SAS® Press Series

Praise from the Experts

“1 am green with envy for the newest generation of SAS programmers because | wish that | had
had this book in front of me 20 years ago when | first started with SAS! Art’sbook gives a
perspective on the REPORT procedure as no other user has done before by ingeniously
intertwining his extensive knowledge of PROC REPORT with the experiences and unique
approaches of over 100 PROC REPORT power users. His simple approach will give even the
most novice SAS user the necessary tools to get started with PROC REPORT, and his nicely
flowing buildup to PROC REPORT’ s more complex usability makes this book a jewel for the
entire SAS community. Art’s PROC REPORT book has, without a doubt, given all SAS users
THE POWER TO KNOW*®!”

Rick Mitchell
Senior Systems Analyst
Westat

“Carpenter’s Complete Guide to the SAS’ REPORT Procedure iswritten in Art’s own friendly
and comfortable style, reminiscent of his major works on the topic of the SAS® macro language.
Topics and features are introduced on a schedule that echoes how one might actually need to learn
them to get the job done. Manuals don't do that. They have their purpose as reference tools and
they are certainly available when needed, but they are not typically productivity oriented. Art’s
book is.

“This book would make a welcome addition to the bookshelves of any serious SAS programmer.
| wish | had written it.”

Ray Pass, Ph.D.
Ray Pass Consulting

“Thisisthe single best resource for PROC REPORT. I’'m a huge fan of improving my SAS skills
through users group conferences, which ishow | first learned PROC REPORT. The CD of
conference papers on this topic is an additional bonus to this book.”

Kim LeBouton
Independent Consultant
KJL Computing

SUGI 31 Conference Chair

“In histypical fashion, Art has taken on another facet of the SAS programming language and
provided a book that clears up a number of misconceptions about the REPORT procedure.

“Making the book even better isthe logical approach not only to the training but also to the
development of a document. Art starts with the very basics of the REPORT procedure to define
the terms being used. From that point, he builds on the process by showing how to improve the
look of the output produced through the COLUMN and DEFINE statements. After the user
achieves some competence with these tools, Art introduces increasingly more complex topics,
such as compute blocks, along with clear explanations of how SA S processes the statements.

“Just like Carpenter’s Complete Guide to the SAS’ Macro Language, Second Edition, thisisa
must-have book for any SAS developer’ sreference library.”

Paul Slagle

Product Development M anager,
Bl Systems

i3 Global

“Having read Carpenter’s Complete Guide to the SAS’ Macro Language, Second Edition, | knew
that this author was capable of presenting an exhaustive, in-depth, clever collection of tips,
examples, and references on avariety of levels. This new book does not disappoint.

“1 am not a PROC REPORT programmer, yet | have been in the field for over 20 years. Art not
only brought me up to speed on probably the most flexible reporting tool SAS has to offer, he has
shown me how to integrate and leverage its use with other SAS resources (such as PROC
TRANSPOSE, PROC SUMMARY, SAS graphics, and ODS: RTF, PDF, HTML, and XML). He
has offered examples to build sophisticated yet simple reports that are eye catching and easily
understood.”

ThomasL. Lehmann
Sr. Programmer/Analyst 11
RDA Group Inc.

“This book is very user-friendly with good examples and provides a useful and easily understood
way for readers to see, step by step, how to use PROC REPORT. As aways, Art has done an
outstanding job of conveying the ‘how-to-do’ approach.”

Sue Douglas
Independent Consultant

“As an experienced SAS user, aswell as an instructor of SAS, | find that this book iswritten well
for the new user, but also includes wonderful gems for the experienced user.”

Daphne Ewing
Sr. Director, Programming
Auxilium Pharmaceuticals, Inc.

“ Carpenter’s Complete Guide to the SAS® REPORT Procedure iswell written, easy to
understand, and useful for the novice as well as the most advanced SAS user. Art’s technique of
using a spiral approach, starting off with the easiest examples and progressing to the most
complex, isideal.

“Thisis amust-have book if you are a SAS user—period—no matter what level SAS user you
are! At somepoint inyour IT activities, you must create areport of some nature. This book will
be an asset to you and your career by making you a better SASIT professional.”

Charles Patridge
Sr. Data Engineer
Full Capture Solutions, Inc.

THE
POWER
TO KNOW.

The correct bibliographic citation for this manual is as follows: Carpenter, Art. 2007. Carpenter’s Complete Guide to
the SAS® REPORT Procedure. Cary, NC: SAS Institute Inc.

Carpenter’s Complete Guideto the SAS” REPORT Procedure

Copyright © 2007, SAS Ingtitute Inc., Cary, NC, USA

ISBN 978-1-59994-195-0

All rights reserved. Produced in the United States of America

For a hard-copy book: No part of this publication may be reproduced, stored in aretrieval system, or transmitted, in
any form or by any means, el ectronic, mechanical, photocopying, or otherwise, without the prior written permission

of the publisher, SAS Ingtitute Inc.

For aWeb download or e-book: Y our use of this publication shall be governed by the terms established by the
vendor at the time you acquire this publication.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related
documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in
FAR 52.227-19, Commercia Computer Software-Restricted Rights (June 1987).

SAS Ingtitute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, March 2007

SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS software
toitsfullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit

the SAS Publishing Web site at support.sas.com/pubs or call 1-800-727-3228.

SAS’and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Contents

Preface El

Acknowledgments xiii

About the Author xv

How to Use This Book and the Accompanying CD xvii

Part 1 Getting Started

Chapter 1 Creating a Simple Report 3

1.1 Basic Syntax EI

1.2 Routing Reports to ODS Destinations @

1.3 Other Reporting Tools: A Brief Comparison of Capabilities El
1.3.1 PROC REPORT vs. PROC PRINT
1.3.2 PROC REPORT vs. PROC TABULATE
1.3.3 PROC REPORT vs. DATA _NULL_ [8

1.4 The PROC REPORT Process: An Overview |§|
1.4.1 PROC REPORT Terminology |§|
1.4.2 Processing Phases

1.5 Chapter Exercises

Chapter 2 PROC REPORT: An Introduction 13

2.1 Introduction to the COLUMN Statement

2.2 Defining Types of Columns
2.2.1 Default Define Types DISPLAY and ANALYSIS
2.2.2 Using Define Usage ORDER
2.2.3 Using Define Type GROUP
2.2.4 Using Define Type ACROSS (and GROUP)

2.3 Doing More on the COLUMN Statement
2.3.1 Using the Comma to Form Nested Associations
2.3.2 Attaching Statistics with a Comma
2.3.3 Using Parentheses to Form Groups
2.3.4 Nesting Statistics under an ACROSS Variable

2.4 Other DEFINE Statement Options
2.4.1 Specification of an Analysis Statistic
2.4.2 Formatting the Values
2.4.3 Controlling the Order of the Displayed Values
2.4.4 Using the N Statistic without an ANALYSIS Variable
2.4.5 Associating Statistics with DEFINE Statements

iv Contents

2.5 Adding Text
2.5.1 Using the COLUMN Statement to Add Text
2.5.2 Using the DEFINE Statement to Add Text
2.5.3 Using the SPLIT= Option with Text
2.6 Compute Blocks
2.6.1 Inserting a Blank Line
2.6.2 Adding Lines of Text
2.6.3 Writing Formatted Values
2.6.4 Using SAS Language Elements
2.7 Sequencing of Step Events
2.8 Chapter Exercises

Chapter 3 Creating Breaks @
3.1 Generating Breaks Using BREAK and RBREAK
3.2 BREAK Statement
3.2.1 Skipping a Line between Groups
3.2.2 Summarizing across a Group
3.2.3 Suppressing the Summarization Label
3.2.4 Generating a Page for Each Group Level
3.2.5 Combining Summaries with Detail Reports
3.3 RBREAK Statement
3.3.1 Using RBREAK in a Detail Report
3.3.2 Using RBREAK with BREAK in a Detail Report
3.3.3 Using RBREAK and BREAK in a Summary Report
3.4 Chapter Exercises

Chapter 4 Only in the LISTING Destination 75

4.1 Using the HEADLINE and HEADSKIP Options

4.2 Blank Lines, Overlines, and Underlines

4.3 Repeat Characters
4.3.1 Adding Repeated Characters to Spanning Headers
4.3.2 Repeat Characters with the SPLIT= Option

4.4 PROC REPORT Statement Options
4.4.1 Creating Boxes on the Report
4.4.2 Controlling the Centering of the Report
4.4.3 Adjusting the Width of Numeric and Computed Columns
4.4.4 Creating Multiple Panels on a Page
4.4.5 Using the PSPACE= Option
4.4.6 Controlling the Size of the Page
4.4.7 Using the FORMCHAR Option
4.4.8 Wrapping Data Lines

4.5

4.6

Chapter 5

51
5.2
5.3
5.4
55
5.6

Part 2

Chapter 6

6.1

6.2
6.3
6.4

6.5

Contents v

Other DEFINE Statement Options

4.5.1 Specifying the Column Width

4.5.2 Using the FLOW Option to Wrap Text
4.5.3 Adding Spaces between Columns
Chapter Exercises

Creating and Modifying Columns Using the
Compute Block 97

Coordinating with the COLUMN and DEFINE Statements
Calculations Based on Statistics

Calculating Percentages within Groups

Using _PAGE_ with BEFORE and AFTER

Using the OUT= Option to View Report Break Information |104
Chapter Exercises |106

Taking PROC REPORT Beyond the
Basics

Refining Our Understanding of the

PROC REPORT Step 109

Additional DEFINE Statement Options |110

6.1.1 Changing Display Order with DESCENDING

6.1.2 Specification of Column Justification |111

6.1.3 Allowing the Use of Missing Classification Items |113

6.1.4 Controlling the Use of Analysis Iltems with All Missing or
Zero Values m

6.1.5 Using NOPRINT

6.1.6 Identification Columns |119

6.1.7 Creating Vertical Page Breaks

Using Variable Aliases (121

Nesting Variables E

Taking Full Advantage of Formats (123

6.4.1 User-Defined Formats (123

6.4.2 Preloading Formats |126

6.4.3 Order Based on Format Definition [130

Other PROC Statement Options [131

6.5.1 Removing Headers |131

6.5.2 Using NAMED Output

6.5.3 Debugging with the LIST Option m

6.5.4 Including MISSING Classification Levels

Vi

Contents

6.6

6.7
6.8
6.9

Chapter 7
7.1

7.2

7.3

7.4

7.5
7.6

7.7

7.8

BY-Group Processing

6.6.1 Using the BY Statement

6.6.2 Creating Breaks with BY Groups

6.6.3 Using the #BYVAL and #BYVAR Options (139
6.6.4 BY Groups and the Output Delivery System
Calculations Using the FREQ Statement |144

A Further Comment on Paging Issues |145

Chapter Exercises |146

Extending Compute Blocks 147

Understanding the Events of the Compute Block Process (149

7.1.1 Setup Phase: Generating the Computed Summary
Information |150

7.1.2 Report Row Phase: Generating the Report

7.1.3 Process Example

Referencing Columns and Report Iltems in a Compute Block

7.2.1 Using Direct Variable Name References |156

7.2.2 Using Compound Variable Names (159

7.2.3 Using an Alias as a Column Reference |160

7.2.4 Using Absolute Column References: Referring to a Column
by Its Number

7.2.5 Using the Automatic Temporary Variable BREAK _

Using BEFORE and AFTER

Changing the Grouping Variable Values on Summary Lines |169

7.4.1 Specifying Text in a Compute Block

7.4.2 Using a Formatted Value

7.4.3 Creating a Dummy Column m

Introducing the CALL DEFINE Routine |174

COMPUTE Statement Options and Switches

7.6.1 Justification of LINE Statement Text [179

7.6.2 Creating Character Variables with the CHARACTER and
LENGTH= Options [180]

Using Logic and SAS Language Elements |182

7.7.1 Using the SUM Statement with Temporary Variables

7.7.2 Repeating GROUP and ORDER Variables on Each Row m

7.7.3 Counting Items across Page Breaks in the LISTING
Destination (187

Doing More with the LINE Statement

7.8.1 Creating Group Summaries |192

7.8.2 Adding Repeated Characters (194

7.8.3 Understanding LINE Statement Execution (197

Contents Vii

7.9 Examples of Common Tasks
7.9.1 Writing a Grand Total on Every Page
7.9.2 Combining Values into One Field or Column
7.9.3 Combining Values with Nested ACROSS Variables
7.9.4 Calculating a Weighted Mean m
7.10 Chapter Exercises |209

Chapter 8 Using PROC REPORT with ODS [211]
8.1 Introduction to the STYLE= Option m
8.2 Using STYLE=to Change Attributes [216
8.2.1 Changing Text and Cell Attributes
8.2.2 Adding a Logo to Your Report
8.2.3 Controlling Report Size [223
8.2.4 Adding Horizontal and Vertical Spaces to Separate
Data (223
8.3 Using CALL DEFINE to Change Style Attributes |227
8.3.1 Using CALL DEFINE in a Simple Report
8.3.2 Creating Shaded Rows (229
8.3.3 Conditional Assignment of Attributes |231
8.4 Creating Trafficlighting Effects m
8.4.1 Building Trafficlighting Formats |233
8.4.2 Using Formats with the STYLE= Option m
8.4.3 Controlling Trafficlighting with CALL DEFINE
8.4.4 Trafficlighting in the Presence of Computed Variables and
Summary Lines [236
8.4.5 Trafficlighting When Differentiating between Columns |240
8.4.6 Differentiating between Columns on Group Summary
Rows (242
8.4.7 Trafficlighting on the REPORT Summary Row
8.4.8 A Few Things to Remember When Using Formats for
Trafficlighting
8.5 Embedding Hyperlinks within Your Table [249
8.5.1 Linking Titles and Footnotes Using HTML Anchor Tags and
the LINK= Option |250
8.5.2 HTML Anchor Tags as Data Values |255
8.5.3 Establishing Links Using CALL DEFINE
8.5.4 Forming Links Using STYLE= |260
8.5.5 Creating Links in a PDF Document (262
8.5.6 Creating Links in an RTF Document |265
8.5.7 Automation Using the Macro Language |266
8.5.8 Using Formats to Build a Link |268

viii Contents

8.6 Using the Escape Character for In-Line Formatting
8.6.1 Controlling Superscripts and Subscripts |271
8.6.2 Displaying Page Numbers |273
8.6.3 Generating a Dagger |277
8.6.4 Using the Escape Character with S={ } and {STYLE} to
Change Style Attributes [279
8.6.5 Line Breaks and Wrapping
8.6.6 Passing Raw Destination-Specific Codes [289
8.7 Using TITLE and FOOTNOTE Statement Options |292
8.8 Creating Tip or “Flyover” Text for HTML and PDF
8.8.1 Using CALL DEFINE
8.8.2 Placing Tip Text Using STYLE= [295
8.8.3 Placing Tip Text Using ~S={}
8.9 Specifying Multiple Columns for RTF and PDF
8.10 Adding Text through the TEXT= Option |300
8.11 RIGHTMARGIN: Aligning Numbers When Using CELLWIDTH
8.12 Chapter Exercises (304

Part 3 Extending PROC REPORT

Chapter 9 Reporting Specifics for ODS

Destinations 309

9.1 RTF
9.1.1 Using the BODYTITLE Option [311]
9.1.2 Adding RTF Control Words
9.1.3 Post-processing of RTF Files

9.2 PDF
9.2.1 Adding PDF File Descriptors (314
9.2.2 Setting the Default Margins m

9.3 HTML and Other Markup Destinations |316
9.3.1 Exporting a Report to Microsoft Excel
9.3.2 Setting Tagset Attributes |322
9.3.3 HTML Tags and Repeat Characters |323

Chapter 10 Solving Other Common Report
Problems 325
10.1 Creating Vertically Concatenated Tables m
10.1.1 A Simple Table
10.1.2 Ordering the Generated Classifications |332
10.1.3 Text and Number Alignment in Derived Columns |335
10.1.4 Doing More in the PROC REPORT Step

Contents ix

10.2 Automating the PROC REPORT Process (341
10.2.1 Things to Think about When Automating
10.2.2 Macro Variable Resolution Issues (343
10.3 Coordinating Graphics with PROC REPORT (345
10.3.1 Using CALL DEFINE to Import Graphics
10.3.2 Using GPRINT and GREPLAY
10.3.3 Using the Annotate Facility to Generate Lines |355
10.4 Workarounds for Monospace-Only Options [357
10.5 Generating Separate Reports on the Same Page
10.5.1 ODS LAYOUT
10.5.2 HTML Reports [362]
10.5.3 RTF and PDF Reports: Using STARTPAGE=NEVER
10.5.4 Aligning Columns across Reports |365

Chapter 11 Details of the PROC REPORT Process
11.1 Step Sequence Review m
11.2 Building a Simple Table with Summary Lines (371
11.3 Compute Block Processing
11.3.1 Creating a Computed Variable
11.3.2 Multiple Compute Blocks
11.3.3 Summary Lines and Compute Blocks in the Same

Report
11.3.4 Using Compute BEFORE and COMPUTE AFTER with
Summary Lines [375

11.4 Using the ACROSS Define Usage |378

W

Appendix 1 Exercise Solutions (38
Al.1 Solutions to ChapterExercises 383

Al.2 Solutions to Chapter@Exercises
Al.3 Solutions to Chapter 3 Exercises
Al.4 Solutions to ChapterEIExercises 391
Al.5 Solutions to ChapterEIExercises
Al.6 Solutions to ChapterEIExercises
Al1.7 Solutions to ChapterIﬂExerciseS 402

Al1.8 Solutions to ChapterExercises 408

Appendix 2 Syntax and Example Index 417

A2.1 PROC REPORT Step
A2.1.1 Primary Statements (418
A2.1.2 PROC REPORT Statement Options (418
A2.1.3 BY Statement Options |419

X Contents

A2.1.4 COLUMN Statement Options |420
A2.1.5 DEFINE Statement Options (420
A2.1.6 BREAK Statement Options |422
A2.1.7 RBREAK Statement Options |422
A2.1.8 COMPUTE Statement Options (422
A2.1.9 In the Compute Block
A2.1.10 Other PROC REPORT Step Statements 423
A2.2 Output Delivery System |423
A2.2.1 ODS Destinations (424
A2.2.2 ODS Statements and Options |424
A2.2.3 HTML Destination Options
A2.2.4 PDF Destination Options
A2.2.5 RTF Destination Options (426
A2.3 Attribute Control and Modification |426
A2.3.1 STYLE= Option [426]
A2.3.2 CALL DEFINE Routine |427
A2.3.3 Attribute Modifiers m
A2.4 System Options (429

Appendix 3 Example Locator (431

A3.1 Combination Detail and Summary Reports |431
A3.1.1 Transposing Rows and Columns (432
A3.1.2 Specifying and Calculating Statistics (432
A3.1.3 Enhancing Tables m
A3.1.4 Controlling Pages m
A3.1.5 Controlling the Order of the Report’s Rows |433
A3.2 Calculating Percentages m
A3.3 Processing Weighted Means and Totals
A3.4 Understanding Processing Phases and Event Sequencing

References 435
Index 449

Preface

The presentation of datais an essential part of virtually every study, and SAS provides numerous
tools that enable the user to create alarge variety of charts, reports, and data summaries. The
REPORT procedure is a particularly powerful and valuable procedure that can be used in this
process. It can be used to both summarize and display data, and it is highly customizable and
flexible.

Unfortunately, for many of those just starting to learn PROC REPORT, the terms “ customizable”
and “flexible” often seem to be euphemisms for “hard to learn.” Fortunately, PROC REPORT
does not have to be “hard to learn”—not, that is, with the right approach. And that iswhy | have
written this book to offer that approach and the necessary tool setsto you,

This book introduces you to PROC REPORT by showing you how it works and how it “thinks.”
A progression of increasingly more complex examples are used to illustrate many features,
including options and capabilities new to SAS 8 and SAS®9. Along the way, we create a variety
of reports and tables that highlight some of the more common and even uncommon capabilities of
the procedure.

Xii

Acknowledgments

| received quite a bit of essential assistance from a number of PROC REPORT experts. Cynthia
Zender, lead trainer for PROC REPORT at SAS, provided a number of examples and comments
on the sections dealing with trafficlighting and the Output Delivery System. Russ Lavery and |
had a number of long and interesting discussions on “the way things seem to work.” Pete Lund of
Looking Glass Analytics isa PROC REPORT programmer who is constantly pushing the
procedure’ s limits. Not only did he review the manuscript, but he also provided a number of ODS
examples. Be sure to read Pete’ s papers on various ODS, macro language, and reporting topics.
Others who shared examples and topics included Ben Cochran, Mike Metz, and Justina Flavin.

Theclinical trial data (RPTDATA.CLINICS) that appears in a number of examples throughout
this book was used with permission of Mr. Kirk Lafler of Software Intelligence Corporation.

A great deal of input was received from the numerous people who offered their time to help with
the content of this book. Reviewers included the following people from SAS:

Vince Del Gobbo
Nancy Goodling
Wayne Hester

Tim Hunter

Scott Huntley

Bari Lawhorn
Elizabeth Madonado
Kathryn McLawhorn
Allison McMahill
Chevell Parker

Jane Stroupe
Cynthia Zender

The following people also reviewed the book:

Russ Lavery
Pete Lund

Finally, I would like to thank Marilyn, my wife and the owner of California Occidental
Consultants, for her unwavering support of this time-consuming project.

Xiv

About the Author

Art Carpenter’s publications include three other books and numerous
papers and posters presented at SUGI, SAS Global Forum, and other
users group conferences. Art has been using SAS® since 1976 and
has served in various leadership positionsin local, regional, national,
and international users groups. Heis a SAS Certified Advanced
Programmer™ and through California Occidental Consultants he
teaches SA'S courses and provides contract SAS programming
support nationwide.

Author Contact

Arthur L. Carpenter

Cadlifornia Occidental Consultants
P.O. Box 430

Oceanside, CA 92085-0430

(760) 945-0613

art@caloxy.com

www.caloxy.com

Certified
Sas Professional
Gl Version 8

Sas. e

XVi

How to Use This Book and the Accompanying CD

This book was not written with the intention of providing a syntax reference manual, nor isthere
any intent to completely describe all aspects of the REPORT procedure. Rather, this book was
written to assist new PROC REPORT programmers in getting started, while at the same time
providing techniques that | have found to be useful to more advanced users of the procedure.
Because we do not all approach problemsin the same way, it islikely that others will find
aternate solutions to many of the reporting problems discussed in this book.

The book is divided into three primary parts.

Part 1 provides a step-by-step introduction to PROC REPORT and is designed to be read
linearly by someone who is unfamiliar with the procedure. Those familiar with the procedure
might wish to scan these chapters quickly.

Part 2 includes many of the more advanced options and concepts associated with the
procedure. This section of the book is designed to be used as much as a reference manual as
an instructional guide. A number of the techniques discussed in this section have been known
to cause afair amount of consternation to those attempting to “figure out” the procedure on
their own.

Part 3 incorporates the options and statements described in the first two parts into a series of
examples that highlight many of the extended capabilities of PROC REPORT. This part
includes a discussion of afew ODS statements and options that might be useful to a PROC
REPORT programmer. This section aso includes a more in-depth look at the PROC
REPORT processitself, especially asit relates to the execution of compute blocks.

PROC REPORT Tables

Many of the tables produced in the examples in this book are not displayed in their entirety. If you
want to see an entire table, the code is available on the CD that comes with this book. See the
section “Using the Code Examplesin This Book.”

Logs and tables that are witten to the At times, summarizing remarks or
LI STI NG destination are displayed in a asides associated with a table or code
text box enclosed in the borders set arewritten in a text box like this

shown here.

totheright of thelisting or table.

Tables resulting from screen captures, especially from
the PDF, RTF, and HTML destinations, have asingle
narrow border like this.

XViii

SAS Versions

This book was written while SAS 9.1.3 was in production and before the beta version of SAS 9.2
was released. Occasiondly, | have made comments with regard to what will probably happen or
options that may be available in SAS 9.2. The functionality of SAS 9.2 is, as of thiswriting, still
subject to change, and these comments are based on discussions with SAS developers.

Fonts
Y ou will see these typographical conventions used throughout the book:

UPPERCASE SAS language elements such as the names of procedures and options
italics emphasisin text; user-supplied values
Monospace SAS code

bol d nonospace emphasisin SAS code

Using the Appendixes
Appendix 1: Exercise Solutions provides Solutions to the chapter exercises.

Appendix 2: Syntax and Example Index serves as a secondary index to this book. It is
organized from a syntax and exampl e perspective, and contains information on where PROC
REPORT step elements and options are discussed as well as where they are used within the
book. System and ODS options are also included.

Appendix 3: Example Locator lists examples of the various types of reports that are found
throughout the book. Scanning this appendix should help you locate an example of areport
with the specified elements.

MORE INFORMATION

Additional information, about a particular topic and related topics within this book is detailed
under this heading. Generally the reader is referred to a particular section of the book (e.g. see
Section 2.3.4).

SEE ALSO

These sections are used to point the reader to references outside the scope of this book. The
references are in the form of the author’ s last name and the year of publication—for example,
(Gupta, 2003) or Gupta (2003). Details appear in the “ References’ section at the back of the book.
References to sample programs that have been written by SAS are noted using the number of the
sample program, e.g., Sample 603. Occasionally, when references are made to a book or longer
article, the page number is also included in the citation.

Using the Code Examples in This Book

The SAS programs used as examples throughout this book are available as sample programs on
the book’s CD. They are all named according to the section in which they are used. For example,
aPROC REPORT step shown in Section 11.3.1 would be named S11_3 1.sas. Occasionally,
more than one example will appear in a given section. These will be named using a letter
extension, e.g., S11 3 lasas. There are also afew bonus programs that are not specifically
discussed in the book but still demonstrate or reinforce items of discussion in the section. These
follow a similar naming convention.

XiX

For exercise questions that result in a SAS program, the program name will contain the chapter
and exercise number, e.g. E11 3.sasfor Chapter 11 question 3. These programs also are available
on the CD.

About the Data Used in This Book

Although it makes the examples a bit less interesting, only alimited number of data tables have
been used in the book. The intent is that the reader will be able to concentrate on the code without
having to learn a new data table for each example.

RPTDATA.CLINICSwas supplied by Kirk Lafler of Software Intelligence Corporation and
is used with his permission. It contains fictitious patient information from asmall clinical
study. The data represents patient visits with patient information as well as visit-specific
information. Data was collected at clinics from across the country, which for management
purposes, has been divided into 10 regions. A DATA step that can be used to generate this
data set isincluded in the SAS code samples.

SASHEL P.various are data sets that are shipped with SAS, and these are all available within
the SASHELP library. The table SASHEL P.CLASS contains observations and some
demographic information on aclass of teenagers. The sales data of an imaginary shoe
distribution company is contained in the table SASHEL P.PRDSALE.

How to Use the Accompanying CD

The CD that accompanies this book has been designed to maximize the amount of knowledge that
| can offer to you. It contains agreat deal of information that | would otherwise be unable to
include within the pages of the book itself. | hope you will find this bonus content of interest as
you read the book. The CD includes the following directories:

Sample programs
The code used to generate the examplesis available and is ready for you to submit. There are
even bonus programs that are not discussed within the book.

Data Sets
The data sets used in the examples are provided.

Results
The tables that are generated by the example programs are provided so that you can view
them directly.

Cited Papers
The PDF files of nearly a hundred of the papers cited in the “ References’ section of this book
are provided.

RussLavery’'s“An Animated Guideto the SAS REPORT Procedure’

The CD enables us to overcome one of the limitations of a book that is published using the
standard media of paper. This CD also includes Russ Lavery’s specialy revised “An
Animated Guide to the SAS REPORT Procedure.” This PowerPoint presentation contains an
animated approach to the process of learning and assimilating not only how to use the
REPORT procedure, but how to understand its phases of operation. This presentation is
offered to you as an executable file that can be run only from the CD. Y ou do not need to
have access to PowerPoint to view this presentation.

XX

Part 1

Getting Started

Chapter
Chapter
Chapter
Chapter

Chapter

Creating a Simple Report 3

PROC REPORT: An Introduction 13
Creating Breaks 57

Only in the LISTING Destination 75

Creating and Modifying Columns Using the Compute Block 97

Y ou can use the REPORT procedure to generate a wide range of sophisticated tables and reports. The
code can be complex or fairly straightforward. This part of the book shows you how to create fairly
simple reports using the basic statements and their options.

