GbE network connection. Based On Memory Optimized Standard, E32s v3 serverount will be 17 per 4 computenodes

Current Status

- PoC became a success
- High increase in performance
- Scalability with performance
- Data/storage control

Now moved to AWS....

• Pricing

Others Do It

40+ years of partnership between SAS and IBM

IBM offerings are **co-optimized** for SAS workloads:

- SAS 9.4 for AIX on IBM Power Systems
- SAS Viya on Linux on IBM Power Systems
- IBM Spectrum LSF is the base for SAS Grid

"POWER9 has this high-throughput capability that other processors do not have."

"[POWER9 is] a perfect fit for our machine learning and deep learning capability in SAS Viya"

Ken Gahagan Director, R&D SAS

Video: Driving innovation with SAS® Software and IBM Power Systems

TCO / Value for x86 to Power

Scaling up vs. scaling out

- Other vendors use scale-out
- IBM can do both

Enterprise servers can be more interesting than scale-out when addressing SAS workload.

Beside the cost savings from choosing a Power platform rather than an x86-based platform comes that SAS users will be able do DOUBLE their performance and amount of work with their SAS licenses on a Power platform

	Intel-based Environment (on-premise)	Intel-based Environment (Public Cloud)	IBM Environment (on- premise)
Servers	6	2	2 (Power E950)
Cores/vCPUs	336	192	80
Processors	12	N/A	8
Compute Performance Metric (CPM)	13,788 40% utilization	N/A	12,570 70% utilization
Total Memory (GB)	6,144	6,192	6,192
CPU Architecture	x86	x86	POWER9
Processor Speed (GHz)	2.7	2.3	3.4
Total 3-year costs (including HW, maintenance, OS, VMware/Power VM, Power/cooling cost)	\$660.000	\$700.000	\$480.000

SAS on Power TCO *Power Systems vs x86 On-Premises*

6 Intel-based Servers	VS	2 Power E950 Servers
3 Year TCO Red	luction Expe	nse Reduction
\$180,000		27%

Savings from:

- Reduced HW maintenance and SW support costs
- Reduced power and cooling costs
- Reduced virtualization licensing costs
- Reduced FTE (full time employee) for operation costs

Reliability *Power Systems vs x86 On-Premises*

16x to 28x less downtime compared to alternatives

Cost of Downtime: \$4,998 per server/minute¹

Downtime per year:

IBM Power Systems: 1.54 minutes/server per year¹

X86-based Infrastructure for SAS High-Performance Visual Analytics: 26-43 minutes/server per year **Cost of Downtime Estimates:**

\$7,696.92 per server/year

\$129,948 - \$214,914 per server/year

SAS on Power TCO

Power Systems On-Premises vs x86 Cloud

2 Servers in a Public Cloud	VS	2 Power E950 Servers
3 Year TCO Rec	luction Expe	nse Reduction
\$220,000)	31%

Savings from:

- Network costs
- Outbound bandwidth fees
- Storage costs

SAS on Power vs Cloud

Power Systems vs x86 Cloud

Faster insights at lower costs

SAS on Power Systems

On-Premises or Private Cloud

- Easily achieve I/O bandwidth required for SAS workloads
- Enjoy cloud-like pricing and on-demand scalability with Capacity on Demand
- Flexibility to tune deployment to achieve best possible performance

x86 Cloud

- I/O throughput is crucial and a limiting factor for successful SAS public cloud deployments
- Most public clouds cannot reach the SAS recommended minimum I/O throughput of 100 MB/s per core
- Limited HW and Storage tuning in public cloud Cost in movement of data

Sees COVID-19, hard-to-control public cloud costs driving more on-premises engagements

"The costs are so much harder to control [in public cloud]," he said. "You blink, and you pay something to a hyperscaler. You move data for two seconds or you turn a bit on a hard disk with a hyperscaler, and you pay for it. If you have a very steady, even usage, [on-premises is a good option]."

who took helm of the cloud business at **15** months ago, said he saw the public cloud conundrum first-hand when he was heading up infrastructure and data management services for US\$13.6 billion systems integration behemoth Atos. In one case, a customer moving to the public cloud received a 6,500-page bill. "They had no idea what was in there," he said.

Contact information

IBM SAS Alliance team

Camilla Rosendal Madsen <u>Camilla.rosendal.madsen@ibm.com</u> +45 41 20 37 43

Preben Jacobsen prebenj@dk.ibm.com +45 40 60 15 89