2 Carpenter’s Complete Guide to the SAS REPORT Procedure

Chapter 1
Creating a Simple Report

1.1 Basic Syntax 4
1.2 Routing Reports to ODS Destinations 6
1.3 Other Reporting Tools: A Brief Comparison of Capabilities 7
1.3.1 PROC REPORT vs. PROC PRINT 8
1.3.2 PROC REPORT vs. PROC TABULATE 8
1.3.3 PROC REPORT vs. DATA _NULL_ 8
1.4 The PROC REPORT Process: An Overview 9
1.4.1 PROC REPORT Terminology 9
1.4.2 Processing Phases 11
1.5 Chapter Exercises 12

The syntax for PROC REPORT is quite different from that of most other Base SAS procedures. In
most procedures, the supporting statements define the scope and options of the procedure. In a
PROC REPORT step, on the other hand, the statements refer to and build on each other.

PROC REPORT can be used in two different modes, batch and interactive. This book discusses
the syntax of PROC REPORT in the batch environment, and does not discuss the interactive or
windowing environment.

4 Carpenter’s Complete Guide to the SAS REPORT Procedure

1.1 Basic Syntax

Like most procedures, PROC REPORT can be executed with aminimal understanding of even the
most basic syntax.

In its simplest form, PROC REPORT is similar to PROC PRINT in that it creates adatalisting.
Here is the minimum coding required:

PROC REPORT;
run,

By default the REPORT procedure opens an interactive windowing environment. This
environment is not normally used and is not discussed in this book. The following is the simplest
PROC REPORT step that does not open the interactive windowing environment:

PROC REPORT nowd; @
run,

When executed, this simple step creates alisting of al rows and al columnsin the most recently
modified datatable. This plain vanillaresult is of course rarely what we need or want, so we must
know more in order to create the report that we actually do need.

Some of the basic statements used in PROC REPORT include the following:

PROC REPORT ® DATA= dat aset name <options>;

COLUWN variable l'ist and colum specifications;
DEFI NE col umm / col um usage and attri butes;
COWPUTE col um; conpute bl ock statenments; ENDCOWP;
RUN,;

A number of options and modifiers can be used dong with these statements. Most of these are
discussed throughout this book. To locate the discussion of a specific statement, option, or modifier,
see Appendix 2, which provides a syntax and example reference locator for this book.

Y ou can use the REPORT procedure to build reports interactively (LeBouton 2004). While
appealing in concept, in practice this feature is rarely used and is not discussed in this book.
Unfortunately, the procedure default isto initiate the interactive mode. Y ou can disable this made
by using either the NOFS, NOWD, or NOWINDOWS option. NOWD @ is most often used in the
documentation and in SAS literature.

Asfor most procedures that operate against data tables, you will want to be able to specify which
table PROC REPORT isto display. ® The DATA= option is used for this specification in the
REPORT procedure asit isin so many other SAS procedures.

A number of supporting statements are used in the PROC REPORT step. The following
statements are three of the most common:

COLUMN identifiesall variables (report items) used in the generation of the table.

DEFINE specifies how the column isto be used and what its attributes are to be.
One DEFINE statement is used for each variable in the COLUMN
statement.

COMPUTE creates new columns and performs column-specific operations.

Chapter 1: Creating a Smple Report 5

The following PROC REPORT step creates a simplelisting of a select few of the twenty or so
variablesin the RPTDATA.CLINICStable:

* Sinple report;

opti ons nocenter;

titlel 'Using Proc REPORT' ;
title2 'Sinple Report';

proc report data=rptdata.clinics nowd;
colums region | nane fnane wt;
define region / display;
define I nane / display;

define fnane / display;

define w / display;

run;

Here are the first few lines of the generated report.

Usi ng Proc REPORT

Si npl e Report
re
gi first wei ght
on |ast name nane i n pounds
5 Rose Mary 215
6 Nol an Terrie 187
9 Tanner Hei di 177
2 Saunder s Liz 109
4 Jackson Ted 201
5 Pope Rober t 158
8 a sen June 158
4 Maxi m Kurt 179

Portions of the report are not shown .

A quick inspection of the output listing shows both similarities and differences between PROC
REPORT and PROC PRINT. Asin PROC PRINT, variables/columns are listed across the page,
while rows/observations are listed down the page. Unlike PROC PRINT, there isno OBS column,
and the default is to print the variable label instead of the variable name. “ Pretty” is not a default
characteristic, and the remainder of this book is devoted to controlling how the report |ooks.

Notice in this example that the default header of the column is the variable label. In Section 2.5,
several examples show how you can control thistext. You can also use the system option
NOLABEL to make the variable name the default column header.

MORE INFORMATION
Appendix 2, “ Syntax and Example Index,” is designed to help the reader navigate this book.

SEE ALSO

A niceintroduction to the PROC REPORT windowing environment is presented by LeBouton
(2004). Thisinteractive environment was first introduced in the SAS Guide to the REPORT
Procedure: Usage and Reference, Version 6 (1990).

6 Carpenter’s Complete Guide to the SAS REPORT Procedure

1.2 Routing Reports to ODS Destinations

Usually we need to route the output generated by PROC REPORT to one or more Output
Delivery System (ODS) destinations. The syntax and use of ODS is outside the direct scope of
this book. However, because we are going to depend on ODS for a great deal of the appearance of
the output generated by PROC REPORT, it is necessary to at least discuss the basics of ODS.

Since we use reports in different ways, we need to generate the reports as different types of files.
We declare the type of file to be generated by specifying the ODS destination. This means that
there is generally a correspondence between the name of the destination and the type of output
that isto be created (e.g.,, HTML, PDF, RTF).

Usually we surround the PROC REPORT step with what has been referred to as an ODS
sandwich. The sandwich consists of two ODS statements that turn the Output Delivery System on
and off. The physical name of the output file and the file' s location are included in the first ODS
statement. The second ODS statement closes (turns off) the ODS destination. In both statements,
the ODS destination name immediately follows the ODS keyword.

The general form of the ODS sandwich is something like this:

ods destination <file=file nanme>;
proc report .

run;

ods destination close;

If you wanted to re-create the results of the previous step as an HTML document, you might write
ODS statements like the following. Note that all physical paths in the examples are created using
the macro variable & PATH. This should make it easier for you to replicate the results of these
same exampl e programs on your own computer.

ods htm file="&path\results\sinple. htm";

titlel 'Using Proc REPORT' ;

title2 'Sinple Report';

proc report data=rptdata.clinics nowd;
colums region | name fname w;
define region / display;
define I name / display;
define fname / display;
define wt / display;
run;

ods htnml cl ose;

Chapter 1: Creating a Smple Report 7

Here is a portion of the HTML report:

Using Proc REPORT

Simple Report

region last name firsthame weightin pounds
3 Smith Wike 162
& Jones Sarah 105
2 hasaniell Linda 105
7 Marshall Robert 155
10 James Debra 163
1 Lawlass Henry 195
0 Ch Cuzidl 147

Portions of the report are not shown .

Throughout this book you will see examples of a number of other ODS statements, options, and
destinations.

MORE INFORMATION

The & PATH macro variable is used throughout the book to designate the upper portion of al
location references and is described in more detail in “ About This Book.” Appendix 2 contains a
list of ODS-related references within this book. A number of other sectionsin this book contain
examples that utilize features of ODS. Chapter 8, “Using PROC REPORT with ODS,” and
Chapter 9, “Reporting Specifics for ODS Destinations,” are devoted to the topic.

SEE ALSO

Haworth (2001, 2003) and Gupta (2003) provide very good information on the Output Delivery
System and show how to get started using it. Kumar (2006) introduces ODS along with a PROC
REPORT example.

1.3 Other Reporting Tools: A Brief Comparison
of Capabilities

Since SAS provides a variety of reporting tools, there is sometimes some confusion about which
tool should be used in a given situation. Three of the primary reporting tools are the PRINT,
REPORT, and TABULATE procedures. All three have enough flexibility to produce afairly
diverse set of reports. However, they are not the same and do not have the same overall
capabilities.

All three of these procedures work well with the ODS environment, and each supports the use of
the STYLE= option (see Section 8.1 for an introduction to this option).

8 Carpenter’s Complete Guide to the SAS REPORT Procedure

1.3.1 PROC REPORT vs. PROC PRINT

Both the PRINT and REPORT procedures can perform detail-level reporting (reporting of
individual data values). Although a number of supporting statements are available, PROC PRINT
has the advantage of being afairly simple procedure and is generally one of the first procedures
that islearned by anew user.

Although both procedures are good at creating simple detail reports, the only real summary
capability of PROC PRINT isto calculate column totals. When the SUM statement is combined
withthe BY statement, SUM (and SUMBY) can calculate group and sub-group totals. Unlike
PROC PRINT, PROC REPORT is not limited to group totals. PROC REPORT can calculate al
of the usual statistics that can be calculated by other procedures such as MEANS, SUMMARY,
and UNIVARIATE. In fact, the reason that PROC REPORT can cal culate some of these same
statisticsis that the MEANS/SUMMARY processis used behind the scenes for summarizing the
data set used with PROC REPORT.

Most users find that PROC PRINT is fine for simple straightforward detailed reports. However, if
you find that the limitations of PROC PRINT are causing extrawork, then it is probably an
indication that it istime to switch to PROC REPORT.

SEE ALSO
Burlew (2005, pp. 18-19) provides a comparison of the default behaviors of these two procedures.

1.3.2 PROC REPORT vs. PROC TABULATE

Both the REPORT and TABULATE procedures can create summary reports, and each has access
to the same standard suite of summary statistics.

Unlike PROC TABULATE, the REPORT procedure can provide detail reporting aswell as
summary reporting capabilities. PROC REPORT has the added flexibility to calculate and display
columns of information based on other columnsin the report.

Because of the unique way that PROC TABULATE structures the report table, it has a great deal
more flexibility to present the groups, subgroups, and statistics as either rows or columns. Thisis
especialy true for vertically concatenated reports, which are very straightforward in PROC
TABULATE and difficult in PROC REPORT (see Section 10.1).

SEE ALSO
Buck (1999, 2004), Bruns, Pass, and Eaton (2002), and Bruns and Pass (2004) compare the
strengths and weaknesses of these two procedures.

The TABULATE procedureis fully described by Haworth (1999).

1.3.3 PROC REPORT vs. DATA _NULL_

The DATA _NULL_ step isareporting tool that offers extreme flexibility. Because it uses the
power of the DATA step, this methodol ogy enables the user to generate reports in amost any
form.

Of course, this power comes with the price of complexity. Although the user has the power to
place every character “just so,” the processitself can become quite difficult. In PROC REPORT,

Chapter 1: Creating a Smple Report 9

the compute block, with its access to the majority of the SAS language elements, such aslogic
processing, functions, and assignment statements, takes on some of the role of the DATA
NULL step.

1.4 The PROC REPORT Process: An Overview

For most procedures, the internal processing is of little interest to the average user. This should
not be the case for PROC REPORT. Because PROC REPORT has the capability of creating
columns as well as group and report summaries, the process can be quite complex. When the
report is simple, such as those in this chapter and in Chapter 2, “PROC REPORT: An
Introduction,” the processing details are of lessinterest. However, as new columns are cal culated
and perhaps then coordinated with report and group summaries, a more compl ete understanding
of the process becomes critically important.

MORE INFORMATION

Thetiming of the compute block is discussed in Section 7.1, and a detailed presentation of the
processing of the PROC REPORT step is provided in Chapter 11, “Details of the PROC REPORT
Process.”

SEE ALSO

SAS Technica Report P-258 (1993, Chapter 10), Lavery (2003), and Russ Lavery’s“An
Animated Guide to the SAS REPORT Procedure,” which isincluded on the CD that accompanies
this book, discuss the sequencing of eventsin detail.

1.4.1 PROC REPORT Terminology

Some of the terms and concepts associated with PROC REPORT are similar to those in other
types of PROC steps. However, PROC REPORT is uniquein that it allows some DATA step-type
processing to be performed, and thus we need some specialized words and phrases to discuss this
processing. Of course, the specia nature of PROC REPORT results in terminology that is unique
to this step, and an overview of basic PROC REPORT processing will highlight these terms.

Term usage has evolved since the introduction of the REPORT procedure in SAS 6.06. This not
only reflects the complexity of the procedure, but aso the changesin how PROC REPORT
operates behind the scenes.

Some of the terminology used in this book is included here.

Current Terminology

Two general types of reports can be generated by PROC REPORT. Detail reports are most
similar to those generated by PROC PRINT and have one linein the report, called areport row,
for each observation in the incoming data set. When the incoming data is summarized or

collapsed into groups, PROC REPORT can create asummary report. PROC REPORT isflexible
enough to create areport that has characteristics of both of these types of reports.

10 Carpenter’s Complete Guide to the SAS REPORT Procedure

The report generated by PROC REPORT is called the final report output. Columns on the final
report output can include more than variables, so the report columns are often referred to as
report items. There are two general classes of report items used within the PROC REPORT step:

report variables appear in the COLUMN statement and usually in one or more
of the report columns. They may or may not be created or used in
COMPUTE blocks.

temporary variables are created and used in COMPUTE block calculations, but do not

appear in the COLUMN statement or on the report itself.

Through the DEFINE statement, report items are assigned a define type or define usage that
determines how the variables are to be processed by PROC REPORT. Report items can be used
during compute block execution to build or calculate other report items. Depending on the PROC
REPORT step, not all report items will necessarily be included in the final report output.

PROC REPORT builds each report row, one row at atime. However, in order for summary and
break information to be available when it is constructing summary rows, PROC REPORT goes
through athree-phase process to create the report. The first phase is the evaluation phase, and it
is during this phase that the submitted code is assessed. The final two phases are of special
interest to the PROC REPORT programmer, and these (the setup phase and the report row
phase) are described in more detail in the section on processing phases (see Section 1.4.2).

For reports that summarize the incoming data, the summary results are determined during the
setup phase and stored in memory in the computed summary information.

Each line of areport is areport row; for some reports, however, report rows are generated that are
not ultimately written to the final report output. The final report output is generated onerow at a
time, and depending on the selection of statement options, not all summary report rows are
included in the final report output.

Outdated Terminology

Sinceitsintroduction in SAS 6, PROC REPORT has been the subject of a great many papers.
This unofficial documentation, as well as some of theinitia official documentation, has generated
fairly extensive terminology for the internal processes of PROC REPORT. Although some of this
terminology reflects, to some degree, current internal processes, the mgjority has at best become
outdated. In order to assist readers of this older literature, the following table attempts to link the
older terminology with that used throughout this book.

Older, Outdated, or Inaccurate Terms Terminology Used in This Book

Temporary Internal File, TIF Computed summarized information
computed summary information area

Report Data Vector, RDV Report variables, report items

DATA Step Variable Temporary variable

DATA Variable Table, DVT Temporary variables are stored in memory
and no special name is needed for this
location.

DATA Step Statement SAS language elements

DATA Step Functions

Chapter 1: Creating a Smple Report 11

SEE ALSO

Extensive discussion contrasting report items and temporary variables can be found in Chapter
10 and more specifically on pages 250-251 of SAS Technical Report P-258 (1993). When you
read SAS Technical Report P-258, remember that it reflects some of the earliest documentation
available for PROC REPORT and does not use the current terminologies or in some cases reflect
the current processes of the PROC REPORT step.

1.4.2 Processing Phases

When a PROC REPORT step is submitted, SAS breaks down the processing into a series of steps
or phases. All of this processing, as well as the results of the processing, including the computed
summary information, takes place in memory.

Evaluation Phase

First, al the PROC REPORT statements are evaluated before anything else happens. The SAS
language elements and LINE statements (if there are any) in the compute blocks are smply set
aside to be executed as each report row is built (report row phase). This evaluation determines the
resources and levels of summarization that will be needed during the setup phase.

Setup Phase

After the codeis evaluated, the setup phase reads and prepares the incoming data. If necessary,
the columns that will be used for summarizing are sent to the MEANS/'SUMMARY engine,
where the summarization takes place.

Report Row Phase

Once PROC REPORT is done with these preliminary setup phase tasks and the computed
summarized information has been created, the report can be built row by row during the report
row phase. Finally, after each report row is built, it is sent to all open ODS destinations
(LISTING, HTML, RTF, PDF, etc.).

Summary of the Processing Phases
The following flowchart shows the general processing phases at the conceptual level described in
this section.

g It istempting to try to impose DATA step concepts
column; such as the Program Data Vector onto PROC
St ORORORET, REPORT. However, between PROC REPORT's
runy original inception with SAS 6 and subsequent

l upgrades and rewrites to the underlying PROC
REPORT code, these primary conceptual phases
Evaluation (especialy the setup and report row phases) should
Phase
suffice to explain how the final report is
l constructed.
s:;iz Of primary importance isto remember that during
l the report row phase, processing is from left to
right. The order of the variablesin the COLUMN
Report Row statement (see Section 2.1), therefore, becomes very
Phis‘" important.
Final Report
—

12 Carpenter’s Complete Guide to the SASREPORT Procedure

1.5 Chapter Exercises

1. What are the three processing phases of a PROC REPORT step?
2. What is the difference between temporary variables and report variables?

3. What two PROC REPORT statement options will you use within virtually every PROC
REPORT statement?

Chapter 2

PROC REPORT: An Introduction

2.1 Introduction to the COLUMN Statement 16
2.2 Defining Types of Columns 17
2.2.1 Default Define Types DISPLAY and ANALYSIS 18
2.2.2 Using Define Usage ORDER 19
2.2.3 Using Define Type GROUP 22
2.2.4 Using Define Type ACROSS (and GROUP) 24
2.3 Doing More on the COLUMN Statement 25
2.3.1 Using the Comma to Form Nested Associations 26
2.3.2 Attaching Statistics with a Comma 26
2.3.3 Using Parentheses to Form Groups 28
2.3.4 Nesting Statistics under an ACROSS Variable 29
2.4 Other DEFINE Statement Options 31
2.4.1 Specification of an Analysis Statistic 31
2.4.2 Formatting the Values 33
2.4.3 Controlling the Order of the Displayed Values 34
2.4.4 Using the N Statistic without an ANALYSIS Variable 36
2.4.5 Associating Statistics with DEFINE Statements 37
2.5 Adding Text 39
2.5.1 Using the COLUMN Statement to Add Text 41
2.5.2 Using the DEFINE Statement to Add Text 43
2.5.3 Using the SPLIT= Option with Text 44
2.6 Compute Blocks 45
2.6.1 Inserting a Blank Line 46

14 Carpenter’s Complete Guide to the SAS REPORT Procedure

2.6.2 Adding Lines of Text 47
2.6.3 Writing Formatted Values 49
2.6.4 Using SAS Language Elements 51
2.7 Sequencing of Step Events 52
2.8 Chapter Exercises 54

In this chapter the basic statements and options associated with the PROC REPORT step are
introduced. Although you will not necessarily be able to make the perfect report using only what
is presented here, you will probably be able to get fairly close.

The appearance of a given report will depend on its output destination. LISTING is the default
destination for most of the examples in this chapter (LISTING is the default when no other ODS
destination has been specified). One of the biggest differences between destinationsis in the way
that the text is placed in the tables. The first examplein Section 2.5 highlights some of the more
immediately obvious of these differences. Most of the reportsin this chapter have formatting and
appearance issues in the LISTING destination that automatically go away for other destinations.
The LISTING destination is useful in the context of this chapter because it emphasizes the
differences between a number of the demonstrated options and statements.

The examples presented in this chapter build on one another. We start by creating some fairly
ugly, and in some cases fairly silly, reports. As we add additional options and statements, the
reports become more useful.

The starting point for the PROC REPORT step, asit isfor all procedure steps, is the PROC
statement. In virtually all of the steps contained in this book, the PROC REPORT statement
contains at least the following options:

proc report data=dataset_nane
nowd;

The DATA= option identifies the name of the table on which the report is to be based, and the
NOFS, NOWINDOWS or NOWD option turns off the interactive PROC REPORT window
system (which this book ignores). A number of other options can be used on the PROC REPORT
statement (these are presented throughout the book, most specifically in Section 6.5).

Unlike PROC PRINT, which by default uses the column name as the column header, PROC
REPORT uses the column label as the default column header. Y ou can change the header in
several ways, as discussed throughout this book. However, if you want to change the default
behavior, you can use the NOLABEL system option.

opti on nol abel ;

The examplesin this chapter utilize the data sets SASHEL P.CLASS, which contains student
information for a small number of teenagers, and RPTDATA.CLINICS, which contains fictional
dataon asmall clinical study. The table RPTDATA.CLINICS is available both as a data set and
as the code that createsit on the CD that accompanies this book.

Chapter 2: PROC REPORT: An Introduction 15

A typical PROC REPORT step containing statements discussed in this chapter could include the
following:

titlel 'Using Proc REPORT';

proc report data=sashel p.cl ass nowd;
colum nane sex age height;
define nane [displ ay;

define sex [displ ay;
define age [anal ysis;
define height / analysis;
run;

Here is the resulting report in the LISTING destination:

Usi ng Proc REPORT
S
e
Nare X Age Hei ght
Al fred M 14 69
Alice F 13 56.5
Bar bar a F 13 65. 3
Car ol F 14 62.8 L. . .
Henry M 14 63. 5 Thisis a detail repor_t. It cqntamsone
James M 12 57 3 row for each row of incoming data.
Jane = 12 59. 8 Theindividual columns and their
Janet F 15 62 5 order isspecified on the COLUMN
Jeffrey M 13 62 5 statement (see Section 2.1). The
John M 12 59 DEFINE statementstell the PROC
Joyce = 11 51 3 REPORT stgp how to handle each of
Judy F 14 64. 3 thesereport items.
Loui se F 12 56. 3
Mar y F 15 66.5
Philip M 16 72
Rober t M 12 64.8
Ronal d M 15 67
Thonmas M 11 57.5
Wlliam M 15 66.5
Using Proc REPORT
Name | Sex | Age | Height A portion of the same report
generated asa PDF file using the
Alfred | M 14 69 PRINTER style shows some of the
Alice F 13 56.5 formatting differencesthat can be
expected for different ODS
Barbara | F 13 65.3 destinations.
Carol F 14 62.8
Henry A 14 38

Destination: PDF Style: PRINTER

16 Carpenter’s Complete Guide to the SAS REPORT Procedure

SEE ALSO

A very nice introduction to PROC REPORT is given by Cochran (2005). Simple introductions to
PROC REPORT can aso be found in Carpenter (2005), Haworth (2003), Foley (2001), Ma,
Meimei, and Schlotzhauer (2000), Maet al. (2002), LeBouton (2004), Pass (2000), and Smith
(2000). A number of introductory examples are provided in SAS Technical Report P-258 (1993),
which also discusses the NOLABEL option (p. 61). Also in P-258 is ageneral syntax review of
the entire step (p. 180) and of the various PROC REPORT step statements (Chapter 9).

2.1 Introduction to the COLUMN Statement

The COLUMN statement is primarily used to identify the variables of interest. In its simplest
form, it ismerely alist; however, it can also be used to create headers and groups of variables, in
addition to associating statistics with variables. COLUMN may be either singular or plural, and
can be abbreviated as COL.

The primary function of the COLUMN statement isto provide alist of variables (report items) for
PROC REPORT to operate against. The space-separated variable names are listed, left to right, in
the order that they are to appear in the report. Variables in the incoming data set that are not listed
in the COLUMN statement are not available to the REPORT procedure. This means that unless an
incoming variable appears on the COLUMN statement, it will not be printed and it will be
unavailable for use in compute blocks.

The following COLUMN statement specifies four report variables. The DEFINE statement (see
Section 2.2) associated with each of these variables determines how it will appear in the report.

colum region | nane fname w;

The COLUMN statement appears in the PROC REPORT step before any DEFINE statements. A
simple PROC REPORT step could be specified as follows:

titlel 'Using Proc REPORT ;
title2 "A Sinple COLUW Statenent';
proc report data=sashel p.cl ass nowd;
colum nane sex age height;
run;

The incoming data table contains the variable WEIGHT, which is not included in the report
because it does not appear on the COLUMN statement.

Chapter 2: PROC REPORT: An Introduction 17

Usi ng Proc REPORT
A Sinple COLUW St at enent
S
e

Narre X Age Hei ght Thereareanumber of
Al fred M 14 69 immediately obvious
Aice F 13 56.5 differ ences between the plain
Barbara F 13 65.3 vanillareport generated by
car ol ¥ " 028 PROC REPORT and that of
Jamos M 15 57 3 PROC PRINT. Because PROC
Jane = 12 59 8 REPORT expet_:tsthat the
Janet = 15 62.5 programmer will want to take
Jeffrey M 13 62.5 control, the default report is
John M 12 59 even less pretty than that of
Joyce F 11 51.3 PROC PRINT.
Judy F 14 64. 3
Loui se F 12 56.3 This detail report hasonerow
Mary F 15 66. 5 for each incoming observation.
Philip M 16 72
Rober t M 12 64.8
Ronal d M 15 67
Thomas M 11 57.5
Wlliam M 15 66.5

Although this report could be useful, it is not pretty. There are anumber of things on this report
that need to be fixed. This book addresses those types of issues. Also, the ODS LISTING
destination, which is used here, isthe least pretty of all the destinations. The default presentation
for most of the other destinations would make this report substantially more usable.

2.2 Defining Types of Columns

Although it can do much more than is shown in Section 2.1, the COLUMN statement is
insufficient to provide total control of the appearance of individual columns and how they areto
be used. Thistask fallsto the DEFINE statement.

The DEFINE statement lists the name of the column to which it applies and, following aslash (/),
the attributes and options that are to be applied to that column. The syntax follows a pattern that
might include the following:

define columnane / <define type> <optionsandattributes>;

The primary attribute of the column isits define usage or define type. This attribute tells the
REPORT procedure how to use this variable. There are several different define types, including

the following:

DISPLAY shows or displays the value of the variable (default usage for character
variables).

ANALYSIS uses the variable in calculations with a statistic (default usage for numeric
variables).

GROUP uses the variable to consolidate observations.

18 Carpenter’s Complete Guide to the SAS REPORT Procedure

ORDER sorts the data and forms groups when summary statistics are requested.
ACROSS creates groups across the page rather than down the page.
COMPUTED specifies areport item, not on the incoming data set, that is to be created in

a compute block.

Although the DEFINE statement is not required unless you need to change one or more of the
default attributes for the column, it is generally considered good programming practice to have
one DEFINE statement for each variable in the COLUMN statement. Not only does this make the
PROC REPORT step easier to read, but it also helps during debugging and when making
modifications to the code. Another good programming practice (although it is not necessary to do
s0) isto list the DEFINE statements in the same order asthe items are listed in the COLUMN
Statement.

DEFINE statements associated with variables that do not appear on the COLUMN statement
result in awarning being written to the log, but do not stop the processing of the step.

Depending on the define usages (or define types) specified in your PROC REPORT step, one of
two general types of reports are generated. A given report can contain elements of both of these
types.

= Detail reports are roughly analogous to PROC PRINT reports. Data observations appear
individually in the generated report.

= Summary reports are roughly analogous to the type of summary generated by PROC
MEANS. Individual data observations are collapsed (summarized) into groups.

2.2.1 Default Define Types DISPLAY and ANALYSIS

When not otherwise specified, the default define usages are DISPLAY for character variables and
ANALY SIS for numeric variables. These default define usages cause the generation of a detail
report. The PROC REPORT step in Section 2.1 could have aso included the DEFINE statements
shown here:

titlel 'Using Proc REPCRT ;
title2 '"Including DEFINE Statenents with Defaults’
proc report data=sashel p.class nowd;

colum nane sex age height;

define nane [display;

define sex [displ ay;
define age / anal ysi s;
define height / analysis;
run;

Although you cannot use ANALY SIS for a character variable, in simple PROC REPORT steps
such as this one, it does not particularly matter whether you use ANALY SIS or DISPLAY for
numeric variables. As your reports become more complex, you will find that some operations,
such as the calculation of statistics, can only be accomplished on numeric variables with a define
type of ANALYSIS.

When the report includes summary lines using the BREAK and RBREAK statements (see
Section 3.1), the difference between ANALY SIS and DISPLAY can become more apparent for
numeric variables. Numeric variables with a define type of DISPLAY are generally not
summarized, whereas those with a define type of ANALY SIS are summarized on the summary
lines.

Chapter 2: PROC REPORT: An Introduction 19

2.2.2 Using Define Usage ORDER
The define usage ORDER allows you to change the order of the rows of the table without first

performing a sort.

titlel 'Using Proc

REPORT" ;

title2 'Define Type ORDER ;
proc report data=sashel p.class nowd;

col um nane sex
define sex /
defi ne nane /
define age /
define height /
run;

age hei ght;
order;

di spl ay;
anal ysi s;
anal ysi s;

The order of the DEFINE statements has nothing to do with the order of the variables in the report
itself. In this example, SEX isthe first DEFINE statement, but not the first variable on the
COLUMN statement. Usually the DEFINE statements are written in the same order as their
associated items on the COLUMN statement.

Inspection of the resulting report shows that the observations have been ordered by SEX. By
default the value of the ORDER variableis only printed for the first detail row for that group of

rows.

Usi ng Proc REPORT
Defi ne Type ORDER

Nane
Alice
Bar bar a
Car ol
Jane
Janet
Joyce
Judy
Loui se
Mar y

Al fred M
Henry

James
Jeffrey
John

Philip
Rober t
Ronal d
Thomas
WIliam

S
e
X
F

Using Proc REPORT
Define Type ORDER
_ Name | Sex | Age | Height
Age Hei ght
13 56.5 Alice F 13 56.5
13 65.3 Barbara 13| 653
14 62.8
12 59.8 Carol 14 62.8
15 62.5 > -
é 59.
11 51 3 Jane 12 59.8
14 64.3 Janet 15 62.5
12 56. 3 R
15 66. 5 Joyce 11 51.3
14 69 Judy 14 64.3
14 63.5 p I
12 57 3 Louise 12 56.3
13 62.5 Mary 15 66.5
12 59 - _ ;
16 72 Alfred M 14 69
12 64.8 Henry 14 63.5
15 67
11 57.5 James 12 57.3
15 66.5 Iaffraw 12 £ &

Destination: PDF Style: PRINTER

20 Carpenter’'s Complete Guide to the SAS REPORT Procedure

The columns are ordered as they are specified in the COLUMN statement (nane sex age
hei ght). Usualy, when we order the columns on a report, the columns used to form the
ordering are to the left. Exchanging the positions of the variables NAME and SEX on the
COLUMN statement resultsin a cleaner looking table.

titlel 'Using Proc REPORT';

title2 'Define Type ORDER ;

proc report data=sashel p.cl ass nowd;
colum sex nane age height;

define sex | order;
define nane [displ ay;
define age / anal ysis;
define height / analysis;
run;
Usi ng Proc REPORT
Defi ne Type ORDER

S

e

x Nane Age Hei ght

F Alice 13 56.5
Bar bar a 13 65. 3
Car ol 14 62. 8
Jane 12 59.8
Janet 15 62.5
Joyce 11 51.3 Because SEX isthefirst variable
Judy 14 64.3 listed in the COLUMN statement, it
Loui se 12 56. 3 isnow the leftmost variablein the
Mary 15 66.5 table.

M Alfred 14 69
Henry 14 63.5
Janes 12 57.3
Jeffrey 13 62.5
John 12 59
Philip 16 72
Rober t 12 64.8
Ronal d 15 67
Thomas 11 57.5
WIliam 15 66.5

You are not limited to asingle ORDER variable. Asis true when you sort with multiple variables
inthe BY statement, when you specify multiple ORDER variables, the variables to the right are
nested within those to the left (on the COLUMN statement). Here the table has been ordered by
AGE within SEX.

titlel 'Using Proc REPORT ;

title2 'Define Type ORDER ;

proc report data=sashel p.cl ass nowd;
colum sex age nane hei ght;
define sex | order;
define age |/ order;
define nane [displ ay;
define height / analysis;
run;

Chapter 2: PROC REPORT: An Introduction 21

mXx o Ww

Age

11
12

13

14

15

11

12

13

14

15

16

Usi ng Proc REPORT
Define Type ORDER

Nane Hei ght
Joyce 51.3
Jane 59.8
Loui se 56. 3
Alice 56.5
Bar bar a 65. 3
Car ol 62.8
Judy 64. 3
Janet 62.5
Mary 66.5
Thonmas 57.5
James 57.3
John 59
Rober t 64. 8
Jeffrey 62.5
Al fred 69
Henry 63.5
Ronal d 67
WIliam 66.5
Philip 72

AGE has been sorted within SEX.
Notice how only thefirst row for
each group of the ORDER variables
isdisplayed.

By default the sort order is ascending; however, a DESCENDING option is available (see
Section 6.1.1). You can also change the default method of reordering rows by using the ORDER=
option, which isintroduced in Section 2.4.3.

BY -group processing can be used with PROC REPORT. However, asin other SAS procedures,
the use of the BY statement does assume a sorted incoming data table. When BY -group
processing is used, a separate report is produced for each level of the BY variable.

proc sort data=sashel p. cl ass
out =scl ass;

by sex;
run;

titlel 'Using Proc REPORT ;
title2 'Define Type ORDER ;
title3 '"Using a BY';

proc report data=scl ass nowd;

by sex;
col umm
defi ne
define
define
run;

age
age

name hei ght;
|/ order;

name [displ ay;
hei ght / anal ysis;

22 Carpenter’'s Complete Guide to the SAS REPORT Procedure

The report displays the values for males as follows:

Usi ng Proc REPORT
Defi ne Type ORDER
Using a BY
Sex=M
Remember that for this example and
Age Nane Hei ght for most of the early examplesin this
11 Thonas 57.5 book, the system option
12 Janes 57.3 NOCENTER hasbeen set. Thisleft-
John 59 justifies tables and text for easier
Rober t 64. 8 inclusion in this book.
13 Jeffrey 62.5
14 Afred 69
Henry 63.5
15 Ronal d 67
Wlliam 66. 5
16 Philip 72
portions of the report not shown .

Although in this report SEX was not included on the COLUMN statement, it could have appeared
on both the COLUMN statement and the BY statement.

2.2.3 Using Define Type GROUP

The GROUP define type is used for the consolidation of rows. Usually thisis done for summary
purposes. Using this define type aso implies an ordering, and like the ORDER define type,
GROUP has a default order of ascending. Aswith the ORDER define type, this default order can
be modified through the use of the ORDER= option (see Section 2.4.3) or the DESCENDING
option (see Section 6.1.1).

In the previous examples, we have been creating detail reports that have implied groupings for
SEX and AGE. The following example actually consolidates the observations into the two groups
(onefor each gender).

titlel 'Using Proc REPORT ;
title2 'Define Type GROUP' ;
proc report data=sashel p.class nowd;
colum sex hei ght wei ght;
define sex [group
define height / analysis;
define weight / analysis;
run;

We have not specified how to summarize the numeric ANALY SIS variablesHEIGHT and
WEIGHT. By default, ANALY SIS variables are totaled (thisis the SUM statistic).

Chapter 2: PROC REPORT: An Introduction 23

Usi ng Proc REPORT Unlike PROC PRINT, PROC
Define Type GROUP REPORT does not specify the same
formatting by default for all the values

S within a column. Theresulting numeric
e . .

columns can be difficult to read.
X Hei ght i ght : : - .
F 545 3 811 ngglon 2.4.2 discusses a solution to this
M 639. 1 1089. 5 probiem.

Because we are grouping on (or consolidating across) SEX, the variables AGE and NAME no
longer make sense and have been removed from the COLUMN statement.

GROUP is not always used to consolidate observations. When GROUP is used along with a
nongrouped DISPLAY variable on the COLUMN statement, grouping occurs without
consolidation. This technique generates a note in the LOG and produces a detail report, while at
the same time changing the way that the grouping variable is displayed. In this example, HEIGHT
has been changed to DISPLAY , and groups cannot be consolidated.

titlel 'Using Proc REPORT ;
title2 'Define Type GROUP ;
title3 "Wth a DI SPLAY variable';
proc report data=sashel p.cl ass nowd;
colum sex hei ght wei ght;
define sex [group
define height / display;
define weight / analysis;
run;

Inclusion of anongrouped DISPLAY variable negates the ability to form groups. Although
groups cannot be formed, the group variable SEX is displayed only once for each level;
effectively GROUP has become ORDER.

Usi ng Proc REPORT
Define Type GROUP
Wth a Dl SPLAY vari abl e

S
i Hei ght Viéi ght Thisis a detail report rather than a
F 56. 5 84 summary report (thereisonelinein
65. 3 98 thereport for each incoming
62. 8 102.5 observation).
59.8 84.5
62.5 112.5 Thistypeof report isa direct result
51.3 50. 5 of the SEX variable no longer being
64.3 90 ableto form groupsasit had been
56.3 ” ableto doin the previous example,
66. 5 112 :
M 69 112. 5 because_thevarlabIeHElGHT has
63. 5 102. 5 been assigned a usage of DISPLAY.
57.3 83
62.5 84
59 99.5
72 150
64.8 128
67 133
57.5 85
66.5 112

24 Carpenter’'s Complete Guide to the SAS REPORT Procedure

As an aside, notice that although EDU appears in a DEFINE statement, it does not also appear on
the COLUMN statement. Consequently EDU does not appear in the report.

Nested groups can be formed by using GROUP on more than one DEFINE statement. When you
do this, the second grouping variable is nested within the first. The order of the nesting is
determined by the order of the variablesin the COLUMN statement and not by the order of the
DEFINE statements.

titlel 'Using Proc REPCRT ;
title2 'Two Define Statements with Type GROUF' ;
proc report data=sashel p.cl ass nowd;

colum sex age hei ght weight;

define sex [group;

define age [group;

define height / analysis;

define weight / analysis;

run;

Thereisnow asingle line for each value of AGE within each value of SEX. This collapses severa
rowsinto asingle group and allows group summarization.

Usi ng Proc REPORT
Two Define Statenents with Type GROUP
S
e
)Ié A?i He'sihtg We:sghts Becal_JseAGE istotheright of
' ’ SEX in the COLUMN statement,
12 116.1 161.5
groupsfor AGE arenested
13 121. 8 182 within SEX
14 127.1 192.5)
15 129 224.5
M 11 57.5 85
12 181.1 310.5
13 62.5 84
14 132.5 215
15 133.5 245
16 72 150

2.2.4 Using Define Type ACROSS (and GROUP)

In the previous example, the variable AGE is grouped within SEX. This grouping resultsin one
row in the table for each SEX-by-AGE combination. A more efficient table could be achieved if
there was a separate column for each value of SEX. Effectively we want to perform atranspose
operation on SEX so that each value of SEX would form a column. Although PROC
TRANSPOSE can be used, it is more direct to transpose rows into columns by using the ACROSS
define type.

Chapter 2: PROC REPORT: An Introduction 25

Although not required, generally ACROSS is used when another variable has also been defined as
a GROUP variable. In the following report, SEX is designated as an ACROSS variable. Because
itisto the right of the GROUP variable (AGE) in the COLUMN statement, values of SEX are
nested within AGE.

titlel 'Using Proc REPORT';
title2 'Define Types GROUP and ACRCSS' ;

title3 'No ANALYSI S or DI SPLAY Vari abl es';

proc report data=sashel p.cl ass nowd;
colum age sex;

define age

define s
run;

ex

Because we have not requested otherwise, the number of observations for each SEX-by-AGE
combination is presented under the values of the student’s sex. This default behavior is changed in

the example in Section 6.3.

Usi ng Proc RE

Age
11
12
13
14
15
16

PORT

Define Types GROUP and ACRCSS
No ANALYSI S or DI SPLAY Vari abl es

Sex

NNNNPFPT
PNNPRPWRZ

Inthe LISTING destination:

By default, since SEX isa $1 variable,
only one spaceisallocated for the
student counts. If the count had
exceeded 9, an asterisk would have been
printed.

2.3 Doing More on the COLUMN Statement

The COLUMN statement can be used to do much more than simply list the variables that are to be
availablein the PROC REPORT step. Although some of the functionality available through the
COLUMN statement can be duplicated through other statements and options, some are unique to
the COLUMN statement. The following functionality of the COLUMN statement is discussed in

this book:

Section 2.3.1

Section 2.3.2

Section 2.3.3

Section 2.5.1

discusses the formation of nested associations

describes the association of statistics with analysis variables

explains the use of parentheses to form groups of variables and statistics

explains the addition of text in the header areas of the report

26 Carpenter’'s Complete Guide to the SAS REPORT Procedure

2.3.1 Using the Comma to Form Nested Associations

In each of the preceding examples, the variablesin the COLUMN statement were separated by
blanks. It is also possible to use acomma (,) to separate two or more items on the COLUMN
statement. When items are separated by a comma, the item on the right is nested within the item
on the left.

In the example in Section 2.2.4, the variable SEX has a define usage of ACROSS, and because
there are no analysis variables, the number of observations (N) is displayed for each combination
of AGE and SEX. In the following example, the numeric variable WEIGHT has been added to the
COLUMN statement. Notice that a comma separates SEX and WEIGHT in the COLUMN
statement. The comma forms an association with WEIGHT nested within SEX.

titlel 'Using Proc REPORT ;
title2 'Using the Conma to Form Associ ations';
title3 "WEIGHT is Nested Wthin SEX ;
proc report data=sashel p.cl ass nowd;
colum age sex, wei ght;

define age [group;
define sex | across;
define weight / analysis;
run;
Usi ng Proc REPORT
Using the Comma to Form Associ ati ons
VEI GHT is Nested Wthin SEX
Thereisonly limited control of the
Sex appear ance of the columns when the
~ F M statistics are assigned on the
Age Veei ght Vi ght COLUMN statement. Additional
11 0.5 85 control isavailable when statisticsare
12 161.5 310.5 assigned on the DEFINE statement
13 182 84 (see Section 2.4).
14 192.5 215
15 224.5 245
16 . 150

Aswas the casein Section 2.2.3, when groups are formed in the presence of an analysis variable,
the value displayed is, by default, the total (SUM) of all the observations in the group. In this
case, the total weight of all the 12-year-old femalesin the datatableis 161.5 pounds. Other
statistics are available and are discussed in Section 2.3.2.

2.3.2

Attaching Statistics with a Comma

The standard set of summary statistics (N, SUM, MEAN, VAR, STD, MEDIAN, etc.) are
available for use within PROC REPORT. These are the same summary statistics (with the same
names) that you can request from other procedures, such as MEANS, SUMMARY, and
UNIVARIATE.

These dtatistics can be requested in several ways. One way is to include the name of the desired
statistic on the COLUMN statement, using a commato form the association between a statistic
and the variable for which that statistic is to be calculated.

Chapter 2: PROC REPORT: An Introduction 27

titlel 'Using Proc REPCRT ;
title2 '"Using the Comma to Attach Statistics';
title3 ' Mean WVEI GHT and HEI GHT' ;
proc report data=sashel p.class nowd;
col um age wei ght, mean hei ght, nmean;
define age [group;
define weight / analysis;
define height / analysis;
run;

Because AGE is defined as a grouping variable, the mean for HEIGHT and WEIGHT will be
within age groups.

Usi ng Proc REPORT
Using the Comma to Attach Statistics

Mean WEI GHT and HEI GHT .
The name of therequested statistic, in
Vi ght Hei ght this case the MEAN, has automatically
Age nean Hean been added to the column header.
11 67.75 54. 4
12 94. 4 59. 44 Statistics can be associated only with
13 88.666667 61.433333 numeric variables.
14 101. 875 64.9
15 117. 375 65. 625
16 150 72

The statistic can either follow the variable name (as was the case in the previous example), or it
can precede the variable name. When the statistic precedes the name, the label is placed higher in
the column header.

titlel 'Using Proc REPORT';
title2 "Using the Comma to Attach Statistics';
title3 ' Mean VEI GHT and HEl GHT' ;
proc report data=sashel p.cl ass nowd;
colum age wei ght, nean Mean, hei ght @;
define age [group;
define weight / display; @
define height / analysis;
run;

© The statistic has been placed before the analysis variable. This position nests the variable
within the statistic and causes the order of the labels in the header to reverse. Notice that the
case used in the name of the statistic (Mean) is preserved in the label.

® The statistic can be associated with a numeric variable with the define usage of DISPLAY .

28 Carpenter’'s Complete Guide to the SAS REPORT Procedure

Usi ng Proc REPORT
Using the Comma to Attach Statistics
Mean VEI GHT and HEI GHT Thelabd for the statistic can be placed
either above or below thelabel for the
Wi ght Mean variable.
Age mean Hei ght ©
11 67.75 54. 4 The case of the statistic’snamethat is
12 94. 4 59. 44 used in the COLUMN statement is
13 88.666667 61.433333 preserved in the column header in the
14 101. 875 64.9 report.
15 117. 375 65. 625
16 150 72

Statistics must be associated with a numeric variable. This association can be done on the
COLUMN statement, asit is here, or on the DEFINE statement (see Section 2.4). The only
exception isthe N statistic, which can appear on the COLUMN statement without being
associated with anumeric variable. When this happens, N counts observations (see Section 2.4.4
for an example).

SEE ALSO
SAS Technical Report P-258 (1993, pp. 25, 195) discusses the stacking of variables and statistics.

2.3.3 Using Parentheses to Form Groups

In the examples in Section 2.3.2, the mean was calculated for both height and weight. This
resulted in the specification of the same statistic for each analysis variable. This syntax can be
simplified by forming groups through the use of parentheses on the COLUMN statement. Y ou can
use the parentheses to form groups of items that include variables, statistics, and even text for
labels. The following COLUMN statement was used in the previous section:

col utm age wei ght, mean hei ght, nean;

This statement could be replaced with the following more succinct statement:

colum age (wei ght hei ght), nean;

The same technique allows you to assign multiple statistics to the same analysis variable. The
following example displays three statistics for WEIGHT within AGE:

titlel 'Using Proc REPORT ;
title2 'Using Parentheses to form G oups';
title3 'Gouping Statistics';
proc report data=sashel p.cl ass nowd;
col um age wei ght, (N Mean Stderr);
define age [group;
define weight / analysis;
run;

Chapter 2: PROC REPORT: An Introduction 29

Using Proc REPORT Using Proc REPORT
Using Parentheses to form G oups Using Parentheses to form Groups
Grouping Statistics Grouping Statistics
Wi ght -
Age N Mean Stderr Weight
11 2 67.75 17.25 Age N Mean Stderr
12 5 94.4 9.1806862
13 3 88.666667 4.6666667 "2 67.75 17.25
14 4 101. 875 4.6069467 12 5 94.4 9.1806862
15 4 117.375 5.2096665
16 1 150 . 13 3 B85.666667 4.6666667
14 4 101.875 4.6069467
15 4 117.375 5.2096665
16 1 150

Destination: PDF Style: JOURNAL

2.3.4 Nesting Statistics under an ACROSS Variable

You are not limited to asingle level of nesting. In the following example, statistics are displayed
for WEIGHT within each value of SEX, which has been defined as an ACROSS variable.

titlel 'Using Proc REPORT';
title2 'Using Parentheses to form G oups';
title3 ' G ouping Under an ACRCSS Vari abl e';
proc report data=sashel p.cl ass nowd;

colum age sex, wei ght, (N Mean);

define age [group;
define sex | across;
define weight / analysis;
run;

The resulting table shows the statistics for WEIGHT for each level of SEX.

Usi ng Proc REPORT
Usi ng Parent heses to form G oups
G oupi ng Under an ACROCSS Vari abl e The statistic does not
haveto bethelast
Sex item in thelist. We
F M could nest SEX
N Vfl' ght " V‘,‘;‘ ght " within the analysis
ge an an variable so that we
11 1 50.5 1 85
12 2 80. 75 3 103.5 could m.akeeaw
: : comparisons between
13 2 91 1 84 genders.
14 2 96. 25 2 107.5
15 2 112. 25 2 122.5
16 1 150

30 Carpenter’'s Complete Guide to the SAS REPORT Procedure

If we had failed to nest WEIGHT within SEX, the summary for WEIGHT would have been
independent of SEX.

titlel 'Using Proc REPORT';
title2 'Using Parentheses to form G oups';
title3 ' An ACRCSS Vari abl e';

titled "Wth Non-nested Statistics';
proc report data=sashel p.cl ass nowd;
age sex wei ght, (N Mean);

col um
define
defi ne
defi ne

run;

age [group;
sex /| across;
wei ght / anal ysis;

Because no statistics are associated with the ACROSS variable, the number of students (N) is
displayed under SEX.

Age
11
12
13
14
15
16

Sex O
F M
1 1
2 3
2 1
2 2
2 2
1

Usi ng Proc REPORT
Usi ng Parent heses to form G oups
An ACRCSS Vari abl e
Wth Non-nested Statistics

Wi ght @

N

P hADoOoOoDN

Mean
67.75

94. 4

88. 666667
101. 875
117. 375
150

By including a non-nested ANALYSIS
variable, we have effectively created a
horizontally concatenated report. Thefirst
report isfor SEX @ and the second for
WEIGHT @. The ability to generate multiple
types of concatenated reportswithin a single
report isavery powerful feature of the
REPORT procedure.

This report isinteresting for several reasons. Because AGE is a GROUP variable, there is one row
per AGE. Therefore the N and MEAN for the variable WEIGHT are across all observations
within an AGE, and the statistics ignore SEX. Also, we did not tell PROC REPORT what we
wanted to show under the columns ‘F' and ‘M’ @. Consequently, the counts are displayed and we
see the number of students within each AGE-by-SEX combination.

If the same PROC REPORT step were re-executed without a GROUP variable (but still with the
ACROSS variable), there would be one row in the table for each observation in the data set. When
we calculate statistics, we generally need to group observations to make the statistics meaningful.

Chapter 2: PROC REPORT: An Introduction 31

2.4 Other DEFINE Statement Options

In al of the previous examplesin this chapter, the display of information has primarily relied on
defaults. Although the results have usually been at least acceptable in appearance, we can do
better. Fortunately, a number of supplemental options can be used with the DEFINE statement to
augment the display of the information. These include the following:

statistic specifies a statistic to be calculated (used only with analysis variables).
FORMAT=specifies how the information within this column is to be formatted.
ORDER= determines a scheme for ordering the vaues.

MORE INFORMATION

Thisis definitely not an exhaustive list of the options that can be used with the DEFINE
statement. A number of options specific to the LISTING destination are demonstrated in
Chapter 4, “Only in the LISTING Destination.” Additional DEFINE statement options are aso
discussed in Section 6.1.

SEE ALSO
Burlew (2005, p. 16) includes an example with avariety of DEFINE statement options.

2.4.1 Specification of an Analysis Statistic

Although you can specify the caculation of one or more statistics on the COLUMN statement
(see Section 2.3), it is usually easier and more straightforward to specify the statistics on the
DEFINE statement. All of the same statistics that are available in PROC TABULATE (except for
SKEWNESS and KURTOSIS) can be specified on either the COLUMN statement or on the
DEFINE statement. These statistics include SUM (the default), N, MEAN, VARIANCE, and
MEDIAN. Y ou can specify only one statistic per DEFINE statement; however, it ispossible to
specify multiple DEFINE statements per variable through the use of aliases (see Section 6.2) or
by creating columns with compute blocks (see Chapter 5, “ Creating and Modifying Columns
Using the Compute Block™).

The examplesin this section use the data from a small health care study. In the following
example, the average (mean) weight is calculated. Notice that since no statistic is requested for the
EDU (years of education) variable, the SUM is calculated.

titlel 'Using Proc REPORT';
title2 'Specify the MEAN on the DEFINE Statenent';
proc report data=rptdata.clinics nowd;

colum region sex edu w;

define region / group;

defi ne sex | across;
define wt / anal ysis mean;
define edu / anal ysi s;

run;

32 Carpenter’'s Complete Guide to the SAS REPORT Procedure

In this particular example, the order of the variablesin the COLUMN statement is not the same as
the order of the DEFINE statements. Asfar as PROC REPORT is concerned, the order of the
DEFINE statementsis not important. However, the order of the columns depends on the order of
the variablesin the COLUMN statement. Here is the report in the LISTING destination:

Usi ng Proc REPORT
Specify the MEAN on the DEFINE Stat ement
re
gi pati years of wei ght
on F M education in pounds
1 . 4 40 195 Although the for matting of the EDU
10 2 4 82 172.33333 column is acceptable (EDU isan
2 6 4 136 107.8 integer), the values for mean weight
3 5 5 142 145.8 areugly and hard toread. This
4 4 * 210 159.14286 issueisaddressed in the next section.
5 5 3 116 157. 75
6 4 6 140 198
7 . 4 60 151
8 4 . 56 160
9 2 8 120 187.8

Notice that the number of male patientsin region 4 exceeds 9, and because there is only one space
alocated (SEX isa$l variable), an asterisk is displayed instead of the number. Thisloss of
information is not an issue for other destinations. Here is the same table generated for the PDF
destination using the RTF style:

Using Proc REPORT
Specify the MEAN on the DEFINE Statement
patient
sex
weight
vears of in
region| F | M |education| pounds The RTF styleis optimized for
1 . |4 l = use with the RTF destination;
10 2 |a 82(172.33333 however, it can also be used
2 6 |4 136 107.8 with other destinationsaswell.
3 5 s 142 145.8
4 4 |10 210{159.14286
5 5 |3 116 157.75
6 4 |6 140 198
7 . |4 60 151
8 4 56 160
9 2 |8 120 187.8

Destination: PDF Style: RTF

SEE ALSO

Chapter 2: PROC REPORT: An Introduction 33

Rohowsky (2005) creates alist of statistics.

2.4.2 Formatting the Values

Asinamajority of procedures that display values, you can apply aformat directly to avariable
through a FORMAT statement. In a PROC REPORT step you can a so specify the format on the
DEFINE statement itself by using the FORMAT= option.

In the following PROC REPORT step, the mean for both height (HT) and weight (WT) are

calculated.

titlel 'Using Proc REPORT ;

title2 ' MEAN for Height and Weight';
proc report data=rptdata.clinics nowd,
region sex ht wt;

region / group;

col um
defi ne
defi ne
define
define

format wt 6. 2;

run;

sex
ht
wt

/ acr oss;
/ anal ysis nean format=4.1;
/ anal ysi s nean;

This example shows that both the FORMAT statement and the FORMAT= option can be used. In
the LISTING destination, shown here, the format can also be used to control the width of the
column so that the headings are more readable.

re
gi
on

Mo
Q
—

O©CoO~NOOTA~WN
PO OOTON"
PrOoOw rarpbbrh=z

N b
0 -

Usi ng Proc REPORT
MEAN for Hei ght and Wi ght

hei g
ht
in

inch
es

74.

0

67.0

63.
68.
69.
66.
66.
66.
70.
67.

~AOOOOONO®

wei ght The width of the column for height
in (HT) isstill abit too narrow, and the

pounds label is split awkwardly. Thisisnot a

i?g gg problem for weight (WT), asthe

107' 80 format has awidth that istwo digits

145. 80 wider. For ODS destinations other

159. 14 than LISTING, column width is

157. 75 generally not a problem.

198. 00

151. 00

160. 00

187. 80

MORE INFORMATION

More robust methods for controlling column width are available. For the LISTING destination,
COLWIDTH (see Section 4.4.3) and WIDTH= (see Section 4.5.1) can also be used to control
column width independently from the formatted width. For other destinations, the CELLWIDTH
attribute modifier can be used (see Section 8.2.4).

SEE ALSO

SAS Technical Report P-258 (1993, pp. 46-47) discusses the use of the FORMAT= option on the

DEFINE statement.

34 Carpenter’'s Complete Guide to the SAS REPORT Procedure

2.4.3 Controlling the Order of the Displayed Values

In Section 2.2.2, the define type of ORDER was used to change the order of the rows of the table.
Within SAS there are several ways for you to determine the ordering criteria, and within PROC
REPORT these criteria are controlled through the use of the ORDER= option. This same optionis
used in anumber of other procedures, primarily when there is a classification or some other
similar type of variable that is used to build the table. In PROC REPORT this option can be used
on DEFINE statements with a GROUP, ORDER, or ACROSS define type.

The ORDER= option can take on values such as the following:

DATA
FORMATTED

FREQ
INTERNAL

The order is based on the incoming data.

Values are first formatted and then ordered on their formatted (external)
values.

The ascending frequency count is used to determine the order.

Asin PROC SORT, the unformatted values are used. This sort sequence is
particularly useful for displaying dates chronologically.

The following example shows the use of the ORDER=FREQ option to display the regionsin
ascending frequency.

titlel 'Using Proc REPORT ;

title2 'Ordering Val ues with ORDER=FREQ ;
proc report data=rptdata.clinics nowd;
region sex ht wt;

region / group order=freq;

col um
defi ne
define
define
defi ne

format wt 6. 2;

run;

sex
ht
wt

|/ across;
/ anal ysis nean format=4.1;
/ anal ysi s nean;

_‘
Ny

pati

o «Q

o s B
7

A=z

*FO00~OCTWD:"

RO ONWUE ©RF
ADNOUGIUONN-

Usi ng Proc REPORT
O dering Values with ORDER=FREQ

hei g
ht
in

inch
es

66.

74.

70.

67.

66.

68.

63.

67.

66.

69.

OO DhONOOOOO

Vel glh:] Theorder of theregionsisdetermined
pounds by 'ghe number of patientsin each
151. 00 region (with one observation per
195. 00 patient visit, the order isactually
160. 00 based on the number of observations
172.33 within REGION). Regionswith the
157.75 fewest patientsarelisted first.

145. 80

107. 80

187. 80

198. 00

159. 14

The DESCENDING option can also be used on the DEFINE statement, as it can be with the BY
statement. Here the previous example is repeated using the DESCENDING option.

Chapter 2: PROC REPORT: An Introduction 35

titlel 'Using Proc REPCRT ;
title2 'Ordering Val ues with ORDER=FREQ ;
proc report data=rptdata.clinics nowd;
colum region sex ht w;
define region / group order=freq descendi ng;

defi ne sex / across;
define ht / anal ysis nmean format=4.1;
define w / anal ysi s nean;
format wt 6. 2;
run;
Using Proc REPORT Theorder of theregionsis deter mined
Ordenng Values with ORDER=FREQ by the number of patientsin each
region. Because of the inclusion of the
patient DESCENDING option, regions with
sex the most observations (patients) are
height | weight TEiEn L
in in
region| F | M [inches | pounds
4 4 10 69.0 159.14
3 5 3} 68.2 145.80
2 6 4 63.8 107.80
9 2 8 67.4 187.80
6 4 6 66.6 198.00
a 5 3 66.0 157.75
10 2 4 67.0 172.33
7 4 66.0 151.00
1 4 74.0 195.00
8 4 i 70.0 160.00

Destination: PDF Style: SANSPRINTER

By happenstance, the first observation on the data set RPTDATA.CLINICSisfor amale patient.
If we use ORDER=DATA for the ACROSS variable SEX, the order of the two columns for SEX
are reversed.

titlel 'Using Proc REPORT ;
title2 'Ordering Val ues with ORDER=DATA';
proc report data=rptdata.clinics nowd,
colum region sex ht w;
define region / group;

defi ne sex /| across or der =dat a;
define ht / anal ysis nean fornmat=4.1;
define w / anal ysi s nean;

format wt 6. 2;
run;

36 Carpenter’'s Complete Guide to the SAS REPORT Procedure

Usi ng Proc REPORT
O dering Values with ORDER=DATA
hei g
h .
. t . The column for malesis before females,
re in weight . .
) L . because thefirst observation on the
gi pati inch in . - .
on M F es pounds incoming dataisfor amale .
1 2 74.0 195. 00 (ORDER=DATA). The default (previous
’ ' le) isfor DATA=INTERNAL
10 4 2 67.0 172.33 examp . ’
which placesthe columnsin
2 4 6 63.8 107.80 T S di d
3 5 5 682 145.80 phabetically ascending order.
4 * 4 69.0 159.14
5 3 5 66.0 157.75
6 6 4 66.6 198.00
7 4 . 66.0 151.00
8 . 4 70.0 160.00
9 8 2 67.4 187.80

MORE INFORMATION
Section 6.3 uses the ORDER=FORMAT option to control the order based on a user-defined
format.

2.4.4 Using the N Statistic without an ANALYSIS Variable

When you want to count observations within a group, you can use the N statistic on the
COLUMN statement. Unlike other statistics, which must be associated with an analysis variable,
N isaspecia case and can be used aone. In the following example, N is used in two different
ways. It appears on the COLUMN statement, both as a statistic that is not associated with any
variable @, and as a statistic nested within the procedure variable (PROCED) @.

titlel 'Using Proc REPORT';

title2 "Using N ;

proc report data=rptdata.clinics nowd;
colum region n @ proced,n ®;
define region / group;
define proced / across;
run;

© N is not associated with any analysis variable and therefore counts observations.
® This occurrence of N isacounter of procedure codes within REGION.

Because REGION is a GROUP variable and PROCED is an ACROSS variable, we have
effectively nested procedure code within REGION. This nesting is also often referred to as
crossing REGION and procedure code.

Chapter 2: PROC REPORT: An Introduction 37

Usi ng Proc REPORT
Using N
In the previous example (Section 2.4.3)

re procedure code there were 10 patientsin region 2,
gi (1] 1 2 3 however in thistablethereareonly 8. It
on n n n n e turns out that the variable PROCED
1 4 _ 4 has missing values, and by default
10 6 6 _ missing values ar e excluded from the
2 8 8 table. Thisexclusion effectsthe overall
3 6 _ 6 value of N aswell. The MISSING
5 6 4 > option isused to include missing values
6 4 _ 4 _ of a classification variable (see Section
7 2 > . _ 6.1.3).
8 4 2 2
9 2 2

MORE INFORMATION

Observations with missing values for classification variables are not counted unless the MISSING
option (see Section 6.1.3) isincluded. Compute blocks and aliases can also be associated with the
N statistic (see Section 7.8.1).

SEE ALSO
The N statistic isused in an example in SAS Technical Report P-258 (1993, pp. 245-248).

2.4.5 Associating Statistics with DEFINE Statements

In the example in Section 2.4.4, there are four columns that contain counts. However, if we want
to control the characteristics of theindividual columns, we need a DEFINE statement. If wetry to
format the counts for each of the procedure codes using something like the following statement,
we get an error:

define proced / across formt=2.;

This error occurs because defining the character variable PROCED as an ACROSS variable
applies the format to the values of PROCED in the header and not to the counts.

We can get around this dilemma by adding a DEFINE statement for the statistic itself. This
DEFINE statement does not have a define type and exists solely to allow the placement of
DEFINE statement options. The example from Section 2.4.4 becomes the following:

titlel 'Using Proc REPCRT ;
title2 "Using Nwith a Format';
proc report data=rptdata.clinics nowd;
colum region n proced, n;
define region / group;
define proced / across;
define n [format=2.;
run;

Notice that the format was applied to al of the N statistics, including those associated with the
ACROSS variable,

38 Carpenter’'s Complete Guide to the SAS REPORT Procedure

Usi ng Proc REPORT

Using N with a Fornmat
re procedur e code
gi 1 2 3
on n n n n
1 4 . 4
10 6 6 .
2 8 8
3 6 6
5 6 4 2
6 4 . 4
7 2 2
8 4 2 2
9 2 2

In the previous example, the format on the DEFINE N statement is applied to each of the columns
that have an N statistic. If we did not specify the statistic to be used with the ACROSS variable,
the result would still have the counts (because that is the default), but the format on the DEFINE
N statement would not apply to the counts for PROCED.

* Using N without an ANALYSI S vari abl e;
titlel 'Using Proc REPORT ;
title2 "No Statistic for PROCED ;
proc report data=rptdata.clinics nowd;
colum region n proced;
define region / group;
define proced / across;
define n / format=8.;
run;

The FORMAT=8. has been applied only to the one N column. Note that in the LISTING
destination shown here, the columns that contain the procedure code counts have awidth of one.
Thiswidth is applied because the N statistic is not explicitly requested for PROCED, and
PROCED has a width of one.

Usi ng Proc REPORT

No Statistic for PROCED
;? procedure code In Sectiqn 2.4.4,theN statisticsare
on n 1 2 3 not (_epr|C|tIy formatted an_d therefore
1 4 4 receive a default forma_t width. When
10 6 6 . _only one coll_Jmn for N isformatted, as
5 8 8 isdonein thisexample, thg .
3 6 6 unformatted cc_)IumnsrecaveaW|dth
5 6 4 2 bas_ed on the width o_f the ACROSS
: P variable (PROCED is $1).
7 2 2 .
8 4 2 2
9 2 2

In addition to N, the DEFINE statement can be used for any of the other statistics that appear on
the COLUMN statement. This allows you to control text and formatting for individual report item
statistics that are introduced in the COLUMN statement.

Chapter 2: PROC REPORT: An Introduction 39

* Using Define Statenents with Statistics;
titlel 'Using Proc REPORT ;
title2 'Using DEFINE Statenents for Statistics';
proc report data=rptdata.clinics nowd,

colum region w, (n nean var);

define region / group;

define n /[format=4.,;

define mean / format=6. 2,

define var / format=7.2;

run;
Usi ng Proc REPORT
Usi ng DEFI NE Statenents for Statistics
re
gi wei ght in pounds
on n nean var
1 4 195.00 0.00 DEFINE statements are used to supply
10 6 172.33 52.27 formatsto thereport items, which in
2 10 107.80 17.07 this case ar e satistics and not
3 10 145.80 1238.84 variables.
4 14 159.14 562. 59
5 8 157.75 1957.93
6 10 198.00 565.33
7 4 151.00 21.33
8 4 160.00 5.33
9 10 187.80 726. 40

Because there is only one column for each statistic, each of these DEFINE statements necessarily
applies to only one column. However, if we had asked for the mean of both height and weight,
the DEFINE MEAN statement would have applied to both means. This happened in the first
example in this section. When you need to control the options differently for two columns with
the same statistic, it is usually easier to declare an alias (see Section 6.2), which can haveits

own DEFINE statement.

2.5 Adding Text

The default text associated with our report is limited to titles, footnotes, and column labels. Asis
quite apparent from all of the preceding LISTING examples in this chapter, this text is not
adequate for any but the simplest of reports. We need to be able to take control of the text that
appears on our report. We need to be able to augment the text, modify it, and add new text such as
headers that span columns. Fortunately, there are anumber of waysto do this, and these form a
great deal of the discussion throughout the remainder of this book.

Aswas stated earlier, when no other action is taken, column headers are built from either the
column label (when present) or the column name. For the LISTING destination, the width
requirements of the values determine the column widths, and the labels are often unreadable when
the column is narrow. For many of the other destinations, the column labels are by default much
more legible; however, we till often need more control.

40 Carpenter’'s Complete Guide to the SASREPORT Procedure

The following PROC REPORT step includes the specifications of two ODS destinations. This
enables us to create two reports with asingle PROC REPORT step. One will be written to the
LISTING destination (e.g., the OUTPUT window) and the other to an HTML file.

ods htm file="&path\results\ch2_5.htm";
ods listing;
* Usi ng GROUP and ACRCSS;
titlel 'Using Proc REPORT ;
title2 'Define Types CGROUP and ACRCSS' ;
proc report data=rptdata.clinics nowd;
colum region sex w, (n nmean);
define region / group;

defi ne sex / across;
define wt / anal ysi s;
run;

ods htm cl ose;
ods listing close;

Notice the differences in the labels and headers for the two types of reports. Hereisthe HTML

report:
Using Proc REPORT Unlikethe LISTING destination, most non-
Define Types GROUP and ACROSS monospace destinations, such asthe HTML
report shown here, are much better at
patient sex weight in pounds properly spacing columnsto show all
valuesand labels.
region F M n mean
1 4 4 195
10 p; 4 6 172.33333
2 & 4 10 107.8
3 5 5 10 1458
4 4 10 14 159.14286
5 5 3 8 157.75
5 4 & 10 198
7 4 4 151
8 4 : 4 160
9 2 8 10 1878

Destination: HTML Style: DEFAULT

Chapter 2: PROC REPORT: An Introduction 41

Hereisthe LISTING report:

Usi ng Proc REPORT
Define Types GROUP and ACRCSS

re

gi pati wei ght in pounds

on F M n nmean Although thereis sufficient space
1 . 4 4 195 to display the countsfor all the
10 2 4 6 172.33333 regionsintheHTML report, the
2 6 4 10 107.8 LISTING report isunableto

3 5 5 10 145.8 display the patient count for males
4 4 * 14 159. 14286 in region 4.

5 5 3 8 157. 75

6 4 6 10 198

7 . 4 4 151

8 4 . 4 160

9 2 8 10 187.8

In the LISTING report, the variable REGION, which is a $2 variable without alabel, has its text
stacked. The label for SEX (an ACROSS variable) istruncated.

In the resulting report for both destinations, the label for WT is used to span the two columns of
statistics (N and MEAN) calculated for WT. In asimilar fashion, the label for SEX is used to span
the two columns generated by the two values of SEX. These are known as spanning headers and
can be very helpful in annotating a report. Fortunately, there are also other ways to create these
types of text headers.

There are two major types of headers:

= those that span more than one report column

= those that apply to each column individually

Two of the easiest ways to control and add headers to your report are through the DEFINE and
COLUMN statements.

MORE INFORMATION

Section 2.6.2 shows how text can also be added with the LINE statement in compute blocks, and
Chapter 4 deals exclusively with issues associated with reports written to the LISTING
destination (OUTPUT window).

SEE ALSO
Mitchell (2006) has a PROC REPORT example that prints only titles and no report.

2.5.1 Using the COLUMN Statement to Add Text

Aswas shown earlier in this chapter, parentheses can be used to group variables and statistics
(Sections 2.3.3 and 2.3.4). Y ou can a so use parentheses to create an association between a
variable and atext string. In the following example, the text “Gender” is added to the columns
that display the patient sex.

42 Carpenter’'s Complete Guide to the SASREPORT Procedure

* Text headers in the COLUW st at enent;

titlel 'Using Proc REPORT ;

title2 ' Colum Text';

proc report data=rptdata.clinics nowd,
colum region (' Gender' sex) ;
define region / group;

defi ne sex |/ across format=%$3.;
run;
Usi ng Proc REPORT I_'Smg Proc REPORT
Col utm Text Column Text

r.e ngder Gender
gi patient sex
on F M patient
1 . 4 SCX
10 2 4)

region| F | M
2 6 4 e
3 5 5 1 4
4 4 10 10 2 1
5 5 3

2 5
6 4 6 - R
7 : 4 3 s s
8 4. 4 4 |10
9 2 8

5 5 3

6 | 6

7 4

b 4

9 2 8

Destination: RTF Style: RTF

Parentheses can also be used to group text headers that span columns. Again the spanning text
precedes the variables, groups of variables, statistics, and groups of statistics. Because parentheses
that form groups can be nested, you can easily create text associationsin layers.

* Text headers in the COLUW statenent;
titlel 'Using Proc REPORT';
title2 ' Gouped Header';
proc report data=rptdata.clinics nowd;
colum region sex ('Patient Weight (Ib)" wt,(n nean));
define region / group;
defi ne sex / group format=%$6.;
define wt / anal ysi s;
run;

Chapter 2: PROC REPORT: An Introduction 43

Usi ng Proc REPORT
G ouped Header
re Pati ent Weight (Ib)
gi patien wei ght in pounds
on t sex n mean
1 M 4 195
10 F 2 163
M 4 177
2 F 6 109. 66667
M 4 105 Thetext in the COLUMN statement
3 F 5 127.8 adds a new header, but doesnot alter
M 5 163.8 the existing headers.
4 F 4 143
M 10 165. 6
5 F 5 146. 2
M 3 177
6 F 4 187
M 6 205.33333
7 M 4 151
8 F 4 160
9 F 2 177
M 8 190.5

Although the previous examples have added text, the original text supplied by PROC REPORT
has not been replaced. Thus your control of the text is limited. When you want to control the text
associated with an individual column, you can also use the text options associated with the
DEFINE statement (see Section 2.5.2).

2.5.2 Using the DEFINE Statement to Add Text

Text can also be added directly through the DEFINE statements by adding atext string. Unlike
text specified on the COLUMN statement, this text will replace the text that would otherwise
appear as the column header.

* Text headers in the DEFI NE statenent;

titlel 'Using Proc REPCRT ;

title2 ' DEFI NE Statenent Text';

proc report data=rptdata.clinics nowd;
colum region sex ('Wight' wt);

define region / group f or mat =$6. ;
defi ne sex | across f or mat =$3. ' Gender"' ;
define wt / analysis nean ' (Mean)';

run;

44 Carpenter’s Complete Guide to the SASREPORT Procedure

Usi ng Proc REPORT
DEFI NE St at enment Text
Gender Wei ght
region F M (Mean)
1) 4 195 The column for mean weight now has
10 2 4 172.33333 two sour ces of text for the header:
2 6 4 107.8 'Wei ght' from the COLUMN
3 5 5 145. 8 statement and '(Mean) ' from the
4 4 10 159. 14286 DEFINE statement.
5 5 3 157. 75
6 4 6 198
7 . 4 151
8 4 . 160
9 2 8 187.8
SEE ALSO

Tsykaov and Y eh (2006) demonstrate several ways to suppress the text that would otherwise be
displayed. Their techniques include the use of a nonprintable character.

2.5.3 Using the SPLIT= Option with Text

As has been shown in anumber of the previous examples, header text can be wrapped or
truncated depending on the use of the text and the available space. When header text istoo long to
fit into the available space, or when you want to control how the header text isto be split, you can
use the SPL1T= option on the PROC REPORT statement to add some control. This option
specifies an unprinted character that is used to designate where the line break isto take place. This
issimilar to the SPLIT= option in PROC PRINT.

In the following example, the text associated with the variable WT is split using the asterisk (*).

* Text headers in the DEFINE statenent;

titlel 'Using Proc REPORT ;

title2 'Using SPLIT=";

proc report data=rptdata.clinics nowd split="*";

col um
define
defi ne
defi ne
run;

region sex ('Wight*Pounds' wt);
region / group f or mat =$6.

sex / across format =$3. ' Gender';
wt / anal ysi s nean "(Mean)';

Notice that the split character (*) does not appear in the header in the report.

Chapter 2: PROC REPORT: An Introduction 45

Usi ng Proc REPORT
Usi ng SPLI T=
Wi ght
Gender Pounds
region F M (Mean) It took three different options on
1 . 4 195 three different statementsto create
10 2 4 172.33333 this header for the mean weight: the
2 6 4 107.8 SPLIT= option, text on the
3 5 5 145. 8 COLUMN statement, and text on the
4 4 10 159.14286 DEFINE statement.
5 5 3 157. 75
6 4 6 198
7 . 4 151
8 4 . 160
9 2 8 187.8

Since not all ODS destinations and styles handle the splitting of text in the same way, the effect of
the SPLIT= option can be destination-specific.

SEE ALSO
Ping and Schiefelbein (2006) preprocess the data to add specialized split charactersin order to
control where long data lines are to break.

2.6 Compute Blocks

Unlike most other SAS procedures, PROC REPORT has the ability to modify values within a
column, to insert lines of text into the report, to create columns, and to control the content of a
column. Through compute blocks, it is possible to use a number of SAS language el ements, many
of which can otherwise only be used in the DATA step. Asthe report itself is built, the statements
associated with each compute block are executed.

There are two basic types of compute blocks: those that are associated with alocation (the option
BEFORE or AFTER follows the COMPUTE keyword), and those associated with areport item.
Although the structure and execution of these two types of compute blocks are similar, how they
are used and the timing of their execution can be quite different. These differences are noted
throughout the sections dealing with compute blocks.

The compute block starts with the COMPUTE statement and terminates with the ENDCOMP
statement. Usually the compute block is placed in the PROC REPORT step after the DEFINE
statements. The syntax of the compute block looks something like this:

conpute <l ocation> <report_itenr </ options>;
. one or nore SAS | anguage el enents .
endconp;

46 Carpenter’s Complete Guide to the SASREPORT Procedure

The COMPUTE statement includes the following components:

location

This component specifies when the compute block is to execute and ultimately what is to
be done with the result of the compute block. Accepted values include BEFORE and
AFTER. When alocation is specified without also specifying areport_item, the location
is at the start (BEFORE) or at the end (AFTER) of the report. When location isused in
conjunction with the location modifier _ PAGE _, the action of the compute block takes
place BEFORE or AFTER page breaks (see Section 5.4).

report_item
When the result of the compute block is associated with avariable or report item, its
nameis supplied here. This report_item variable can be any variable on the COLUMN
statement. When report_itemis avariable that either groups or orders rows (usage of
GROUP or ORDER) you can aso use BEFORE and AFTER to apply the result at the
start or end of each group.

options

Several options are available that can be used to determine the appearance and location of
the result of the compute block.

SASlanguage elements

Any number of SAS language elements can be used within the compute block. These
include executable statements, logical processing (IF-THEN/EL SE), and most of the
functions availablein the DATA step (see Section 2.6.4).

2.6.1 Inserting a Blank Line

One of the more interesting programming statements within the compute block isthe LINE
statement. This statement is roughly analogous to the PUT statement in the DATA step and can be
used to introduce lines of text into the report.

Chapter 2: PROC REPORT: An Introduction 47

In the following example, this line of text is ablank line after each level of the grouping variable
(REGION).

* Bl ank Line using COVPUTE;
titlel 'Using Proc REPORT ;
title2 'Blank Line After Region';
proc report data=rptdata.clinics
(where=(region in('1" '2" '3 '4")))
nowd;
colum region sex w, (n nmean);
define region / group format=%$6.;

define sex / group format=$6. ' Gender';
define wt / anal ysi s;
conpute after region;
line "'
endconp;
run;
Usi ng Proc REPORT
Bl ank Line After Region
wei ght in pounds
regi on Gender n mean
1 M 4 195
2 = 6 109. 66667 The LINE statement has been
M 4 105 used to insert a blank line after
each regional group.
3 F 5 127.8
M 5 163.8
4 F 4 143
M 10 165.6

Because the COMPUTE statement contains the location specification AFTER and also designates
the report item REGION, we have effectively requested that the results of the compute block (a
blank space) be written after each group of the grouping variable REGION.

2.6.2 Adding Lines of Text

In the previous example, the LINE statement added a blank line. The LINE statement is more
commonly used to add lines of text at specific locations in the report.

In the following example, the text is written as afootnote at the end of the report. We can specify
the options BEFORE and AFTER to indicate the location, and since in this case no grouping
variable appears on the COMPUTE statement, the AFTER option applies to the whole PROC
REPORT step.

48 Carpenter’s Complete Guide to the SASREPORT Procedure

* Text Line using COVPUTE
titlel 'Using Proc REPORT ;
title2 'Footnote Using LINE ;
proc report data=rptdata.clinics

(where=(region in("1" '2" "3 '4")))

nowd;

colum region sex w,

define region /

group f
group f
anal ysi

define sex /

define w /

conpute after region;
line " ';

endconp;

conpute after;

(n nean);
or mat =$6. ;

ormat =$6. ' Gender';

S;

line @0 'Wight taken during';
line @0 'the entrance exam';

endconp;
run;

Usi ng Proc REPORT

regi on Gender
1 M
2 F
M
3 F
M
4 F
M

Footnote Using LINE

wei ght
n
4

6
4

5
5

4
10

Wei ght t
the entr

i n pounds
mean
195

109. 66667
105

127.8
163. 8

143
165.6

aken during
ance exam

Thisreport was generated with
the system option NOCENTER
in effect (notice thetitles). Even
so, theresults of the LINE
statement are centered unlessa
column specification is provided.

In these LINE statements the @ is used, asit isin the DATA step PUT statement, to designate the
column number. If a specific column is not specified with the @, and no justification options are
specified, text generated by the LINE statement is centered. Thisis adifferent default behavior
than that of the PUT statement in the DATA step.

When writing to ODS destinations other than LISTING, proportional fonts might make exact
placement of values difficult, and might regquire you to use atrial-and-error approach. To make
things more interesting, some destinations ignore the @ altogether. Here is the same report
generated in RTF (using STYLE=RTF):

Chapter 2: PROC REPORT: An Introduction 49

Using Proc REPORT
Footmote Using LINE
weight in
pounds
region | Gender| n mean
1 i1 4 155
2 F 6| 109.66687
M 4 105
3 F 5 127.8
i1 5 163.8
4 F 4 143
M 10 1656
“Weight taken during
the entratice exam.

Destination: RTF Style: RTF

MORE INFORMATION
The LINE statement is used in a compute block in an example that shows how to write a left-
justified line at the bottom of each page in Section 5.4.

SEE ALSO

SAS Technical Report P-258 (1993, pp. 114-119) uses the $VARY ING. format to control both
text and numeric variablesin a LINE statement. The LINE statement and the PUT statement are
contrasted in P-258 on page 216.

2.6.3 Writing Formatted Values

Y ou can place formatted variable values on the report by using the LINE statement, and you can
use the BEFORE or AFTER option to place these values before or after each group. In the
following example, the user-defined format SREGNAME provides atext name for the first four
regions. These names are than added to the report through the use of a LINE statement and a
compute block.

proc format;
val ue $regnane

1" = ' New Engl and'
'2'" = 'New York'
'3 = 'Maryl and’
"4' = 'South East';

run;

50 Carpenter’s Complete Guide to the SAS REPORT Procedure

* Text Line using COVPUTE;
titlel 'Using Proc REPORT ;
title2 'Formatted Val ues';
footnotel '"at the bottoni;
proc report data=rptdata.clinics
(where=(region in("1" '"2" "3 '4")))
nowd;
colum region sex w, (n nean);
define region / group fornmat=%6.;
defi ne sex / group format=$6. ' Gender';
define wt / anal ysi s;
conpute before region;
line @ region $regnanes.; (1)

endconp;

conpute after region;
line' '; @

endconp;

conpute after;
line @O0 'Wight taken during' ; ©
line @O0 'the entrance exam';

endconp;
run;
Usi ng Proc REPORT
Formatted Val ues
wei ght in pounds
regi on Gender n nean
New Engl and @
1 M 4 195 Three compute blocks are
used to generatethethree
New Yor k types of text: a formatted
2 F 6 109. 66667 region name befor e each
M 4 105 region @, a blank line after
(2] each region summary @,
Maryl and and footnotetext at the end
3 F 5 127.8 of thereport ©.
M 5 163. 8
Sout h East
4 F 4 143
M 10 165. 6
Vi ght taken during ©
the entrance exam

The format $SREGNAME could have also been used in the DEFINE statement; however, in this
case we wanted to show the unformatted value as well as the formatted group header.

SEE ALSO
Burlew (2005, p. 121) makes extensive use of the LINE statement with formats.

Chapter 2: PROC REPORT: An Introduction 51

2.6.4 Using SAS Language Elements

Much of the power of the DATA step is available within the compute block. Thisradically
increases the flexibility of PROC REPORT, as most of the SAS language elements, such as
routines, functions, arithmetic operations, and executabl e statements, can also be used within
the compute block. These include DO loops, assignment and SUM statements, arrays, and
IF-THEN/EL SE processing.

Throughout this book there are numerous examples of the use of these SAS language elements
within the compute block. As part of Base SAS, %INCLUDE statements, macro variables, and
macro invocations work the same in compute blocks asthey do in all other parts of SAS

procedures.

The following example demonstrates, in a simple way, some of this power. The compute block
performs atransformation of weight from pounds to kilograms. The conversionisdonein a
compute block with the same name as the variable that is being modified. The assignment
statement in the compute block is of the same form as you would expect to find in the DATA

step.

titlel 'Using Proc REPORT ;
title2 'Converting Weight to Kg';
proc report data=rptdata.clinics

nowd;
colum | nane fname sex wt;

define | nanme
defi ne fnanme
defi ne sex
define w

conpute w;

/

/
/
/

(where=(region in('4")))

di spl ay;

di spl ay;

di spl ay format=%$6. ' Gender';
di splay 'Weight in Kg'

f or mat =6. 2;

* Convert pounds to KG
w o= wt/2. 2;

endconp;
run;

52 Carpenter’s Complete Guide to the SAS REPORT Procedure

Usi ng Proc REPORT
Converting Weight to Kg
first Wei ght
| ast name name Gender in Kg
Hal f ner John M 70. 45
Johnson Randal M 91. 36
Rodger s carl M 81.36 Thelabel for the variable WT
Cor doba Juan M 60. 45 contains the units (pounds),
Bar on Roger M 72.73 so a new column header is
Adarns Mary F 70. 45 also required.
Rymes Car ol F 59. 55
Most Mat M 70. 45
Jackson Ted M 91. 36
Maxi m Kur t M 81. 36
Per ez Mat hew M 60. 45
East dint M 72.73
Bat el | Mary F 70. 45
Runor St acy F 59. 55

Although you can have a compute block for any report item (variable on the COLUMN
statement), the naming conventions for report items that are addressed within the compute block
are not nearly as straightforward as they would seem to be in this example. Thisexampleis
almost the simplest case in which the name of the column is used directly. Naming conventions
used within a compute block are discussed in more detail in Section 7.2.

MORE INFORMATION

The majority of the examplesin Chapter 7, “ Extending Compute Blocks,” have compute blocks
that use SAS language elements. Section 7.2 covers how columns and report items are addressed
in acompute block under various conditions. Section 7.7 provides additional detail about the SAS
language elements that are allowed in the compute block.

2.7 Sequencing of Step Events

When a PROC REPORT step includes one or more compute blocks, it isimportant to understand the
sequencing of events when the step is processed. The general processisdescribed in
Section 1.4.2; however, no detail is provided for the interaction of the process with the compute block.

When you have multiple compute blocks, they can appear in any order in your PROC REPORT
step. The order in which you include the blocks does not affect when they are executed. | usually
try to group my compute blocks after my BREAK and RBREAK statements, and | also try to
order them nominally in the same order as they will execute. This arrangement helps me with my
coding, but does not change how the compute blocks work.

Asthereport is generated (one row at atime—top to bottom and left to right—during the report
row phase), the various compute blocks are executed at the appropriate time. Remember that
compute blocks are tied both vertically and horizontally to locations in the report, and the location
controls the timing of when the compute block will be executed. These ties are specified on the
COMPUTE statement. Vertical ties are established by using the timing options BEFORE and
AFTER, and horizontal ties are made by the specification of report items.

Chapter 2: PROC REPORT: An Introduction 53

When a compute block istied to a specific report item (such as a variable name) on the COLUMN
statement, it is executed for each report row. The execution takes place when PROC REPORT
processes that specific column, and any given row is processed from left to right based on the
order of the items on the COLUMN statement. In the following step, because SEX isto the l€eft of
WEIGHT on the COLUMN statement, the compute block for SEX is executed before the
compute block for WEIGHT.

proc report ;
colum regi on sex weight;

endconp;

Although it would make no difference to the processing of the step, | would reorder the code to
place the compute blocks in the order that they will be processed. | would change the step as
follows:

proc report ;
colum region sex weight;

endconp;

Compute blocks that are defined with BEFORE or AFTER on the COMPUTE statement are
executed at the time that the specified event takes place. When BEFORE or AFTER appears on
the COMPUTE statement and there is no report item, the compute block is executed only once—
before or after the report.

Including a BEFORE or AFTER on a compute statement is sufficient to generate arow in the
computed summary information during the setup phase. That report row may or may not be
written out to the final report, depending on the BREAK and RBREAK specifications. In either
case, as the report rows are processed during the report row phase, the compute block is executed
asits associated report row is processed.

The COMPUTE BEFORE statement

conput e before;

generates what will be the first row in the computed summary information. The COMPUTE
AFTER statement

conpute after;

generates the last row in the computed summary information and would be the last compute block
to execute.

54 Carpenter’s Complete Guide to the SAS REPORT Procedure

When you have areport item that is a grouping or ordering variable, you can specify the
COMPUTE statement with either the BEFORE or AFTER options and the report item. This
allows you to execute the compute block when values of the grouping variable change. The
processing opportunities are roughly similar to FIRST. and LAST. processing in the DATA step.
The following COMPUTE statement sets up a compute block that is executed just before each
new value of REGION.

conput e before region;

Itisnot at all unusual to have compute blocks that specify both the BEFORE and AFTER options
in the same PROC REPORT step. Compute blocks that execute before the report or group are
very useful for initializing variables, whereas compute blocks that execute after the report or
group are more generally used for summaries.

Using a compute block with a BEFORE or AFTER option does not require a corresponding
BREAK or RBREAK statement. However, when both are present in the same step, the compute
block and its corresponding BREAK or RBREAK statement share a common row in the
computed summary information. Remember that the compute block itself does not transfer
information to the report (unlessit contains a LINE statement). The compute block can be used to
modify information on the computed summary information, and if there is a corresponding
BREAK or RBREAK statement with a SUMMARIZE option, then that information can also be
written to the final report.

MORE INFORMATION
Compute block timing is of specia interest and is discussed further in Section 7.1. The BREAK
and RBREAK statements are introduced in Chapter 3, “ Creating Breaks.”

SEE ALSO
Chapman (2002) describes the process of events.

2.8 Chapter Exercises

1. The datatable SASHELP.ORSALES contains sales data from aretail outdoor sports clothing
and equipment store. Generate a report that lists total PROFIT for each YEAR. Apply the
DOLLAR. format to the total PROFIT.

2. Building on the solution for Exercise 1:
a. List the profit for each PRODUCT_LINE as asubgroup of YEAR.
b. Repeat with PRODUCT_LINE asan ACROSS variable.

3. Building on the solution for Exercise 2a, add the following to the report:
= Specify text for at least one column.

= Usethe SPLIT= option.
= Usethe LINE statement to create a break after each year.

Chapter 2: PROC REPORT: An Introduction 55

= Create auser-defined format that redisplays the product line “ Sports’ to “ Sports
Equipment”.

= Add aline of text after the report using the LINE statement.

4. The following step contains no typos and all the variables exist; why will it fail?

proc report data=sashel p.cl ass nowd;
colum age sex, hei ght;

define age / group;

defi ne sex /across;

define hei ght/display;

run;

5. We would like to create a numeric counter (CNT) for each age group, and then we want to
display the counter along with the age group. We are expecting the following code to result in
atable with one row per age group. What goes wrong and how can it be fixed?

proc sort data=sashel p. cl ass out =cl 1,
by age;
run;

data cl ass;

set cl1;

by age;

if first.age then cnt+1;
run;

title 'Count the Age G oups';
proc report data=class nowd;
colum c¢nt age sex, hei ght;
define cnt / order;

define age / group;

defi ne sex /across;

defi ne hei ght/anal ysis nean;
run;

56 Carpenter’s Complete Guide to the SAS REPORT Procedure

Chapter 3

Creating Breaks

3.1
3.2

3.3

3.4

Generating Breaks Using BREAK and RBREAK 57
BREAK Statement 59

3.2.1 Skipping a Line between Groups 59

3.2.2 Summarizing across a Group 61

3.2.3 Suppressing the Summarization Label 65

3.2.4 Generating a Page for Each Group Level 67

3.2.5 Combining Summaries with Detail Reports 68
RBREAK Statement 69

3.3.1 Using RBREAK in a Detail Report 69

3.3.2 Using RBREAK with BREAK in a Detail Report 70
3.3.3 Using RBREAK and BREAK in a Summary Report 71
Chapter Exercises 73

3.1 Generating Breaks Using BREAK and RBREAK

It is often advantageous to provide additional information at specific locations within the report.
Compute blocks (Section 2.6) can be used in some circumstances. However, when you want to
summarize across the entire report or across groups within areport, the BREAK and RBREAK
statements can be especially useful. The syntax of these statementsis as follows:

break | ocation break-variabl e</ option(s)>;

rbreak location </ option(s)>;

58 Carpenter’s Complete Guide to the SAS REPORT Procedure

location

The BREAK and RBREAK statements are used to specify events, and the location of
each event isindicated with either BEFORE or AFTER.

break-variable

This report item indicates for which group the summary will take place. It generally has a
usage of GROUP.

options

Several appearance options can appear on these two statements as well. Some of these
include the following:

PAGE starts a new page after the last break line summary.

SUMMARIZE calculates an across group or across report. Summary lines are
written to the report only when this option is present.

The following options are available only on the BREAK statement:

SKIP skips aline after the break (LISTING destination).

SUPPRESS suppresses the printing of the value of the grouping variable and, in the
LISTING destination, suppresses any overlining and underlining around the
grouping variable as well.

When a summary lineis requested (through the SUMMARIZE option), numeric variables with
the define type of ANALY SIS are summarized. Thisisimportant because your report might
include numeric variables such as DATE or AGE with ausage of DISPLAY that are not to be
summarized.

Y ou can specify multiple BREAK and RBREAK statements for a given PROC REPORT step,
and the order of the statements does not change the appearance of the report or the timing of the
execution of any compute blocks.

When you create a break with either the BREAK or RBREAK statement, you must specify when
the break isto take place. The break is event-specific, and you specify the event location as being
before or after the event by using either BEFORE or AFTER as the target location. The event can
be the start or end of the entire report (RBREAK) or simply when a grouping variable changes
values (BREAK).

The RBREAK statement summarizes across the entire report, and therefore its result appears at
either the top of the report (BEFORE) or at the end of the report (AFTER). On the BREAK
statement, avariable, usually agrouping variable, is specified in addition to the location
specification, and the summaries appear before or after the groups of this variable.

Chapter 3: Creating Breaks 59

A BREAK or RBREAK statement can generate more than one row in the table, depending on the
options used with the statement. Here is the order in which these options are applied when they

are present:
Order Actions Options Book Sections
1 Overlining OL and DOL 4.2 (LISTING only)
2 Summarization SUMMARIZE 3.3.2
3 Underlining UL and DUL 4.2 (LISTING only)
4 Skipping lines SKIP 3.2.1 (LISTING only)
5 New page PAGE 3.24

MORE INFORMATION
The BEFORE and AFTER locations are also used with compute blocks and are first discussed in
Section 2.6.

A number of additional BREAK and RBREAK statement options that are only used with the ODS
LISTING destination are discussed in Chapter 4, “Only in the LISTING Destination.” For reports
explicitly controlled by ODS, the STY LE= option can be used on these statements to override the
ODS style characteristics (See Sections 8.1 and 8.2).

SEE ALSO
SAS Technical Report P-258 (1993, p. 219) discusses the order of break line events. Burlew
(2005, pp. 26-41) includes several examples that use the BREAK and RBREAK statements.

3.2 BREAK Statement

The BREAK statement is used to create breaks and summaries within the report, either before or
after specific changesin some grouping variable. That grouping variable appears on the BREAK
statement and must be specified as such on the DEFINE statement.

The PROC REPORT step rolls up or summarizes on the specified groups. However, if the
COLUMN statement also contains a variable with a define type of DISPLAY , the summarizations
do not take place and a detail report will result. Thisis not always bad, because although the roll-
ups are not displayed, the BREAK statement can still be used (see Section 3.3.2).

3.2.1 Skipping a Line between Groups

Inthe LISTING destination, one of the simplest actions of the BREAK statement isfor it to insert
ablank line between groups. In the following example, the SKIP option is used with alocation of
AFTER so that the break (and therefore the blank line) follows each group (REGION).

60 Carpenter’s Complete Guide to the SAS REPORT Procedure

* Creating Breaks;

titlel 'Creating Breaks in the Report';
title2 '"Using BREAK to SKIP a Space';
proc report data=rptdata.clinics
(where=(region in("'1" "2

"4)))

itself created any summary output.

which isdiscussed in Section 3.2.2.

nowd;
colum region sex wt, (n nmean);
define region / group fornmat=%6.;
define sex / group format=$6. ' Gender';
define wt / anal ysi s;
break after region/skip;
run;
Creating Breaks in the Report
Usi ng BREAK to SKIP a Space
wei ght in pounds
region Gender n mean The BREAK statement has
1 M 4 195 inserted a blank line after each
summary group, but it has not
2 F 6 109. 66667 :
M 4 105 Group summaries are created
using the SUMMARIZE option,
3 F 5 127.8
M 5 163.8
4 F 4 143

For ODS destinations other than LISTING, the SKIP option isignored. Instead, these destinations
emphasize the summary line by presenting it in adifferent style (Data Emphasis is the default
emphasis styl€). The same report generated through the PDF destination does not show the blank
lines, because PDF ignores the SKI1P option.

weight in
pounds
region | Gender | n mean
1 M 4 195
2 F 6 | 109.66667
M 4 105
3 F 5 127.8
M 5 163.8
4 F 4 143
M 10 165.6

Creating Breaks in the Report
Using BREAK to SKIP a Space

Destination: PDF

Style: PRINTER

The PDF destination does not
support the SKIP option;
consequently, other techniquesare
needed if you want to separate
groupswith a blank line.

Chapter 3: Creating Breaks 61

MORE INFORMATION

For destinations that do not support the SKIP option, you can also skip or insert blank lines
through the use of the compute block (see Section 2.6). More options and techniques that apply
only to the LISTING destination are discussed in Chapter 4, and the SKIP option specifically in
Section 4.2.

3.2.2 Summarizing across a Group

Usually we would like to summarize across groups. Thisis one of the primary purposes of the
BREAK statement, and it is accomplished using the SUMMARIZE statement option.

* Creating Breaks;
titlel 'Creating Breaks in the Report’;
title2 'Summarizing Wth BREAK ;
proc report data=rptdata.clinics
(where=(region in('1" "2" '3 "'"4")))
nowd;
colum region sex w, (n nean);
define region / group format=$6.;

define sex / group format=$6. ' Gender"';
define wt / anal ysi s;
break after region / sumuari ze;
run;
geat ing Br 83\!’(tshi ER:;& Report Creating Breaks in the Report
unmari zi n . . - =
g Summarizing With BREAK
wei ght in pounds
regi on Gender n mean weight in
1 M 4 195 pounds
1 4 195 oton | Gender
5 = 6 109. 66667 region nder | n mean
M 4 105 1 M 4 195
2 10 107.8] P 195
3 F 5 127.8
M 5 163. 8 2 F 6| 109.66667
3 10 145.8 M { 105
4 F 4 143
M 10 165. 6 2 o] 1078
4 14 159. 14286 3 F 5 127.8
M 5 163.8
For destinations other than LISTING, the Data 3 10 1458
Emphasis style attribute is used on the summary 4 F 4 143
lines. In the RTF tableto theright, the summary -
Iin6 A R al M 10 165.6
appear in italics.
4 14| 15914285

Destination: RTF Style: RTF

62 Carpenter’s Complete Guide to the SAS REPORT Procedure

Notice that by itself the SUMMARIZE option does not create any visual separation between the
summary and the next group. When the SUMMARIZE and SKIP options are used in conjunction
with each other in the LISTING destination, the report becomes much easier to read.

* Creating Breaks;
titlel 'Creating Breaks in the Report';
title2 'Summarizi ng and Ski pping Wth BREAK ;
proc report data=rptdata.clinics
(where=(region in("1" '2" "3 '4")))
nowd;
colum region sex w, (n nmean);
define region / group format=%$6.;

define sex / group format=$6. ' Gender';
define wt / anal ysi s;
break after region / summarize skip;
run;
Creating Breaks in the Report
Sunmari zi ng and Ski ppi ng Wth BREAK
wei ght in pounds
regi on GCender n mean
1 M 4 195 The summary line @ appears after
1 4 195 the group. The SK 1P option creates
ablank line ®. By default, the
2 F 6 109.66667 SUMMARIZE option restatesthe
M 4 105 current value of the grouping
2 10 107.8 © variable ©. The value of the group
(2] variable can be suppressed (see
3 F 5 127.8 Section 3.2.3).
M 5 163. 8
3 10 145. 8
4 F 4 143
M 10 165. 6
4 © 14 159. 14286

The order of the BREAK statement options does not make a difference, and for that matter one
could issue two separate BREAK statements, each with one of the options. The BREAK
statement used in this example

break after region / summarize skip;

could be rewritten as

break after region / sumari ze;
break after region / skip;

Chapter 3: Creating Breaks 63

Essentially the same report could be generated by using the SKIP option before the summary.

* Creat

i ng Breaks;

titlel 'Creating Breaks in the Report';
title2 'Summarizi ng and Ski pping Wth BREAK ;

title3 'Using Two BREAK Statenents';
proc report data=rptdata.clinics

col um
defi ne

(where=(region in('1" "2

nowd;

define wt / anal
break before region / skip; ®

region sex wt, (n nean);
region / group format=$6.;
define sex / group formt=$6.

ysi s;

'3 a))

' Gender' ;

break after region /sumuarize; ©
run;
Creating Breaks in the Report
Sunmari zi ng and Ski ppi ng Wth BREAK
Usi ng Two BREAK Statenents
wei ght in pounds
regi on Gender n mean
o O Theblank line for each group
M 4 195 now appear s before the group. The
4 195 © summary row @ still appears after
the group.
2 F 6 109. 66667
M 4 105
2 10 107.8
3 F 5 127.8
M 5 163. 8
3 10 145. 8
4 F 4 143
M 10 165. 6
4 14 159. 14286

The group summary line can a so be placed before the group.

* Creatin

g Breaks;

titlel 'Creating Breaks in the Report';
title2 'Using BEFORE Wth BREAK ;
proc report data=rptdata.clinics
(where=(region in('1" '2" '3

col umm
defi ne
defi ne
defi ne

nowd;
region sex w, (

region / group format=$6.;

n mean);

sex / group format=%$6.
wt / anal ysi s;
break after region / skip; @

break before region / sunmmari ze;

run,

' Gender' ;

7]

"4)))

64 Carpenter’s Complete Guide to the SAS REPORT Procedure

Creating Breaks in the Report
Usi ng BEFORE Wt h BREAK
wei ght in pounds
regi on Gender n mean
1 4 195
1 M 4 195
(6]
2 10 107.8
2 F 6 109.66667
M 4 105 @
3 10 145.8
3 F 5 127.8
M 5 163.8
4 14 159. 14286
4 F 4 143
M 10 165. 6

Aswas mentioned earlier, the SKIP option isfor use in the LISTING destination and isignored
when applied to other ODS destinations. Thisis demonstrated in the following example, where
the first example from this section is repeated and routed to the HTML destination ©.

ods html file="&path/results/ch3_2 2d.htm"; ©

* Creating Breaks;
titlel 'Creating Breaks in the Report';

title2 'Sunmmarizing Wth BREAK ;

proc report data=rptdata.clinics

(where=(region in("1" '2" "3 '4")))

col um
define
define
defi ne

nowd;

region sex wt, (n nean);

region / group f
sex / group f
w / anal ysi

or mat =$6. ;
ormat =$6. ' Gender';
S;

break after region / summarize skip; ©

run;

ods htnml cl ose;

An examination of the HTML report (CH3_2 2D.HTML) shows that not only has the SKIP
option @ not been used, but the summary line has a different appearance.

Chapter 3: Creating Breaks 65

Creating Breaks in the Report The SKI1P option has been ignored and the
Summarizing With BREAK summary lines have been written in italics.
Italicsis one of the appearance
weight in pounds characteristics of the Data Emphasis style
attribute.
region Gender n mean
1 M 4 195
1 4 195
2 F 6 109 66667
1 4 105
2 10 107.8
3 F 5 127.8
1 5 163.8
3 10 145.8
4 F 4 143
1 10 165.6
4 14 150, 14288

Destination: HTML Style: DEFAULT

MORE INFORMATION
The value of the group variable is repeated for the summary line. This repeated label can be
suppressed using the SUPPRESS option (see Section 3.2.3).

SEE ALSO
SAS Technical Report p-258 (1993, p. 136) introduces the SUMMARIZE option.

3.2.3

Suppressing the Summarization Label

When you use the SUMMARIZE option to request the printing of a summary, the value of the
group variable is repeated for the summary line. Although this can be especially useful for groups
with alarge number of values, often we want to remove this repeated value. In the reports
generated in Section 3.2.2, these repeated values are distracting. They can be eliminated through
the use of the SUPPRESS option ©.

66 Carpenter’s Complete Guide to the SAS REPORT Procedure

* Creating Breaks;

titlel 'Creating Breaks in the Report';
title2 'Suppressing the Goup Value';

proc report data=rptdata.clinics
(where=(region in("'1
nowd;
colum region sex wt, (n nmean);
define region / group fornmat=%6.;

define sex / group format=$6. ' Gender';

define wt / anal ysi s;

break after region / skip summarize suppress;

run;

"4)))

Creating Breaks in the Report
Suppressi ng the Group Val ue

wei ght in pounds

regi on Gender n mean
1 M 4 195
(1] 4 195
2 F 6 109.66667
M 4 105

10 107.8

3 F 5 127.8
M 5 163.8

10 145.8

4 F 4 143
M 10 165. 6

14 159. 14286

©® Thegroup valuefor the
summary line has been
suppressed and isno longer
shown.

For the LISTING destination shown here, the summary lineis still not as distinct from the other
values as we might wish it to be. There are several underlining options (see Section 4.4) that can
be used to help with thisissue in the LISTING destination. Most other ODS destinations, even
when used with the simpler styles, attempt to distinguish the summary group automatically. The
following example shows the same report generated using the HTML destination and the

MINIMAL style.

ods htm file="&path\Results\ch3_2_3b.htm"

styl e=mi ni mal ;

Chapter 3: Creating Breaks 67

Creating Brealcs in the Eeport
Suppressing the Group Value
weight n pounds
region | Gender | n mean
1 i 4 195
4 195
2 F 6| 10966667
i) 4 105
10 1078
3 F 5 1278
i 3 1638
10 1458
4 F 4 143
i} 10 1656
14 | 15914286

Destination: HTML

Style: MINIMAL

3.2.4

Generating a Page for Each Group Level

When the PAGE option is used on the BREAK statement, a new page is generated for each level
of the grouping variable. Here is the example from Section 3.2.3 with the PAGE option on the

BREAK statement.

titlel 'Creating Breaks in the Report';
title2 ' One PAGE per G oup';
proc report data=rptdata.clinics

col um
defi ne
define

define wt
break after region / skip sunmarize suppress page;

run;

(where=(region in("1" "2" "3 "'4")))

nowd;

region sex wt, (n nean);
region / group format=$6.;
sex

/ group format=$6. ' Gender';
/ anal ysi s;

The same report is generated; however, this time each region appears on its own page. (Only the
page for REGION=3 is shown here))

68 Carpenter’s Complete Guide to the SAS REPORT Procedure

Creating Breaks in the Report
One PAGE per G oup

wei ght in pounds

regi on Gender n mean
3 F 5 127.8
M 5 163. 8
10 145.8
SEE ALSO

The PAGE option isdiscussed in SAS Technical Report P-258 (1993, pp. 93-95, 189).
Humphreys (2006) uses the PAGE option on the BREAK statement.

3.2.5

Combining Summaries with Detail Reports

Sometimes you will need to create areport that contains both detail-level and summary-level
information. Y ou do this by taking advantage of the fact that PROC REPORT cannot form groups
if thereisalso adisplay variable.

In the following example, REGION has a define type of GROUP; however, because LNAME isa
display variable, the regions are not collapsed. Instead a BREAK statement has been added to
form summaries for REGION.

titlel 'Creating Breaks in the Report';
title2 'Detail Report Wth BREAK ;
proc report data=rptdata.clinics
(where=(region in('2" "3)))
nowd;
colum region | name wt;
define region / group wi dth=6;
define I name / display;
define wt / mean;

break after region / summarize skip;
run;

Creating Breaks in the Report
Detail Report Wth BREAK

wei ght Thereport contains
region last nanme in pounds individual weightsaswell as
2 Maxwel | 105 the aver age weight for the
Little 109 region.
Long 115
Har bor 105 This mixture of report types
Har bor 105 isgenerated by using both the
Haddock 105 GROUP and DISPLAY
Saunder s 109 definetypes.
I ngram 115
Leader 105
At wood 105

(continued)

Chapter 3: Creating Breaks 69

(continued)
2 107.8
3 Smith 162
Jones 105
Mar ksman 112
Candl e 195
Mast er s 155
Henry 162
St ubs 105
Upst on 112
Panda 195
Her bal 155
3 145. 8

We get the best of both worlds!

3.3 RBREAK Statement

When you want to summarize across the entire report, you use the RBREAK statement. The
syntax and options for this statement are similar to those of the BREAK statement, except, of
course, that there is no grouping variable.

3.3.1 Using RBREAK in a Detail Report

The RBREAK statement enables us to summarize across the entire report. The following PROC
REPORT step places this summary before the report.

ods htm file="&path\results\ch3_3_1.htm"
styl e=st at doc;

titlel 'Creating Breaks in the Report';
title2 'Summarizing After the Detail REPORT ;
proc report data=rptdata.clinics
(where=(region in('1 "2'" '3 "'"4")))
nowd;

colum | name fnane sex dob wt, (n mean) (1}

define | nane / order;

define fname / order;

defi ne sex / group format=$6. ' Gender';

define dob / display 'Birthday'; @

define wt / anal ysis format=5.1;

rbreak before / summarize; ©

run;

ods htnml cl ose;

70 Carpenter’s Complete Guide to the SAS REPORT Procedure

© Statistics have been requested for adetail report. Because the mean of asingle observation is
that individual value, the mean only comes into play on the summary line.

® Although DOB is numeric, it has adefine type of DISPLAY and is not summarized. Thisis
important, because the average birthday would have little meaning.

The summary line shows the total number of patients and the average weight at the top
(BEFORE) of the report.

Creating Breaks in the Report
Summarizing After the Detail REPORT
weight in pounds
last name first name Gender Birthday n mean
38.0 1459
Adams bl ary F 12410551 1.0 155.0
Atwood Teddy t 14FEBS0 1.0 105.0
Baran Roger Wl 29ANGT 1.0 160.0
Batell Ml ary F 12JAMNI7 1.0 155.0
Candle =id h 150CT17 1.0 195.0
o e iz hA O 1 IMET 110 122 0

Destination: HTML Style: STATDOC

Notice that the summary line has chosen the correct type of summary for each statistic (SUM for
N and MEAN for the mean WT).

3.3.2 Using RBREAK with BREAK in a Detail Report

When the report contains one or more grouping variables, you can use a combination of the
BREAK and RBREAK statementsto create summaries for both the individual groups as well as
across the entire report.

Because the following COLUMN statement contains both grouping variables (REGION and
SEX) as well as nongrouping variables (LNAME and FNAME), the report is not rolled up to the
group level. Instead a detailed report is generated. However, because there is a grouping variable,
the BREAK statement can now be used as well.

ods htm file="&path\results\ch3_3 2. htnm"
styl e=bri ck;

HTML using STYLE=statdoctitlel 'Creating Breaks in the Report';
title2 'Summarizing Goups in a Detail REPORT;
proc report data=rptdata.clinics

Chapter 3: Creating Breaks 71

(where=(region in('1" '2" '3

nowd;
colum region | name fnane sex wt, (n nean);
define region / group 'Region' format=$6.; ©

"4)))

define Inane / order; @

define fnane / order; @

define sex / group format=$6. ' Gender'; @
define w / anal ysis format=5.1;

break after region / summarize suppress; ©

rbreak before / sunmari ze;
run;

ods htnml close;

© Grouping variables are defined. However, because the presence of nongrouping variables @
prevents the summarization of observationsinto individual groups, the report is still at the

detail level.

© Although individual detail rows are not collapsed, the BREAK statement can be used, and it

generates group summaries for each region.

Creating Breaks in the Report

Summarizing Groups in a Detail REPORT

Region last name first name Gender

Destination: HTML Style: BRICK

weight in pounds

n mean

This combination of BREAK and RBREAK statements along with a detail report allows usto
generate a report with group summaries, even though the individual rows of the report itself are at

the detail level.

3.3.3

Using RBREAK and BREAK in a Summary Report

The BREAK and RBREAK statements are commonly used together in reports that summarize
across observations. When grouping variables are used without the presence of nongrouping
variables, the individual detail rows are collapsed into summaries.

72 Carpenter’s Complete Guide to the SASREPORT Procedure

In the following step there are two grouping variables (REGION and SEX), and asummary line has
been requested through the use of the BREAK statement after each group formed by REGION.

titlel 'Creating Breaks in the Report';
title2 'Summarizing After the REPORT ;
proc report data=rptdata.clinics
(where=(region in("1" '2" "3 '4")))
nowd;
colum region sex w, (n nean);
define region / group format=3$6.;
define sex / group format=$6. ' Gender';
define wt / anal ysi s;
define mean / format=5.1; ©
break after region / skip summarize suppress; @
rbreak after / summarize; ©
run;

O A format is attached to the column containing the mean values.

® The BREAK statement generates a summary line after each region. The SKIP option only
has meaning in the LISTING destination, which has been used here.

© The summary across all observationsis generated by the RBREAK statement.

Creating Breaks in the Report
Summari zing After the REPORT

wei ght in pounds

regi on Gender n rmean O
1 M 4 195.0
4 195.0
Theorder of the BREAK @
2 F 6 109.7 and RBREAK © statements
M 4 105.0

isnot important. The SKIP
10 107.8 @ option on the BREAK
statement will work only for

3 F 5 127.8 the LISTING destination.
M 5 163.8
10 145.8
4 F 4 143.0
M 10 165.6
14 159.1
38 145.9 ©

Chapter 3: Creating Breaks 73

3.4 Chapter Exercises

1. The datatable SASHELP.ORSALES contains sales data from a retail outdoor sports clothing
and equipment store. Create a report that shows total PROFIT for each PRODUCT _LINE
within each year. Y ou can build on the results of Exercise 3 in Chapter 2.

Using the BREAK and RBREAK statements:

Additionally summarize across product lines and across years.

Experiment with the SUPPRESS, SUMMARIZE, and SKIP options.

2. Thedatatable SASHELP.RETAIL contains quarterly sales information. For each YEAR use
the quarterly sales to calculate the following sales statistics:

number of quarters (why might we need this statistic, when there are aways four quarters
inayear?)

mean quarterly sales

standard deviation of the quarterly sales

74 Carpenter’s Complete Guide to the SASREPORT Procedure

Chapter 4

Only in the LISTING Destination

4.1 Using the HEADLINE and HEADSKIP Options 76
4.2 Blank Lines, Overlines, and Underlines 78
4.3 Repeat Characters 79
4.3.1 Adding Repeated Characters to Spanning Headers 80
4.3.2 Repeat Characters with the SPLIT= Option 82
4.4 PROC REPORT Statement Options 83
4.4.1 Creating Boxes on the Report 83
4.4.2 Controlling the Centering of the Report 85
4.4.3 Adjusting the Width of Numeric and Computed Columns 85
4.4.4 Creating Multiple Panels on a Page 86
4.4.5 Using the PSPACE= Option 87
4.4.6 Controlling the Size of the Page 88
4.4.7 Using the FORMCHAR Option 89
4.4.8 Wrapping Data Lines 91
4.5 Other DEFINE Statement Options 92
4.5.1 Specifying the Column Width 93
4.5.2 Using the FLOW Option to Wrap Text 93
4.5.3 Adding Spaces between Columns 94
4.6 Chapter Exercises 96

76 Carpenter’'s Complete Guide to the SAS REPORT Procedure

Of all the ODS destinations, LISTING is unique. Not only was thisthe first (and effectively only)
destination before the development of the Output Delivery System; it was aso, and till is, atext-
only destination. This means that ODS features such as styles, fonts, and colors do not apply.
Because of these limitations of the LISTING destination, many users now generate their reports
using other destinations. However, the LISTING destination is till useful.

To help provide some control over the appearance of reports that use the LISTING destination, a
number of options and techniques are available for various statements within the PROC REPORT
step. These options, which can be used only with the LISTING destination, are discussed in this
chapter.

MORE INFORMATION

It is often useful to simulate, in other destinations, some of the exclusive LISTING options
described in this chapter. Fortunately, alternatives enable you to do this. These are discussed
throughout the book and summarized in Section 10.4.

SEE ALSO

A number of the options and techniques demonstrated in this chapter are also discussed in
examples by Y oung (2003) and Flavin (1996). For examples of how exclusive LISTING options
can be simulated in other destinations, see

http://support.sas.com/rnd/base/topi cs/templ ateFA Q/repoption.html

Burlew (2005, p. 190) lists options that are used strictly with the LISTING destination.

4.1 Using the HEADLINE and HEADSKIP Options

The HEADLINE and HEADSKIP options provide a separation between the header portion of the
report and the report itself. These options can be used separately or in conjunction with each
other. Used in the PROC REPORT statement, they result in the addition of an underline and a
space below the column header text.

* Using Headline and Headski p;
titlel "Only in LISTING ;
title2 '"Wth HEADLI NE and HEADSKI P' ;
proc report data=rptdata.clinics
nowd headl i ne headski p;
colum region sex w;
define region / group;

defi ne sex /| across;
define wt / anal ysis nean format=6. 2;
run;

In the report, the underline @ and the space ® that separates the underline from the body of the
table are formed by the HEADLINE and HEADSKIP options.

Chapter 4: Only in the LISTING Destination 77

Only
With

re
gi
on

in LISTING

HEADLINE and HEADSKIP

pati

F

M

weight

in

pounds

o

O©COoONOOODWN = =

PO DbOON-

N oA -

PO W *xODDMD

o -

195.
172.
107.
145.
159.
157.
198.
.00
160.
187.

151

00
33
80
80
14
75
00

00
80

oQ

The HEADLINE option gener ates
an underline @ below the header,
and HEADSKIP adds a blank row
(2}

Theasterisk that appear sinstead
of the count of malesin region 4
indicatesthat the count was
greater than a single digit (see
Section 2.2.4).

In the previous table, the default font, SAS Monospace, has been used, and the line has been
formed using a specia character that belongs to that specific font. Converting the font from SAS
Monospace to some other font, such as Courier New, as has been done in the following table,
causes the charactersin the line to change into characters that no longer form aline.

Only in LISTING
W th HEADLI NE and HEADSKI P

re wei ght
gi pati in
on F M pounds
FEFFFEFfffffefrefef
1 . 4 195.00
10 2 4 172.33
2 6 4 107.80
3 5 5 145.80
4 4 * 159, 14
5 5 3 157.75
6 4 6 198.00
7 . 4 151.00
8 4 . 160.00
9 2 8 187.80

Theunderlineisformed by a character uniqueto
thefont SAS Monospace, and does not convert
well to other fonts.

One of the limitations of the use of the HEADLINE option is thislack of portability.

MORE INFORMATION

If you need to change the font, but also need to show lines correctly, you can specify the character
used to create the line by using the FORMCHAR option (see Section 4.4.7). The example in
Section 7.8.2 simulates the HEADLINE and HEADSKIP options by using LINE statements.

78 Carpenter’'s Complete Guide to the SAS REPORT Procedure

4.2 Blank Lines, Overlines, and Underlines

Inthe BREAK and RBREAK statements, a number of options are available to produce blank
lines, overlines, and underlines. These include the following:

oL
DOL
UL
DUL
SKIP

inserts an overline.

inserts a double overline.
inserts an underline.
inserts a double underline.
skips aline after the break.

In the following example, a double overline (DOL) is inserted before the report summary
generated by the RBREAK statement.

* Options with BREAK and RBREAK;

titlel "Only in LISTING ;

title2 'RBREAK with Double Overline (DQL)';
proc report data=rptdata.clinics nowd;

col um

region sex w;
define region / group;
define sex

/| across;
/ anal ysis nean format=6. 2;

after / summarize dol;

RBREAK wi t h Doubl e Overline (DQOL)

define wt

r br eak

run;

Only in LISTING
re wei ght
gi pati in
on F M pounds
1 .4 195.00
10 2 4 172.33
2 6 4 107.80
3 5 5 145.80
4 4 * 159.14
5 5 3 157.75
6 4 6 198.00
7 . 4 151.00
8 4 . 160.00
9 2 8 187.80
* * 161.78

The LISTING destination does not automatically
scale the width of a column to accommodate a
value. Consequently, wherethe patient count
exceeds 9 (the sums across regions, aswell as for
males within region 4), an asterisk (*) is
displayed instead of the value. This can be
corrected by using a format (see Section 2.4.2) or
by specifying a column width (see Section 4.4).

Unlike the example in Section 4.1, this example forms the double overline and double underline
with the equal sign (=). Consequently, if you want to convert the font to something other than
SAS Monospace, it should convert correctly. The previous table has been displayed in Courier.

Chapter 4: Only in the LISTING Destination 79

MORE INFORMATION
The SKIP option in the BREAK statement is introduced and discussed in Section 3.1.

SEE ALSO
The OL, DOL, UL, and DUL options are discussed in SAS Technical Report P-258 (1993, pp.
138-141).

4.3 Repeat Characters

When you place text as a header, it can be helpful to clarify the specific columns to which that
header isto apply. You can do this easily if the text fully spans the header space. However, you
usually don’t know exactly how much space is needed, and filling the space manually is awkward.
Fortunately, you can use repeat charactersto fill any extra space automatically. To take advantage
of repeat characters, use one of the following characters as the first and last characters in the text

string.
- (Hyphen, or minus sign)
= (Equal)
_ (Underscore)
. (Period)
* (Adterisk)
+ (Plus)
Some of the documentation also incorrectly (at least for SAS®9) indicates that the following can
also be used as repeat characters.
(Colon)

\ (Backslash) If used, the\ is stripped off.

The greater than (>) and less than (<) characters can aso be used in pairs as spanning headers, and
they can be used in either order:

< > > <

For destinations other than LISTING, repeat characters are generally ignored or, in SAS 9.2 and
later, removed. The repeat character pairs < > and > < are not removed in other destinations, as
they can also be used with HTML tags (see Section 8.5.1).

SEE ALSO
SAS Technical Report P-258 (1993, pp. 66-69) has several examples that use repeated characters.

80 Carpenter’'s Complete Guide to the SAS REPORT Procedure

4.3.1 Adding Repeated Characters to Spanning Headers

Spanning headers are text strings that span multiple columns. These headers are designated as
guoted strings in the COLUMN statement. Y ou can use repeated characters to fill the available
space on spanning headers by making one of the special characters both the first and last character
in that string. In the following example, hyphens are used to provide extended fill lines before and
after the text.

* Repeated Text headers in the COLUW statenent;
titlel "Only in LISTING ;
title2 'Repeated Text';
proc report data=rptdata.clinics nowd;
colum region sex ("-w(lb)-" wt,(n nmean));
define region / group;

defi ne sex |/ across;
define wt / anal ysi s;
run;

In the following table, notice that the characters immediately after and before the quotes (in this
example the characters are hyphens or minus signs) are repeated as many times as necessary to fill
the full space allocated to the columns.

ggégaigdlﬁglim Thistable actually has two spanning

headers. We defined thefirst onein the

re wt (1b) CO_LU_MN statement. Thesecqnd,

gi pati weight in pounds whl_ch |sthe_label_ of theanalyss

on F M n mean variable (weight in pounds), is produced

1 .4 4 195 automatically to span the columns

10 2 4 6 172.33333 containing the nested statistics.

2 6 4 10 107.8

3 5 5 10 145.8

4 4 * 14 159.14286

5 5 3 8 157.75

6 4 6 10 198

7 . 4 4 151

8 4 . 4 160

9 2 8 10 187.8

Aswas discussed in Section 4.1, the repeated hyphen is automatically converted to a repeated
character that forms aline, but this character does not translate well into fonts other than SAS
Monospace. Fortunately, the other repeat characters translate much better when you change fonts.
The following example uses the equal sign (=) asthe repeat character.

Repeat characters are not restricted to the COLUMN statement. Y ou can also use the repeat
character syntax in a DEFINE statement, where they have the advantage of replacing the
variable' slabel.

* Repeated Text headers in the DEFINE statemnent;
titlel "Only in LISTING ;
title2 'Repeated Text in the DEFI NE Statenent';
proc report data=rptdata.clinics nowd;
colum region sex ('Patient Weight' wt,(n nean));
define region / group;
defi ne sex / across ' Sex';

Chapter 4: Only in the LISTING Destination 81

define w / analysis '"=(lb)=";
run,

Only in LISTING
Repeated Text in the DEFI NE Statenent

re Pati ent Wi ght

gi Sex (Ib)

on F M n mean

10 2 j g 172, 33;22 Herethetext on t_he DEFINE statement
> 6 4 10 107. 8 becomes a spanning header aS|_t

3 5 5 10 145. 8 rep!acesth_elabel for an analyss. '
4 a4 * 14 159 14286 variable with morethan one statistic.
5 5 3 8 157. 75

6 4 6 10 198

7 . 4 4 151

8 4 . 4 160

9 2 8 10 187.8

Y ou can also use < and > together and have them repeat independently. The following example
replaces the equa signsin the DEFINE statement with < and >.

* Repeated Text headers in the DEFINE statenent;
titlel "Only in LISTING ;
title2 'Repeated < and >Text in the DEFINE Statenent';
proc report data=rptdata.clinics nowd;
colum region sex ('Patient Weight' wt,(n nean));
define region / group;

defi ne sex |/ across ' Sex' ;
define wt / analysis '<(lb)>";
run;
Only in LISTING
Repeated < and >Text in the DEFINE Statenment
re Pati ent Wi ght
gi Sex <<<<<<<<(|b)>>>>>>>>
on F M n mean
1 .4 4 195
10 2 4 6 172.33333
2 6 4 10 107.8
3 5 5 10 145.8
4 4 * 14 159. 14286
5 5 3 8 157.75
6 4 6 10 198
7 .4 4 151
8 4 . 4 160
9 2 8 10 187.8

MORE INFORMATION
Repeat characters are established as part of aformat specification in the second examplein
Section 6.4.1.

82 Carpenter’'s Complete Guide to the SAS REPORT Procedure

SEE ALSO
Burlew (2005, pp. 31-34) has an example that shows spanning headers with repeat characters.

4.3.2 Repeat Characters with the SPLIT= Option

Aswas shown in Section 2.4.3, a split character can be designated to indicate the location that text
should be broken across lines of output. This option can be especially useful if you want to create
repeated text within a spanning header.

* Splitting text headers in the DEFI NE statenent;
titlel "Only in LISTING ;
title2 'Repeated Text and the SPLIT Option';
proc report data=rptdata.clinics
nowd split=*": @
colum region sex w, (n nmean);
define region / group;

defi ne sex |/ across ' Sex' ;
define wt / analysis 'Patient Wight*=(lb)="; @
run;

© The SPLIT= option designates the character that is used to determine the line split
location.

@® In thistext string, the * isused to break theline.

Only in LISTING
Repeated Text and the SPLIT Option
re Pati ent Wi ght
gi Sex (Ib)
(1m F ZA 2 migg Thistechnique allows you to create
10 2 4 6 17233333 multiple line-spanning header s from
) the DEFINE statement alone. Header
g g g 18 12; 2 text has been removed from the
4 4 * 14 159. 14286 SeLClULE G uls
5 5 3 8 157. 75
6 4 6 10 198
7 . 4 4 151
8 4 . 4 160
9 2 8 10 187.8

Chapter 4: Only in the LISTING Destination 83

Y ou can also create lines of text using only repeat characters.

* Splitting text headers in the DEFI NE statenent;

titlel "Only in LISTING ;

title2 'Text Line with ONLY Repeated Text';

proc report data=rptdata.clinics nowd split="*";
colum region sex ('Patient Weight'wt, (n nean));
define region / group;

define sex | across ' Sex';
define wt / analysis '(lb)*__';
run;

In this example, the repeat character is an underscore (). When forming lines, this character
translates well to other fonts, although it does not appear as a solid linein all fonts. The following
tableis displayed using Courier.

Only in LISTING
Text Line with ONLY Repeated Text
Pati ent Wei ght
re (Ib)
gi Sex The header for the analysisvariablein
on F M n mean this example usesthree elements: the
1 . 4 4 195 SPLIT= option on the PROC statement,
10 2 4 6 172.33333 thetext on the COLUMN statement,
2 6 4 10 107.8 and thetext on the DEFINE statement.
3 5 5 10 145.8 Thetwo text strings could have been
4 4 * 14 159. 14286 combined.
5 5 3 8 157. 75
6 4 6 10 198
7 . 4 4 151
8 4 . 4 160
9 2 8 10 187.8

MORE INFORMATION
See Section 8.6.5 for adiscussion of in-line formatting sequences that can be used to force splits
in character strings in some of the other ODS destinations.

4.4 PROC REPORT Statement Options

The PROC REPORT statement supports afairly wide variety of options. Some of these haveto do
with the layout and formatting of the report, and some of these apply only to tablesthat are
directed to the LISTING destination. The options discussed in the following sections fall into the
latter category.

4.4.1 Creating Boxes on the Report

The BOX option can be used to add boxes that surround the various portions of the text of the
report. Although the vertical lines and the juncture points work well in the Output window of the
Display Manager, these same text characters do not usualy translate well into word processing

84 Carpenter’'s Complete Guide to the SAS REPORT Procedure

documents (see Section 4.1). Thisis often true even when the same font (SAS Monospace) is used
in the document.

The following example uses the BOX option to build boxes.

* Using the BOX option;
titlel "Only in LISTING ;
title2 'Using the BOX Option';
proc report data=rptdata.clinics
nofs split="*"
box;
region sex ('Patient Weight'wt,(n nean));
region / group;

col um
define

define sex | across ' Sex';
define wt / analysis '(lb)*_ '
run;

The resulting table is displayed here using the SAS Monospace font. Even though thisis the target
font, the resulting table isugly at best when it is pasted into aword processing document. This problem
alone should be a sufficient reason for the programmer to consider alternate ODS destinations.

Only in LISTING
Using the BOX Option
Patient Weight

re (1b)
gi Sex
on F M n mean
1] 4 s e
—O0—0—0 0
10| 2| 4] 6| 172.33333
—O0—0—0 0
2 | 8| 4 10| 107.8
—O0—0—0 0
3 | 5| 5] 10| 145.8
—O0—0—0 0
4 | 4| *| 14| 159.14286
—0—0—0 0
5 | 5] 3 8| 157.75
—0—0—0 0
6 | 4| 6] 10| 198
—0—0—0 0
7| .| 4 4| 151
—0—0—0 0
8 | 4] .| 4| 160
—D0—0—0 0
9 l 2‘ 8‘ 10‘ 187.8

Y ou can use the FORM CHAR option (see Section 4.4.7) to change the characters used to form
any segment of the boxes, including the interior cornersthat are displayed here as small squares.

Chapter 4: Only in the LISTING Destination 85

4.4.2 Controlling the Centering of the Report

The CENTER/NOCENTER option can be used on the PROC REPORT statement to override (but
not change) the CENTER system option. This option enables the PROC REPORT step to generate
areport that does not follow the value stored in the system option.

Indl of the examplesin this chapter, the system option has been set to NOCENTER, as shown here:

options nocenter;

Thisoption resultsin all thetitles and tables being |eft-justified. We could have | ft the system
option at its default value, centered, but instead changed the PROC REPORT option to
NOCENTER. The code would have looked something like this:

* This option statenent sets the CENTER/ NOCENTER
* option to its default val ue;
options center;

proc report data=rptdata.clinics nocenter
Portions of the code are not shown .

Any subsequent steps, say a PROC PRINT or even another PROC REPORT, would be centered
by the system option.

4.4.3 Adjusting the Width of Numeric and Computed Columns

As can be seen in the tables for the examples in Sections such as 4.3.2, PROC REPORT does not
always pick areasonable default width for the numeric values. The COLWIDTH= option setsa
default width for numeric and computed columns.

* Using the COLW DTH opti on;
titlel "Only in LISTING ;
title2 'Using the COLW DTH Option';
proc report data=rptdata.clinics nowd
split="*" colw dt h=4;
colum region sex ('Patient Weight'wt, (n nean));
define region / group;

defi ne sex / across ' Sex';
define wt / analysis '(lb)*__";
run,;
Only in LISTING
Usi ng the COLW DTH Opti on
Pati ent Wei ght
re (1b)
g Sex
on F M n nean . .
1 . 4 4 195 Because COLWIDTH isapplied only to
10 2 4 6 172 numeric and computed columns, the
2 6 4 10 108 patient countsunder SEX arestill at a
3 5 5 10 146 width of one space
4 4 = 14 159 FECE,
5 5 3 8 158
6 4 6 10 198
7 . 4 4 151
8 4 . 4 160
9 2 8 10 188

86 Carpenter’'s Complete Guide to the SAS REPORT Procedure

The resulting table is much more compact, but has fewer significant digits for the mean.

MORE INFORMATION

This new default width can be overridden through the use of the WIDTH= option (see
Section 4.5.1) on the DEFINE statement. The FORMAT= option can also be used to specify
column width (see Section 2.4.2).

4.4.4 Creating Multiple Panels on a Page

When your report is narrow (few columns), you can sometimes save space and perhaps create a
more pleasing report by placing multiple panels on the page. This isthe approach used in the
phone book. The PANEL S= option is used to specify the maximum number of panels that you
would liketo allow. When one set of columns has been written, instead of going to the next page,
PROC REPORT checksto see if the next set of columnswill fit in the next panel.

In the following example, the report has only three columns, which creates along narrow report.
With the PANEL S= option set to 2, the report can contain twice the information on each page. In
this example, the final page contains 6 columns.

* Creating Panels;
titlel "Only in LISTING ;
title2 'Using the PANELS Option';
proc report data=rptdata.clinics nowd
split="*" colw dt h=3
panel s=2
colum | nane region w;
define I nane [/ order;
define region / display 'region';

define wt / analysis '
run;
Only in LISTING
Usi ng the PANELS Opti on
re re
gi gi
| ast nane on | ast name on
Adans 4 155 Mast er s 3 155
Adanson 8 158 Maxi m 4 179
Al exander 6 175 Maxwel | 2 105
Ant | er 6 240 Mer cy 1 195
At wood 2 105 Moon 5 160
Banner 6 175 Most 4 155
Bar on 4 160 Naber s 1 195
Bat el | 4 155 Nol an 6 187
.Portions of the table are not shown.

Chapter 4: Only in the LISTING Destination 87

MORE INFORMATION
The ODS COLUMNS= option, which is discussed in Section 8.9, can be used to produce asimilar
effect in the RTF and PDF destinations.

SEE ALSO
SAS Technical Report P-258 (1993, pp. 184, 229) discusses the PANEL S= option.

4.4.5 Using the PSPACE= Option

When you specify multiple panels you can specify the space between the panels with the

PSPA CE= option. In the example in Section 4.4.4, there are 6 spaces between the patient weight
and the last name in the second panel. Y ou might want to emphasize the two panels by increasing
the distance between them by a couple of spaces. The following example repeats that of Section
4.4.4; however, the PSPACE= option is set to 8 (increased from the default by 2).

* Expandi ng the space between panels;

titlel "Only in LISTING ;

title2 'Using the PSPACE Option';

proc report data=rptdata.clinics nowd
split="*" colw dt h=3
panel s=2 pspace=8

colum | nane region w;
define I name / order;
define region / display 'region';

define wt / analysis ' ';
run;
Only in LISTING
Usi ng the PSPACE Option
re re
gi gi
| ast nanme on |l ast name on
Adarrs 4 155 Mast er s 3 155 The space between the
Adamson 8 158 Maxi m 4 179 first three columns and
Al exander 6 175 Maxwel | 2 1 the second three has
Ant | er 6 240 Mer cy 1 195 been increased.
At wood 2 105 Moon 5 160
Banner 6 175 Most 4 155
Bar on 4 160 Naber s 1 195
Bat el | 4 155 Nol an 6 187
.Portions of the table are not shown.

SEE ALSO
Burlew (2005, p. 176) has an exampl e that uses the PSPA CE= option.

88 Carpenter’'s Complete Guide to the SAS REPORT Procedure

4.4.6 Controlling the Size of the Page

The LINESIZE= (LS=) and PAGESIZE= (PS=) system options can be overridden through the use
of the LS= and PS= options on the PROC REPORT statement. Much like the
CENTER/NOCENTER option discussed in Section 4.4.2, these options can override the
corresponding system options, but they will not change the system option settings themselves.

The following example uses these options to specify a page size of 80 columns and 30 rows. With
the reduced number of rows, the data now fills al three panels specified in the PANEL S= option.

* Changi ng the size of the page;
titlel "Only in LISTING ;
title2 "Using the PS and LS Options';
proc report data=rptdata.clinics nowd
split="*" colw dt h=3
panel s=3
| s=80 ps=30

colum | nane region w;
define I name / order;
define region / display 'region';

define wt / analysis ' ';
run;
Only in LISTING
Using the PS and LS Options
re re re
gi gi gi
| ast name on | ast name on | ast name on
Adans 4 155 Har bor 2 105 Mast er s 3 155
Adanson 8 158 2 105 Maxi m 4 179
Al exander 6 175 Hender son 5 158 Maxwel | 2 105
Ant | er 6 240 Henry 3 162 Mer cy 1 195
At wood 2 105 Her bal 3 155 Mbon 5 160
Banner 6 175 Herm t 10 177 Most 4 155
Bar on 4 160 Hol nes 10 177 Naber s 1 195
.Portions of the table are not shown.

There are two observations for the patient with the last name Harbor. Since LNAME isan
ORDER variable, each value of LNAME appears only once.

In most non-monospace destinations, the size of the page is considered to be infinite in both
length and width, and these options have no effect.

SEE ALSO
SAS Technical Report P-258 (1993) discusses the LS= (p. 183), PS= (p. 185), and the PANEL S=
(p. 184-185) options. Burlew (2005, p. 176) has an example that uses the PANEL S= option.

Chapter 4: Only in the LISTING Destination 89

4.4.7 Using the FORMCHAR Option

The characters used to form elements such as lines, corners (see Sections 4.1 and 4.4.1), boxes,
and underlines are determined by the FORMCHAR system option. This option can be overridden
through the use of the FORMCHAR option on the PROC REPORT statement. The syntax of the
use of this option is similar to that of the FORMCHAR system option.

The FORM CHAR option specifies 13 individua characters that are each used as needed under various
circumstances. Y ou can specify the full set of characters, changing those that you would like to have
different from the current settings. However, thisis awkward at best. Fortunately, you can a so specify
the charactersindividually by directly indicating which character isto be replaced.

In the example in Section 4.4.1, the character used to create the juncture of a horizontal and
vertical line is supposed to be aplus sign (+). Instead, it is rendered as a small square (O) when
the report is copied into aword processor. This rendering changes the spacing and causes
misaligned lines.

The character that forms the junction between avertical and horizontal lineis specified in the seventh
position of FORMCHAR. The following example replaces the seventh character with avertical bar.

* Using the FORMCHAR opti on;
titlel "Only in LISTING ;
title2 'Using the FORMCHAR Opti on'
proc report data=rptdata.clinics
fornchar (7)="|
nowd split="*"
box;
colum region sex ('Patient Weight'wt,(n nean));
define region / group

defi ne sex | across ' Sex';
define wt / analysis '(Ib)*_ '
run;
Only in LISTING
Using the FORMCHAR Option
Patient Weight
re (1b)
gi Sex
on F M n mean
1 o4 4 195 When rendered in Microsoft Word, the
L —— charactersline up quitewell. In other
10| 2| 4 6| 172.33333 word processor s the alignment might
L — still not be perfect. If you really need
2 | 6| 4 10 107.8 thingsto look right, an alternate ODS
| —|— destination isalmost certainly a better
3|55 10 145.8 and morerobust solution.
4 4| * 14| 159.14286
5 5| 3 8 157.75
6 4| 6 10 198

(continued)

90 Carpenter’'s Complete Guide to the SAS REPORT Procedure

(continued)
7 ‘_‘_4} 4‘ 151
8 | 4| .| 4| 160
9 ‘_2‘_8‘ 10‘ 187.8

Y ou can specify more than one character by listing the positions and their corresponding
characters. The following FORMCHAR option replaces vertical lines with blanks and
i ntersections with dashes.

* Using the FORMCHAR opti on;
titlel "Only in LISTING ;
title2 'Replacing Vertical lines with the FORMCHAR Option';
proc report data=rptdata.clinics
fornchar(1,4,6,7,8,10)=" - - -'
nowd split="*" box;
colum region sex ('Patient Weight'wt,(n nean));
define region / group

defi ne sex | across ' Sex';
define wt / analysis '(lb)*_ '
run;
Only in LISTING
Replacing Vertical lines with the FORMCHAR Option
[
Patient Weight
re (1b)
gi Sex
on F M n mean
1 . 4 4 195
10 2 4 6 172.33333
2 6 4 10 107.8
3 5 5 10 145.8
4 4 * 14 159.14286
5 5 3 8 157.75
6 4 6 10 198
7 . 4 4 151
8 4 . 4 160
9 2 8 10 187.8
L _ |

Chapter 4: Only in the LISTING Destination 91

SEE ALSO

The FORMCHAR system option is discussed in more detail in the documentation for Base SAS.
The SAS Guide to the REPORT Procedure, Reference, Release 6.11 (1995, pp. 63—64) uses the
FORMCHAR system option in an example.

4.4.8 Wrapping Data Lines

When areport is too wide for the page, as when agiven logica line does not fit within the
congtraints of the physical line, both the REPORT and PRINT procedures form groups of lines
that are wrapped together. This problem israrely an issue in destinations other than LISTING,
because page definitions and row and column wrapping are handled very differently. When the
report istoo wide in the LISTING destination, however, the report can become very difficult to
follow.

Line and column wrapping is most common when you have a series of long text strings such as
free-form narrative comments.

The following example builds on the data and code provided online in Sample 637. In addition to
some scoring and demographic information, the data contains along comment.

* Using the WRAP opti on;
titlel "Only in LISTING ;
title2 'Using WRAP ;

data denog;
input nanme $ sex $ idnum scorel-scorel0 / comment $65.;
format name $5. sex $3. idnum 5. scorel-scorelO 6.

comment $65. ;
dat al i nes;
Russ M123 1 93847586 3
Cccasionally has difficulty with verbal conmunication
Kevin M456 4 756 85 4323
Is very particul ar about the placement of personal objects
Paige F 789 6 743589234
Gets very excited by the success of those people close to her
run;

proc report data=denpg

| s=70 nowd

W ap;
col utm nanme comment ;
define nane | group;

define comrent / display;
break after name / skip;
run;

The L S= option has been set to 70, which leaves the page too narrow to support the two columns.
The comment is therefore wrapped to the following line and is placed below the name. Notice that
the column headers are also stacked.

92 Carpenter’'s Complete Guide to the SAS REPORT Procedure

Only in LISTING
Usi ng WWRAP

name
conment

Kevin

I's very particul ar about the placenment of personal objects

Pai ge
Gets very excited by the success of those people close to
her

Russ
Qccasionally has difficulty with verbal conmunication

Without using the WRAP option, the values of NAME and COMMENT would have appeared on
separate pages.

MORE INFORMATION

When a given column’s value does not fit in the space allocated to it, you can also use the FLOW
option (Section 4.5.2) so that you can get the text to wrap within the column. When entire lines
wrap, asin this section, the ID option on the DEFINE statement can be used to help identify the
lines (Section 6.1.6).

SEE ALSO

Inavery similar example, Sample 637 shows the use of the WRAP option with the NOHEADER
and NAMED options. SAS Technical Report P-258 (1993, p. 225) uses the WRAP option.
Whereas Ping and Schiefelbein (2006) insert split characters to control where text isto split, Jiang
and Boisvert (2006) determine split locations by counting characters and then calculating the total
width required. Before wrapping, Li (2006) searches long strings for specia characters, including
carriage controls and line feeds.

4.5 Other DEFINE Statement Options

There are afew DEFINE statement options that have an effect only when used with traditional
SAS Monospace output. These include the following:

WIDTH= specifies the number of charactersto allocate for the width of the column.
SPACING= specifies the number of spacesto leave between columns.

FLOW specifies that text wider than the WIDTH= value wraps within the block (split
characters are supported).

SEE ALSO
The WIDTH= and FLOW options are used in an example in the SAS Guide to the REPORT
Procedure, Reference, Release 6.11 (1995, pp. 68-70).

Chapter 4: Only in the LISTING Destination 93

4.5.1 Specifying the Column Width

The following example adjusts the column widths for the variables REGION and SEX. Thetable
in Section 4.4.3 showed problems for each of these columns. Since REGION has adefault width
of 2 spaces, the column label was wrapped. SEX had a default width of 1 space, leaving
insufficient space to allow numbers greater than 9. Both of these problems are solved in the
following example with the WIDTH= option.

* Using the WDTH option;
titlel "Only in LISTING ;
title2 'Using the WDTH Option';
proc report data=rptdata.clinics nowd
split="*"
col wi dt h=4;
colum region sex ('Patient Wight' wt,(n nean));
define region / group w dth=6;

define sex | across ' Sex' width=2;
define wt / analysis '(lb)*__";
run;

When applied to numeric and computed variables, the values of the WIDTH= option override the
overall column width specified in the COLWIDTH= option on the PROC statement.

Only in LISTING
Using the WDTH Option
Pati ent Wei ght
(I'b)
Sex
region F M n nean
1 . 4 4 195 Thelabel for a character variable
10 2 4 6 172 such as SEX isleft-justified.
2 6 4 10 108 Consequently, in thistable, the values
3 5 5 10 146 seem not to be under the column
4 4 10 14 159 label.
5 5 3 8 158
6 4 6 10 198
7 4 4 151
8 4 4 160
9 2 8 10 188
SEE ALSO

Burlew (2005, p. 63) has an example that uses the WIDTH= option.

4.5.2 Using the FLOW Option to Wrap Text

When the field width is not sufficient to display atext value, truncation can occur. This
information loss can be avoided by using the FLOW option. In the following example, the
variable CLINNAME can have alength of up to 27 characters. Because it has been given space
for only 15 characters (WIDTH=15) truncation could occur. However, the FLOW option allows
the text to wrap within the column as needed.

94 Carpenter’'s Complete Guide to the SAS REPORT Procedure

* Define Statenment wrap option;

titlel 'Using Proc REPORT ;

title2 'Define Statement FLOW Option';

proc report data=rptdata.clinics nowd,
colum region clinnum clinnane;
define region / group w dt h=6;
define clinnum / group ;
define clinnane / group w dth=15 fl ow,
run;

Usi ng Proc REPORT
Define Statement FLOW Option

clinic
region nunber clinic name
1 011234 Boston
Nat i onal When wrapping, SAS attemptsto
Medi cal break lines at word boundaries.
014321 Ver nont
Tr eat ment The FLOW option honorsthe split
Cent er character. (The default split
10 107211 Portl and character isa“ /")
Cener al

108531 Seattle
Medi cal Conpl ex
2 023910 New York Metro
Medical Cir

Portions of the table are not shown.

MORE INFORMATION

Truncation and wrapping issues become less problematic for most other ODS destinations.
Section 8.6.5 discusses in-line formatting sequences that can be used to control how text is split
and indented when it wraps.

SEE ALSO
The online sample program (Sample 634) demonstrates text wrapping, and Michel (2005) uses the
FLOW optioninaCALL EXECUTE example.

The two very similar papers by Petersen and Garlach (1999) and Petersen and Garacani (2005)
both discuss a macro that controls the flow and wrapping of text without using the FLOW option.
Whitlock (2000) also discusses a macro that wraps text. SAS Technical Report P-258 (1993,

p. 236) and Burlew (2005, pp. 50-52) both have examples that demonstrate the FL OW option.

4.5.3 Adding Spaces between Columns

The number of spaces between individual columns can be adjusted by using the SPACING=
option. The columns in the example in Section 4.5.2 can be spread apart by specifying the
SPACING= option, which adds spaces to the | eft of the designated column.

Chapter 4: Only in the LISTING Destination 95

* Define Statenent spacing option;
titlel 'Using Proc REPORT ;
title2 'Define Statement SPACING Option';
proc report data=rptdata.clinics nowd,
colum region clinnum clinnane;
define region / group w dt h=6;

define clinnum / group spaci ng=5;
define clinnane / group w dt h=15 spaci ng=5 fl ow,
run;

The additional space before the clinic number and before the clinic name give the report aless
crowded look.

Usi ng Proc REPORT
Define Statenent SPACI NG Option

clinic
regi on nunber clinic name
1 011234 Bost on Spaces areinserted to the left of
Nat i onal the designated column.
Medi cal
014321 Ver mont The additional spaces between
Treat ment the REGION and CLINNUM
Cent er columns ar e specified by the
10 107211 Port|and SPACING= option on the
Gener al DEFINE statement for
108531 Seattle CLINNUM.
Medi cal Conpl ex
2 023910 New York Metro
Medical Cir
024477 New Yor k
Gener al
.Portions of the table are not shown.

MORE INFORMATION
The SPACING= option can also be used to effectively concatenate columns. See the last example
in Section 6.4.1.

SEE ALSO
SAS Technical Report P-258 (1993, pp. 44-45) discusses the SPACING = option for both the
PROC REPORT and DEFINE statements.

96 Carpenter’'s Complete Guide to the SAS REPORT Procedure

4.6 Chapter Exercises

1. The datatable SASHELP.ORSALES contains sales data from a retail outdoor sports clothing
and equipment store. Generate a report that lists total PROFIT for each PRODUCT_LINE
within each YEAR. List the products ACROSS the report. Y ou might want to build on the
results of Exercise 2b in Chapter 2.

Include the following:

= HEADLINE and HEADSKIP options
= repeated charactersin the spanning header for product line

2. Thedatatable SASHELP.RETAIL contains quarterly salesinformation. List the columns
YEAR, DATE, and SALES. Do the following:

= Use YEAR asagrouping variable.
= Usethe PANELS=, BOX, and PSPACE= options.

3. Building on Exercise 2 in this section, use the WIDTH= and SPACING= options.

Chapter 5

Creating and Modifying Columns Using the
Compute Block

5.1 Coordinating with the COLUMN and DEFINE Statements 98
5.2 Calculations Based on Statistics 99

5.3 Calculating Percentages within Groups 101

5.4 Using PAGE_ with BEFORE and AFTER 103

5.5 Using the OUT= Option to View Report Break Information 104
5.6 Chapter Exercises 106

One of the great strengths of PROC REPORT isits ability to create columns based on calculations
carried out during the execution of the procedure. Columns that are not on the incoming data set
can be created and displayed within the PROC REPORT step. Often this can eliminate one or
more DATA steps. The compute block provides the power and flexibility to mold the columnin a
variety of ways.

Aswas seen in Section 2.6, the use of the compute block can be fairly straightforward. However,
as the compute block is used to complete more complex tasks, it becomes more important for the
programmer to achieve a more thorough understanding of tasks associated with the compute
block.

Compute blocks can be used to create both numeric and character variables, and an extensive
number of the SAS language elements that give the DATA step much of its power and
functionality are also available for use in the compute block. In this chapter we examine some of
the issues associated with the generation of additional columns through the use of the compute
block.

98 Carpenter’s Complete Guide to the SAS REPORT Procedure

MORE INFORMATION

When you use existing or computed columns in a compute block, naming conventions are not
always either intuitive or straightforward. How to name areport item in a compute block is
discussed briefly in some of the following sections and in detail in Section 7.2.

SEE ALSO

Cochran (2005) includes severa easy-to-understand examples of the use of compute blocks. A
number of compute statement options are listed in SAS Technical Report P-258 (1993, p. 53).
Burlew (2005, pp. 31-49) introduces the compute block through a series of examples.

5.1 Coordinating with the COLUMN and DEFINE
Statements

Variables on the data set that is processed by PROC REPORT are named on the COLUMN
statement, and the way that these variables are used is specified on the DEFINE statement. Thisis
also true for columns created through the use of the compute block. In addition, the name of the
computed variable also appears on the COMPUTE statement.

When a column is created through a compute block, the new column is named and that column
name is used on both the COLUMN statement and on a DEFINE statement. The compute blocks
that were discussed in Sections 2.6.1 through 2.6.3 used the BEFORE and AFTER location
specifications. This means that although these compute blocks could be tied to areport item, by
necessity they could not be associated with a new column. Whether or not the BEFORE or
AFTER location is specified, when a compute block is associated with a report item, such asa
computed variable, the name of the report item appears on the COLUMN, DEFINE, and
COMPUTE statements. It is this name that is used to create and coordinate the link between the
three statements.

In the following example, the patients' weights are displayed in both pounds and kilograms (the
examplein Section 2.6.4 only converts to kilograms without creating a new column). Since the
units for the variable WT are in pounds, a new column containing the weight in kilograms needs
to be created. Thisis accomplished in a compute block.

* Creating a new colum with a conpute bl ock;

titlel 'Using The COMPUTE Bl ock';

title2 ' Adding a Conputed Col umm';

proc report data=rptdata.clinics nowd split="*";
colum | nane sex (' Weight *--' wt wkg); O
define Inanme / order w dt h=18 ' Last Name*--';
defi ne sex [/ display width=6 'Gender*--';
define wt / display format=6. 'Pounds*--';
define wkg ® / conputed © format=9.2 'Kilograns*--";
conpute wkg; O

wkg =w / 2.2, ©

endconp; @
run;

Chapter 5: Creating and Modifying Columns Using the Compute Block 99

O A name (WTKG) for the new column is added to the COLUMN statement.

® The DEFINE statement associated with the new column (WTKG) has a define type of

COMPUTED ©.

® The COMPUTE statement contains the name of the computed variable.

© The new variable (WTKG) is calculated by dividing the weight (WT) in pounds by 2.2.

® Compute blocks are terminated with an ENDCOMP statement.

The resulting table shows the weight both in pounds and kilograms.

Using The COMPUTE Block
Adding a Computed Column

Weight
Last Name Gender Pounds Kilograms
Adams F 155 70.45
Adamson F 158 71.82
Alexander M 175 79.55
Antler M 240 109.09
Atwood M 105 47.73
Banner M 175 79.55
Baron M 160 72.73
Batell F 155 70.45

. Portions of the table are not shown . . .

BecausethisLISTING
destination table usesthe
SAS Monospace font, the
horizontal linesare
preserved (see Section 4.1).

MORE INFORMATION

A simple compute block that modifies the value of an existing column by transforming the value

of weight from poundsto kilograms s presented in Section 2.6.4.

5.2 Calculations Based on Statistics

In the previous example, because WT was given a define type of DISPLAY, the variable name
was used explicitly in the compute block. In this example, the mean for each region is calculated,
and it is from this mean that we create a column for kilograms. Thistime WT isan ANALY SIS
variable, and a compound column name (WT.MEAN @) is used in the calculation.

100 Carpenter’s Complete Guide to the SAS REPORT Procedure

* Cal cul ati ons based on statistics bl ock;
titlel 'Using The COVWPUTE BI ock’
title2 'Calculations Based on a Statistics Colum';
proc report data=rptdata.clinics nowd split="*";
colum region (' Weight *--' wt wtkg);
define region / group wi dt h=7
" Regi on*--";
define wt / anal ysi s nmean
format=8. 1
' Pounds*--'; @
define wtkg / conputed format=9.2
"Kil ograms*--";
conpute wkg;
wkg = w.mean / 2.2; @
endconp;
run;

© The mean weight (in pounds) is calculated for WT across the group variable (REGION).

® The weight in kilograms is calculated by converting it from the mean weight in pounds. Notice
that the compound name, WT.MEAN, reflects the calculated statistic (in pounds).

Usi ng The COWPUTE Bl ock
Cal cul ations Based on a Statistics Colum
Wi ght
Regi on Pounds Kil ograns
1 195.0 88. 64
10 172.3 78. 33
2 107. 8 49. 00
3 145. 8 66. 27
4 159.1 72. 34
5 157. 8 71.70
6 198.0 90. 00
7 151.0 68. 64
8 160.0 72.73
9 187. 8 85. 36

The following somewhat silly example demonstrates more fully the need to be able to use
compound names. The compute block is used to calculate the standard error, which is based on
the standard deviation (STD) and the square root of N. Thisissilly because the standard error is
also available directly as STDERR and does not really need to be calculated using aformula

Chapter 5: Creating and Modifying Columns Using the Compute Block

* Cal cul ati ons based on two statistics col ums;

titlel 'Using The COVMPUTE Bl ock';

title2 'Calcul ations Based on Two Statistics Columms';
proc report data=rptdata.clinics nowd split="*";

colum region (W, (rmean std stderr n) wtse);
define region / group wi dt h=7 ' Regi on*--";

define w / anal ysis ' Pounds*--";

define wtse / conputed format=9.2 'STD Error*--";

conput e wt se;

wse = w.std / sqrt(wt.n); @
endconp;
run;

O A list of statistics has been requested for the single analysis variable WT. The computed
variable (WTSE), which isto be calculated, must also appear on the COLUMN statement.

@® The calculation involves the use of both the standard deviation of WT (WT.STD) and the

101

number of observations (WT.N). The use of compound names allows this refined specification.

In the resulting table, the standard error has been generated twice. It isfirst calculated directly (as
anamed statistic on the COLUMN statement). Then the value is calculated in the compute block.

For comparison purposes, both have been shown in the table.

Usi ng The COWPUTE Bl ock
Cal cul ations Based on Two Statistics Col ums
Pounds
Regi on
mean std stderr n

1 195 0 0 4
10 172. 33333 7.2295689 2.9514591 6
2 107.8 4.1311822 1.3063945 10
3 145.8 35.197222 11.130339 10
4 159. 14286 23.719052 6.3391832 14
5 157.75 44, 248487 15.644202 8
6 198 23.776739 7.5188652 10
7 151 4.6188022 2.3094011 4
8 160 2.3094011 1.1547005 4
9 187.8 26.951809 8.5229103 10

STD Error

BN

'_\
OFRLPrNNUOTOORFRPPFPDNO

.00
. 95
.31
.13
.34
.64
.52
.31
.15
.52

MORE INFORMATION

The spanning headersin this LISTING destination example were created using a combination of a

split character and repeat characters (see Section 4.3.2).

5.3 Calculating Percentages within Groups

Because a percentage calculation is the ratio of the current value to atotal for the group, the total
must be available for the calculation. As aresult, the calculation of percentages requires the use of

two compute blocks. Thefirst is used to determine the total across the group (COMPUTE

102 Carpenter’s Complete Guide to the SAS REPORT Procedure

BEFORE ©), and then thistotal is used on each detail row of the table © to calculate the
percentage in the second compute block.

Notice in this example that the compound variable name WT.SUM has two different meanings,
depending on which compute block is being executed. When it isused in a summary across all
visitsto aclinic (@ and ©), it contains the total weight for that clinic. When adetail row is being
processed @, WT.SUM contains the value of WT for that row.

* Cal cul ating percentages within groups;
titlel 'Using the COMPUTE Bl ock';
title2 'Percentages Wthin G oups';

proc report data=rptdata.clinics nowd split="*";
where clinnumin('031234', '036321');
colum clinnum | name wt prctw ;
define clinnum / group w dt h=10;

defi ne | nanme [/ order
'Last Nane';

define wt / anal ysi s fornmat=6.
"Weight';

define prctw / conputed fornmat=percent8.1
' Percent*of Total';

compute before clinnum ©
totwt = wt.sum @
endconp;

compute prctwt; ©
prctwt = wt.sum/ totw; @
endconp;

break after clinnum / dol skip summarize suppress; ©
run;

© This compute block is executed before the individual rows of the table are processed. This
makes the temporary variable TOTWT available for use in the second compute block ©. The
keyword BEFORE is available for this compute block because CLINNUM isa GROUP
variable.

® The total weight is calculated as the total weight within the specific clinic number. Since
CLINNUM isa GROUP variable, WT.SUM holds the total weight. During the execution of
this compute block, WT.SUM isthetotal for the upcoming CLINNUM, and this value is what
is saved in the temporary variable TOTWT.

© This compute block is used to calcul ate the percentages for each row of the table.

@ In this equation, we use the total weight for all the patients that have visited the clinic,
TOTWT. Thistota is used with the individual patient’s weight (WT.SUM). Eventually, the
valueis displayed using the PERCENTS8.1 format.

© The BREAK statement requests a summary line after each clinic. This statement causes an
additional summary row to be added to the final report. The compute block for PRCTWT
is aso executed for the corresponding row in the computed summary information.

Chapter 5: Creating and Modifying Columns Using the Compute Block 103

Usi ng the COWPUTE BI ock
Per centages Wthin G oups
clinic Per cent
nunber Last Nanme Weight of Total The percentage acrossthe
031234 Candl e 195 27. 3% clinicisof course 100%. This
Henry 162 22. 7% valueis calculated
Panda 195 27.3% automatically when the row
Snith 162 22.7% resulting from the BREAK
AFTER CLINNUM statement
714 100. 0% © e |Sprocemj.
036321 Her bal 155 29.8% On thisrow, the temporary
Jones 105 20. 2% variable TOTWT and
Mast er s 155 29. 8% WT.SUM contain the same
St ubs 105 20.2% value.
520 100. 0%

MORE INFORMATION

Additional information on the formation of the computed summary information can be found in
Sections 1.4.2 and 7.1, aswell asin Chapter 11. This specific example is examined further in
Section 5.5.

SEE ALSO
SAS Technical Report P-258 (1993, pp. 122-123) has an example that initializesavariablein a
compute block. Percentages are calculated in several examplesin P-258 (Chapter 8).

5.4 Using PAGE_ with BEFORE and AFTER

In Section 2.6.2, the compute block was used with the LINE statement to generate a footnote
usingaCOMPUTE AFTER statement.

conpute after;
line @0 'Wight taken during';
line @0 'the entrance exam';
endconp;

The two lines of text generated by these two LINE statements appear at the end of the report.
Unlike afootnote generated by a FOOTNOTE statement, the text generated by these two LINE
statements does not appear at the bottom of each page if multiple pages are required. Thisis
because the compute block is targeted to execute only at the end of the report. Itstarget isimplied;
essentially the COMPUTE AFTER statement isinterpreted as COMPUTE AFTER REPORT.

For the LISTING destination, we can use the_PAGE_ option to give us additional control by
explicitly specifying PAGE _ asthe target. The compute block target determines when the
compute block executes, and when _PAGE_is used as atarget, it forces the compute block’s
execution at page boundaries. In asense, PAGE_isused asif it were agrouping variable.
However, the text isinstead written after the page breaks.

104 Carpenter’s Complete Guide to the SAS REPORT Procedure

conpute after _page_;
line @O 'Wight taken during';
line @O 'the entrance exam';
endconp;

The same technique can be used to place text at the top of the page (between the titles and the
body of the report) by using BEFORE.

conpute before _page_;
line @O0 'Wight taken during';
line @O 'the entrance exam';
endconp;

Of course, the concept of a page is not the same for all ODS destinations, and this difference can
be an issue for some destinations, such as HTML and PDF. For other destinations, page break
determination is not always directly controlled by SAS. For these destinations, which include the
RTF destination, PAGE_ either does not work at al, or, at best, does not work as you might
anticipate.

MORE INFORMATION

The PAGE _target is used with justification optionsin asimilar examplein Section 7.6.1, and
the example in Section 8.2.2 uses a similar compute block to place alogo at the top of each report
page. In the example in Section 7.7.3, it isused in a report that does page counting.

SEE ALSO

In similar papers, Gonzalez (2003) and Dunn (2004) both use the compute block to control title
and footnote lines. Two online sample programs (Sample 607 and Sample 610) discuss various
aspects of printing text headers before and after pages. Humphreys (2006) uses computed
variables to control page breaks.

5.5 Using the OUT= Option to View Report Break
Information

When you use compute blocks, it is sometimes helpful to be able to see the how the break information
is being used in the construction of the report rows. This bresk information can be visualized by using
the OUT= option @ on the PROC REPORT statement to create an output data set.

The PROC REPORT step’s computed summary information is processed in a sequence of events
that are further described in Section 7.1 and in more detail in Chapter 11, “ Details of the PROC
REPORT Process.” The data set that is saved when you use the OUT= option isafinal result of
those processing steps. The output data set shows the report rows (including those that will not be
written to the final report). When this data set is written for us by PROC REPORT, all the
compute block processing has been performed, and although there is really no way to trap or trace
the compute block processing, an examination of the output data set created by PROC REPORT
can till be informative.

In addition to the other report items, the output data set includes the automatic temporary variable
_BREAK _. Thisvariable notes observations in the output data set that are aresult of data
summarizations, such as those generated by BREAK and RBREAK statements.

Chapter 5: Creating and Modifying Columns Using the Compute Block 105

The following example repeats the REPORT step used in Section 5.3, but it adds an OUT= option
to the PROC REPORT statement ©.

* Cal cul ating percentages wi thin groups;
titlel 'Using the COMPUTE Bl ock' ;
title2 'Examining the Qutput Data Set';

proc report data=rptdata.clinics

out=r5 5out ©@

nowd split="*";
where clinnumin('031234', '036321");
colum clinnum | name wt prctwt ;
define clinnum / group w dt h=10;

define | nanme [order
'Last Nane';

define wt / anal ysi s fornat=6.
"Wight';

define prctwt / conputed fornmat=percent8.1
' Percent *of Total';

compute before clinnum @
totw = wt.sum
endconp;

conpute prctw;
prctwt = wt.sum/ totw;
endconp;

break after clinnum / dol skip summarize suppress; ©
run;

proc print data=r5_ 5out;

title3 Summarized Data Set;
run;

The PROC PRINT of the data set generated by the OUT= option in this example resultsin the
following:

Cbs

l_\
QOWoo~N O OThWNPE

[EnY
[EY

Usi ng the COWPUTE Bl ock

Exam ni ng the CQutput Data Set

Sunmari zed Data Set
clinnum | nane wt prctwt _BREAK _
031234 714 : clinnum @
031234 Candl e 195 0.27311
031234 Henry 162 0.22689
031234 Panda 195 0.27311
031234 Smth 162 0.22689
031234 714 1. 00000 clinnum ©
036321 520 0. 72829 clinnum @
036321 Her bal 155 0. 29808
036321 Jones 105 0.20192
036321 Mast er s 155 0.29808
036321 St ubs 105 0.20192
036321 520 1. 00000 clinnum ©

=
N

106 Carpenter’s Complete Guide to the SAS REPORT Procedure

@® This compute block generates a summary line before each distinct value of CLINNUM.
Thisrow is only aresult of the compute block and does not appear in the final report. Because
WT.SUM was referenced in a compute block, we can see how that summary information was
captured. Because there is no BREAK statement associated with the COMPUTE BEFORE
statement, this row does not appear in the final report. However, we can see from the output
data set that WT.SUM was available before each CLINNUM group in order to be assigned
to the temporary variable TOTWT.

© After each group of valuesfor CLINNUM, the BREAK statement generates a summary or
break row in the final report, and this summary row is also reflected in the OUT= data set.

Notice the inclusion of the automatic column BREAK . This column can be used to track break
events asthe table is calculated. The valuesof BREAK _ can be checked by using
IF-THEN/EL SE processing in the compute block itself.

MORE INFORMATION

The OUT= option and the contents of the resulting table are used extensively in the examples that
discuss the compute block in Chapter 7, “ Extending Compute Blocks.”

5.6 Chapter Exercises

1. The datatable SASHELP.ORSALES contains sales data from aretail outdoor sports clothing
and equipment store. Create a report that shows total PROFIT for each PRODUCT _LINE
within each YEAR. Y ou might wish to build on the results of Exercise 3 in Chapter 2.

Compute the percentage of annual sales that can be attributed to each product line.

2. Building on the solution to Exercise 1 in this section, add a summary line for each year by
using aBREAK statement.

= Do you need to do anything extrafor the percentage on this summary line?
= Whatif you also used an RBREAK statement?

3. Building on the solution to Exercise 2 in this section, use the OUT= option to see the final
output datatable.

Part 2

Taking PROC REPORT Beyond the Basics

Chapter 6 Refining Our Understanding of the PROC REPORT Step 109
Chapter 7 Extending Compute Blocks 147

Chapter 8 Using PROC REPORT with ODS 211

108 Carpenter’s Complete Guide to the SAS REPORT Procedure

Chapter 6

Refining Our Understanding of the PROC REPORT
Step

6.1 Additional DEFINE Statement Options 110
6.1.1 Changing Display Order with DESCENDING 110
6.1.2 Specification of Column Justification 111
6.1.3 Allowing the Use of Missing Classification Items 113

6.1.4 Controlling the Use of Analysis Items with All Missing or Zero
Values 115

6.1.5 Using NOPRINT 118
6.1.6 Identification Columns 119
6.1.7 Creating Vertical Page Breaks 120
6.2 Using Variable Aliases 121
6.3 Nesting Variables 122
6.4 Taking Full Advantage of Formats 123
6.4.1 User-Defined Formats 123
6.4.2 Preloading Formats 126
6.4.3 Order Based on Format Definition 130
6.5 Other PROC Statement Options 131
6.5.1 Removing Headers 131
6.5.2 Using NAMED Output 132
6.5.3 Debugging with the LIST Option 134
6.5.4 Including MISSING Classification Levels 134

110 Carpenter’s Complete Guide to the SAS REPORT Procedure

6.6 BY-Group Processing 136
6.6.1 Using the BY Statement 137
6.6.2 Creating Breaks with BY Groups 138
6.6.3 Using the #BYVAL and #BYVAR Options 139
6.6.4 BY Groups and the Output Delivery System 141
6.7 Calculations Using the FREQ Statement 144
6.8 A Further Comment on Paging Issues 145
6.9 Chapter Exercises 146

As our desire to create more complex reports increases, so too must our understanding of the
PROC REPORT step’s available options and statements. Depending on the types of reports that
you create, you may or may not use all or even most of the options and techniques discussed in
this chapter. Knowing of them, however, is very important to your overall understanding of the
PROC REPORT step.

6.1 Additional DEFINE Statement Options

A number of supplemental options can be used with the DEFINE statement to augment the
display of the information in the associated variable. DEFINE statement options not discussed
earlier in this book include the following:

DESCENDING reverses the order of values when used with define types GROUP,
ORDER, and ACROSS.

CENTER/LEFT /RIGHT controlsthe justification of the column header and formatted value
within a column.

MISSING / NOZERO controls how report items are to be handled when al values are
either missing or zero.

NOPRINT specifies that this report item is not to be displayed, although it
appearsin the COLUMN statement.

ID identifies one or more columns to repeat when alogical report line

wraps to anew physical line. This option isusually used in
conjunction with the PAGE option.

PAGE inserts a page break between columns. This option is usually used
with the ID option.

MORE INFORMATION
The DEFINE statement and a number of its display options are introduced and discussed in
Sections 2.4 and 4.5.

6.1.1 Changing Display Order with DESCENDING

Typicaly when items are ordered, the default order is ascending. The DESCENDING option can
be used when you would like to reverse the order of items in columns with define types of
GROUP, ACROSS, or ORDER.

Chapter 6: Refining Our Understanding of the PROC REPORT Sep 111

In the following example, CLINNAME appears as a GROUP variable. Since GROUP implies an
ordering of the values, the default presentation would be for the values to appear in ascending
order. The DESCENDING option reverses that order.

* Usi ng DESCENDI NG,
options nocenter;
titlel 'Refining REPORT Appearance';
title2 'Using the DESCENDI NG Option';
proc report data=rptdata.clinics
(where=(region in('1','2","3"))) nowd;
colums clinname ht wt;
define clinnane / group descendi ng;

define ht / anal ysis nean fornmat=6.1;
define wt / anal ysis nean format=6.1;
run;

The clinic names (CLINNAME) are now in descending order.

Ref i ni ng REPORT Appear ance

Usi ng t he DESCENDI NG Opti on
hei ght wei ght
in in
clinic nane i nches pounds
Vernont Treat ment Center 74.0 195.0
Phi | adel phi a Hospit al 65.0 112.0
New York Metro Medical Ctr 64.0 105.0
New Yor k General Hospital 63.5 107.0
Naval Menorial Hospital 65.5 130.0
Geneva Menorial Hospital 64.0 115.0
Bost on National Medi cal 74.0 195.0
Bet hesda Pi oneer Hospit al 72.5 178.5

6.1.2 Specification of Column Justification

The documentation states that the justification options CENTER, RIGHT, and LEFT change the
justification of column headings as well as formatted values within a column. These options were
originally designed to work with the LISTING destination, and the impact of their useislessthan
inspiring for other destinations. In fact, the results of the CENTER, RIGHT, and LEFT options
depend on the ODS destination and whether the variable is numeric or character. The following
table shows the default justifications. The values in bold can be overridden with these DEFINE
statement options.

Character Numeric
Variables Variables
Header Vaue Header Vaue
LISTING left left right right
Destination
Non-text center left center right
Destination

112 Carpenter’s Complete Guide to the SAS REPORT Procedure

In the following example, each of the three columns receives a different justification option. By
default REGION, which is a character variable, is left-justified.

ods htm file="&path\results\ch6_1 2. htm";

* Using Justification options;
titlel 'Refining REPORT Appearance';
title2 '"Using Justification Options';
proc report data=rptdata.clinics
(where=(region in('1',"2","'3")))
nowd;
colums region ht w;
define region / group w dth=7 center;

define ht [/ analysis nean left format=6.1;
define w / analysis nean right format=6.1;
run;

ods html cl ose;

Inthe LISTING destination, the HEADER, but not the value for mean HT, is left-justified.

Ref i ni ng REPORT Appear ance
Usi ng Justification Options

hei ght wei ght

in in

regi on i nches pounds
1 74.0 195.0

2 63. 8 107.8

3 68. 2 145.8

Inthe non-LISTING (HTML) destination, the mean value for HT has been left-justified as
requested.

Refining REPORT Appearance
Using Justification Options

region heightininches weightin pounds

1 74.0 1950
2 638 107 .8
3 682 1458

In future versions of SAS, it is possible that these options will be ignored by non-LISTING
destinations.

MORE INFORMATION

For non-LISTING destinations, it is more appropriate to change justification with the JUST=
attribute modifier in the STY LE= option (see Section 8.2) or in the CALL DEFINE routine (see
Section 8.3).

Chapter 6: Refining Our Understanding of the PROC REPORT Sep 113

6.1.3 Allowing the Use of Missing Classification Items

Missing values can cause problems in our reports, and unless we are aware of the issues involved,
the report itself might not reflect the true underlying data. This can happen to us on both summary
and detail reports.

When classification variables (GROUP, ORDER, or ACROSS) have missing values, those
observations are by default excluded from the report. The MISSING option specifies that missing
values are valid levels of the classification variable and should therefore be included. MISSING
can appear on the PROC REPORT statement, where it appliesto al classification variables, or on
the DEFINE statement, where it is applied to an individual variable.

The following report counts the number of observations within aregion and the number of
procedure types (PROCED) that were used (nominally there should be a procedure type for each
visit).

* Counting Procedure types within Region;

titlel 'Refining REPORT Appearance';

title2 'Counting Procedures Wthout M SSING ;

proc report data=rptdata.clinics nowd;

colum regi on n proced,n;
define region / group w dth=6;

define n / wi dt h=3; @
define proced / across wi dth=3;
run;
Ref i ni ng REPORT Appear ance
Counti ng Procedures Wthout M SSI NG
procedure code
0 1 2 3 In thisreport it is easy to see that the
r egi on n n n n total number of procedures matches
1 4 _ 4 the overall number of patient visits @.
10 6 6 . ,
2 8 8 Oops, the totals do not count patients
3 6 _ _ 6 with missing procedure codes. Notice
5 6 _ 4 2 that region 4 isnot even included in the
6 4 _ 4 _ report.
7 2 2 .
8 4 2 2
9 2 2

In fact, the number of visits @ is not correct. It is actually the number of visits with nonmissing
procedure codes. If we include aMISSING option @ on the DEFINE statement for PROCED, we
get an entirely different count.

titlel 'Refining REPORT Appearance';
title2 'Counting Procedures with M SSING ;
proc report data=rptdata.clinics nowd,
colum region n proced, n;
define region / group w dth=6;
define n / w dt h=3;
define proced / across w dth=3 nissing; @
run;

114 Carpenter’s Complete Guide to the SAS REPORT Procedure

regi on
1
10
2

© 0O ~NO O bhW

procedure code

(1]
n n
4
6
10 2
10 4
14 14
8 2
10 6
4 2
4
10 8

Ref i ni ng REPORT Appear ance
Counting Procedures with M SSI NG

2]

1 2 3
n n n Theoverall total @ till reflectsthe
) 4 sum of the types of procedure
6 . codes, PROCED. However, since
8 missing values ar e also now
6 included in the total @, the overall
. . number now reflects the actual
4 2 number of visits.
. 4
2 .
2 2
2

Thetotal N now reflects al visits and not just the visits with nonmissing procedure codes. Not
only was the number of visits not correct, but region 4 was completely eliminated from the first
report!

The same type of distortion can occur on adetail report aswell. Thisis demonstrated in the
following example. REGION=11 has been artificially created with two levels of the variable
CLINNAME, one of the levels being missing.

Ar

0]

1
2
3
4

tificial

S

Ref i ni ng REPORT Appear ance
Regi on 11 Data

clinnane

Bost on Nat i onal

Bost on Nat i onal

regi on | name wt ht

11 Law ess 195 74

Medi cal 11 Naber s . 0
11 Mer cy 195 74

Medi cal 11 Taber . 0

When the MISSING option is not used, only nonmissing values of the GROUP variable
CLINNAME areincluded in the table.

* Using M SSING on the DEFI NE statenent;
titlel 'Refining REPORT Appearance';

title2 'Wthout
proc report data=regll nowd;
region clinnane ht w;

col umm
defi ne
defi ne
defi ne
define
run;

M SSI NG Opti on';

/

/

regi on
clinname /
ht

wt

/

group f or mat =$6. ;
group;

anal ysi s nean format=6. 1;
anal ysi s nean fornmat=6. 1;

Chapter 6: Refining Our Understanding of the PROC REPORT Sep 115

We see that the data associated with the missing clinic name has been excluded from the table.

Refi ni ng REPORT Appear ance
W thout M SSING Option

hei ght wei ght

in in
region clinic name i nches pounds
11 Bost on National Medical 0.0

Including the MISSING option on the DEFINE statement makes the missing clinic name avalid
classification (grouping) variable.

* Using M SSING on the DEFI NE statenent;
titlel 'Refining REPORT Appearance';
title2 'M SSING Option on DEFINE Statenent';
proc report data=regll nowd;

colum region clinnane ht w;

define region / group f or mat =$6. ;
define clinnane / group m ssing;

define ht / anal ysis mean format=6.1;
define wt / anal ysis nean format=6. 1;
run;

Ref i ni ng REPORT Appear ance
M SSI NG Opti on on DEFI NE St at enent

hei ght wei ght

in in

region clinic name i nches pounds

11 74.0 195.0
Bost on National Medi cal 0.0

MORE INFORMATION
Missing classification levels can aso be included through the use of the MISSING option on the
PROC REPORT statement (see Section 6.5.4).

6.1.4 Controlling the Use of Analysis Items with All Missing or
Zero Values

Whereas the MISSING option (Section 6.1.3) controls the display of a classification variable with
missing vaues, the NOZERO option prevents the display of a nonclassification column with
items that have all zero, al missing, or some combination of only zero and missing values.

To demonstrate in the following examples, let’s create an artificial region (12) which has al
missing valuesfor WT and all zero valuesfor HT.

data regl2(keep=region clinnane | nane wt ht edu);
set rptdata.clinics(where=(region in('1,'2)));
regi on='12";
w=.;
ht =0;
run;

116 Carpenter’s Complete Guide to the SAS REPORT Procedure

When the NOZERO option is not used, the columns associated with HT and WT are displayed.

* DEFI NE statenent w thout NOZERQG,

titlel 'Refining REPORT Appearance';

title2 "Artificial Region 12 Data';
title3 'Wthout the NOZERO Option';
proc report data=regl2 nowd;

colum region I name edu ht wt;

define region / group
define I name [/ order;
define edu

define w
run;

f or mat =$6. ;

/ anal ysis format=9.0;
define ht / anal ysis format=6.1;
/ anal ysis format=6.1;

This report shows that the columns HT and WT contain all zero or missing val ues.

Ref i ni ng REPORT Appear ance

Artificial Region 12 Data
W thout the NOZERO Option

years of

region |ast nane educati on

12 At wood 14

Haddock 14

Har bor 14

14

I ngram 14

Law ess 10

Leader 14

Little 12

Long 14

Maxwel | 14

Mer cy 10

Naber s 10

Saunder s 12

Taber 10

hei ght

in

i nches

0.

S e e e e

[eNeNeNoNoNoNoNoNolNoNoNolNoNo

wei ght
in
pounds

The columnsfor HT
and WT are
displayed even
though only zero or
missing valuesare
in thereport.

Adding the NOZERO option on the DEFINE statement prevents the display of the HT and WT
columns, because they contain only missing or zero values.

* Using NOZERO on t he DEFI NE statenent;
titlel 'Refining REPORT Appearance';

title2 "Artificial Region 12 Data';

title3 "Wth the NOZERO Opti on on EDU HT and W' ;

proc report data=regl2 nowd;
colum region I name edu ht wt;

define region / group
define I nanme / order;
define edu

f or mat =$6. ;

anal ysis format=9.0 nozero;

/
define ht / analysis format=6.1 nozero;
/

define w
run;

anal ysis format=6.1 nozero;

Chapter 6: Refining Our Understanding of the PROC REPORT Sep 117

The NOZERO option has no effect on the EDU column, but the columns for HT and WT, which
are all zero or all missing, do not appear in the table.

Refi ni ng REPORT Appear ance
Artificial Region 12 Data
Wth the NOZERO Opti on on EDU HT and WI

years of
region |ast nanme educati on
12 At wood 14
ﬁ?ggfk ij The NOZERO option has suppressed
14 the printing of both the WT and HT
I ngr am 14 columns.
Law ess 10
Leader 14
Little 12
Long 14
Maxwel | 14
Mer cy 10
Naber s 10
Saunder s 12
Taber 10

The NOZERO option can also be used with summary statistics. In the next example, the MEAN
calculations for both HT and WT are suppressed.

* Usi ng NOZERO on t he DEFI NE st at ement ;

titlel 'Refining REPORT Appearance';

title2 "Artificial Region 12 Data';

title3 "Wth the NOZERO Option on a Statistic';

proc report data=regl2 nowd;
colum region clinnane edu ht w;
define region / group f or mat =$6. ;
define clinnane / group;
defi ne edu / anal ysis nean format=9.0 nozero;
define ht / anal ysis nean format=6.1 nozero;
define wt / anal ysis nean format=6.1 nozero;
run;

Ref i ni ng REPORT Appear ance
Artificial Region 12 Data
Wth the NOZERO Option on a Statistic

years of

region clinic nane education
12 Bost on National Medi cal 10
Geneva Menorial Hospital 14

New Yor k General Hospital 13

New York Metro Medical Ctr 14

Ver nont Treat ment Center 10

118 Carpenter’s Complete Guide to the SAS REPORT Procedure

The NOZERO option operates on page-sized chunks of the report, and therefore depends on the
destination’ s definition of a page. For non-monospace destinations, this becomes problematic.
Starting in SAS 9.2, NOZERO will only be available for monospace destinations (e.g., LISTING),
and in any other destinationsit will be ignored after producing a warning message in the log.

6.1.5 Using NOPRINT

It is sometimes necessary to include a variable on the COLUMN statement that is not to appear in
the report itself. For example, avariable might be needed as part of computations to be performed
in acompute block. This type of variable can be excluded from the report by specifying
NOPRINT on the DEFINE statement.

In the following example, the weight in kilograms is to be calculated from the weight in pounds
(which isnot to be displayed).

* Masking a columm wi th NOPRI NT;
titlel 'Refining REPORT Appearance';
title2 'Masking a Colum with NOPRI NT';
proc report data=rptdata.clinics nowd;
colum | name sex (' Weight' wt wtkg);

defi ne | nane / order w dt h=18 ' Last Nane';
defi ne sex [display wi dth=6 ' Gender' ;
define wt / anal ysis noprint;

define wtkg / conputed format=9.2 'Kil ograns';

conpute wkg;

wtkg = wt.sum/ 2.2,
endconp;
run;

Ref i ni ng REPORT Appear ance
Maski ng a Col um with NOPRI NT

Wi ght
Last Nane Gender Kil ograns
Adarrs F 70. 45 The column WT isavailable
Adanson F 71. 82 in the compute block (as
Al exander M 79. 55 WT.SUM), but because of
Ant | er M 109. 09 the NOPRINT option, it is
At wood M 47.73 not included in thereport.
Banner M 79. 55
Bar on M 72.73

...Portions of the table are not shown...

MORE INFORMATION
The weight in pounds was a so converted to kilograms in the examplesin Sections 5.1 and 5.2. In
those examples, the computed value replaced the original value.

SEE ALSO

The PROC REPORT step in the online example Sample 770 uses the NOPRINT option to
suppress a column that is used to order the rows, but is not to be printed. Mitchell (2005) uses the
NOPRINT option to suppress everything except the titles.

Chapter 6: Refining Our Understanding of the PROC REPORT Sep 119

6.1.6 Identification Columns

Likethe ID statement in the PROC PRINT step, the ID option is used to identify those columns
that should be repeated when the physical page is not wide enough and alogical row must wrap
across more than one physical row. The ID option is placed on the DEFINE statement associated
with the rightmost column that is to be repeated. This option is often used in conjunction with the
PAGE option (see Section 6.1.7).

In the following example, both REGION and the clinic name, CLINNAME, are to be used as row
identification columns. Since CLINNAME is the rightmost of these two columns, the ID optionis
placed on its DEFINE statement.

* Using I D
titlel 'Refining REPORT Appearance';
title2 "Using ID ;
proc report data=rptdata.clinics
(where=(region in('1,'2")))
nowd;
colums region clinname (ht w),(mn max n nmean nedi an);
define region [group wi dt h=6;

define clinnane / group id;
define ht / anal ysis;
define w [anal ysis;
run;

The ID option specifies that both the clinic name (CLINNAME) column and any columnsto its
left (REGION) will be repeated when the line wraps. In the following example, the statistics
based on WT appear on a second page, while the | eft two columns repeat.

Ref i ni ng REPORT Appear ance
Using ID
hei ght in inches
region clinic nane m n max n nmean medi an
1 Bost on National Medi cal 74 74 2 74 74
Vernmont Treatnment Center 74 74 2 74 74
2 Geneva Menorial Hospital 64 64 2 64 64
New Yor k General Hospital 63 64 4 63.5 63.5
New York Metro Medical Ctr 64 64 4 64 64
Ref i ni ng REPORT Appear ance
Using ID
wei ght in pounds
region clinic name mn max n mean nedi an
1 Bost on National Medical 195 195 2 195 195
Vernont Treat ment Center 195 195 2 195 195
2 Geneva Menorial Hospital 115 115 2 115 115
New Yor k CGeneral Hospital 105 109 4 107 107
New York Metro Medical Ctr 105 105 4 105 105

In this example we got lucky in that the logical line was broken for wrapping at a reasonable (in
this case perfect) place. Most folks are generally not going to be this fortunate, so we want to be
able to force where the break takes place. Section 6.1.7 discusses the PAGE option, which can
help with thisissue.

120 Carpenter’s Complete Guide to the SAS REPORT Procedure

The ID option is most commonly used with output destinations, such as LISTING, that have

output with fixed page widths. However, it is appropriate whenever the logical lineistoo wide for
the physical space.

SEE ALSO
Albarran (2003) usesthe ID option in an automated REPORT macro. The ID optionis
demonstrated in the online sample program Sample 635.

6.1.7 Creating Vertical Page Breaks

The PAGE option can be used to create what is effectively a vertical page break between
columns. Because PROC REPORT lays down the columns from left to right, when PAGE is used
on a DEFINE statement, a new page is created when that column is written.

In Section 6.1.6, the ID option is discussed as away to specify columns that should be repeated
when the report’ s logical line spans more than one physical line. This option works well with the
PAGE option, and these two options are usually used together in a PROC REPORT step.

* Usi ng PAGE;
titlel 'Refining REPORT Appearance';
title2 "Using ID with PAGE ;
proc report data=rptdata.clinics
where=(region in('1','2")))
nowd;
colums region clinname ht wt;
define region [group wi dt h=6;

define clinnane / group id;

define ht / anal ysi s nean;
define w / anal ysi s nean page;
run;

The use of the PAGE option forces WT to appear on adifferent page than HT.

Ref i ni ng REPORT Appear ance 1
Using ID with PAGE
. Thereport has
. o __ hei ght five detail rows.
region clinic name in inches
1 Bost on National Medi cal 74 WT does not
Vermont Treatnent Center 74 appear on the
2 Geneva Menorial Hospital 64 first page.
New Yor k General Hospital 63.5
New York Metro Medical Ctr 64
Ref i ni ng REPORT Appear ance 2 The samefive
Using ID with PAGE detail rowsare
reprinted with
wei ght WT rather than
region clinic name i n pounds HT. Thesame
1 Bost on National Medi cal 195 values of
Ver nont Treat ment Center 195 REGION and
2 Coneva werorial oAl e | cLinnawe
New York Metro Medical Ctr 105) £ttt
pageare
repeated.

Chapter 6: Refining Our Understanding of the PROC REPORT Siep 121

6.2 Using Variable Aliases

In the example in Section 6.1.6, six statistics are applied to each of the two analysis variables.
Here are the PROC and COLUMN statements:

proc report data=rptdata.clinics(where=(region in('1,"'2")))
nowd;
colums region clinname (ht w), (mn max n nmean nedi an);

Although nesting the statistics this way works fine, we have some limitations on the use of
DEFINE statements. Only one DEFINE statement can be applied to each of the analysis variables,
and the DEFINE attributes are applied to all of the statistics associated with that analysis variable.
This gives us only minimal control over the appearance of the individual columns associated with
each of the statistics. We can gain some control by associating additional DEFINE statements
with the statistics themselves (see Section 2.4.5). However, we can still have a problem, because
in effect we are attempting to use each analysis variable in multiple ways.

Fortunately, when we need to use one variable in more than one way, we can create an aliasfor
that variable. This alias can then have its own unique DEFINE statement. An aliasis created in
the COLUMN statement by following atable variable with an equal sign and avalid variable
name that does not otherwise appear on the COLUMN statement. The syntax to create an aias of
HT might be asfollows:

ht =htal i as

Asaresult, the report items HT and HTALIAS would both be available for use on DEFINE
Sstatements.

In the following example, we would like to create the same series of statistics for HT as were
specified in the preceding COLUMN statement, and we want to control the appearance of these
columns independently.

* Using Aliases;
titlel 'Refining REPORT Appearance';
title2 "Using a Colum Alias';
proc report data=rptdata.clinics
(where=(region in('1','2','3")))
nowd;
colums region ht ht=htm n ht=ht max ht=ht nean ht=ht nedi an;

define region [group wi dt h=6;

define ht [/ analysis n format=2. 'N;
define htmn [/ analysis mn format=4.1 'Mn';
defi ne htnax [anal ysi s max format=4.1 ' Max';
define htnean / anal ysis nmean format=4.1 ' Mean';
define htmedian / analysis nedian format=6.1 ' Medi an';

run;

122 Carpenter’s Complete Guide to the SAS REPORT Procedure

The independent DEFINE statements enable us to tailor the characteristics of each of the columns.

Ref i ni ng REPORT Appear ance |
Using a Colum Alias

Although only one analysis
variableis specified, aliases are

regron N~ Mn Max Mean Median declared so that each column can

1 4 74.0 74.0 74.0 74.0 haveitsown DEFINE statement.
2 10 63.0 64.0 63.8 64.0
3 10 64.0 74.0 68.2 67.0 I

6.3 Nesting Variables

In several earlier examples (see Sections 2.3.2 and 6.1.6) statistics have been attached with a
commato the analysis variables to which they are to be applied. Essentially the statistics have
been nested within the analysis variable. It is aso possible to nest an analysis variable within an
ACROSS variable.

In the following example, SEX is defined as an ACROSS variable, and within each value of SEX
the mean height and weight is displayed. When no variable or statistic is nested within an
ACROSS variable, the number of observationsis displayed (see Section 6.1.3). However, by
nesting an ANALY SIS variable under the ACROSS variable, we can explicitly specify the
statistic on the DEFINE statement. This allows us to choose what is to be displayed.

* Nesting Anal ysis Vari abl es;
titlel 'Refining REPORT Appearance';
title2 'Nesting Mean Wi ght and Hei ght within Sex';
* Nesting vari abl es;
proc report data=rptdata.clinics nowd;
colum region sex, (w=n wt ht); @

define region / group wi dt h=6;

define sex | across format =$2. ' Gender';
define n / analysis n format=2.0 'N; @
define wt / analysis nean fornmat=6.2 'Wight';
define ht / analysis nean format=6.1 ' Hei ght';
run;

O Thealias N isdeclared for WT. Two different statistics (N and MEAN) can now be calculated
for WT.

® A DEFINE statement appears for N, the alias of WT. Because of possible programmer
confusion with the N statistic, this alias name might not be the best of choices (WT_N might
be better). The PROC REPORT step, however, will not be confused.

Inspection of the table shows that for each value of SEX, there are three columns.

Chapter 6: Refining Our Understanding of the PROC REPORT Sep 123

Ref i ni ng REPORT Appear ance
Nesting Mean Wei ght and Hei ght within Sex
Gender
F M In thistable, the

regi on N Weight Height N Weight Height value of N actually
1 . . . 4 195.00 74.0 countsthe number of
10 2 163.00 63.0 4 177.00 69.0 nonmissing values of
2 6 109.67 63.7 4 105.00 64.0 WT. The count for
3 5 127.80 65.6 5 163.80 70. 8 nonmissing values of
4 4 143.00 66.5 10 165.60 70.0 HT isnot displayed
5 5 146.20 63.2 3 177.00 70.7 and could potentially
6 4 187.00 63.0 6 205.33 69.0 be different.
7 . . . 4 151.00 66. 0
8 4 160.00 70.0 . . .
9 2 177.00 65.0 8 190.50 68.0

6.4 Taking Full Advantage of Formats

The use of formats can be very important to the PROC REPORT programmer. Both predefined
and user-defined formats can be used in avariety of waysin order to customize the appearance of
the report.

SEE ALSO
Extensive discussion of user-defined formats with numerous examplesis provided by Chapman
(2003). Examples can also be found in Burlew (2005, e.g., p. 63).

6.4.1 User-Defined Formats

Y ou can define formats that you can then use to further enhance the appearance of your report.
Like formats supplied with SAS, these user-defined formats are also designated either on the
DEFINE statement or through the use of the FORMAT statement.

In the following example, user-defined formats are used to solve two problems that have appeared
in anumber of the previous examples. First, because REGION is a character variable, region * 10
sorts before region ‘2’ and second, the values of SEX (‘F' and ‘M’) are ahit too terse. The $REG.
format places ablank space in front of each of the single digit regions, and SGENDER. maps ‘M’
and'F to‘Male’ and ‘Female' respectively.

These formats are generated using PROC FORMAT.

* Using user defined fornats;
proc format;

value $reg '1'='" 1' '2'=" 2 '3'= 3 '4'= 4
‘5= 5 '6'= 6 '7"=" 7 '8= 8
'9'=" 9 '10'='10";

val ue $gender
"M ="Ml e F' =' Femal €' ;

run;

124 Carpenter’s Complete Guide to the SAS REPORT Procedure

* User Defined Fornmats;

titlel 'Refining REPORT Appearance';

title2 '"Using User Defined Formats';

proc report data=rptdata.clinics nofs;
col um region sex,(Ww=n w ht);

define region / group f or mat =$r eg6b. ;

define sex / across f or mat =$CGender. ' Gender';
define n / analysis n format=2.0 "N ;
define wt / anal ysis nean format=6.2 "Weight';
define ht / anal ysis nean fornmat=6.1 ' Hei ght ' ;
run;

Notice that the order of the regions has now changed. Unless the programmer specifies otherwise,
when aformat is used on the DEFINE statement, there is an implied ORDER=FORMATTED

option.
Ref i ni ng REPORT Appear ance
Usi ng User Defined Formats
Gender
Femal e Mal e
region N Weight Height N Weight Height SEX isan
1 . . . 4 195.00 74.0 ACROSS
2 6 109.67 63.7 4 105.00 64.0 variable with
3 5 127.80 65.6 5 163.80 70.8 three columns
4 4 143.00 66.5 10 165.60 70.0 under each
5 5 146.20 63.2 3 177.00 70.7 value.
6 4 187.00 63.0 6 205.33 69.0
7 . . . 4 151.00 66.0
8 4 160.00 70.0 . .
9 2 177.00 65.0 8 190.50 68.0
10 2 163.00 63.0 4 177.00 69.0

Inthe LISTING destination, we can make the groups of columns that are nested under each value
of SEX more distinct by making a slight further modification to the $GENDER. format. Repeat
characters (see Section 4.3.1) are correctly applied to headers, even when they are used in
formatted values. Underscores work well as repeat characters in headers associated with ACROSS
variables. The VALUE statement in the PROC FORMAT step becomes the following:

val ue $gender
"M='"_Mile_' 'F=_Female_;
run;

Chapter 6: Refining Our Understanding of the PROC REPORT Sep 125

Ref i ni ng REPORT Appear ance
Usi ng User Defined Formats Wth Repeat Characters

Gender
__ Femule Mal e

regi on N Weight Height N Weight Height
1 . . . 4 195.00 74.0
2 6 109.67 63.7 4 105.00 64.0
3 5 127.80 65.6 5 163.80 70.8
4 4 143.00 66.5 10 165.60 70.0
5 5 146.20 63.2 3 177.00 70.7
6 4 187.00 63.0 6 205.33 69.0
7 . . . 4 151.00 66.0
8 4 160.00 70.0 . .

9 2 177.00 65.0 8 190.50 68.0
10 2 163.00 63.0 4 177.00 69.0

The columns
associated with the
values of the
ACROSSvariable
aremoreclearly
grouped.

In the following example, aformatted value is used along with the SPACING= option to

effectively concatenate two columns.

proc format; @

val ue $SYM
'01' = ':Sleepiness’
'02' = ':Coughing'
'03" = '":Linmping '
'04' = ':Bleeding
'05' = ':Wak'
'06' = ':Nausea'
'07' = ':Headache'
‘08 = "':Cranps'
'09' = "':Spasns '
'10" = ':Shortness of Breath';

run;

* Define Statenment spacing option;
titlel 'Using Proc REPORT ;
title2 'Define Statement SPACI NG Option';
title3 'Renovi ng Spaces';
proc report data=rptdata.clinics nowd;
colum (' Name' | nane fnane) synp synp=synpnane; @

defi ne | nane /| order 'Last’;
defi ne fnane / order "First';
define synp | display format=$2. 'Sy'; ©
define synpname / display format=$sym @

spaci ng=0 "nptom ; ©
run;

O A user-defined format is created that associates symptom codes with the symptom label.

® Thevariable SYMP isaso assigned an alias, SY MPNAME.

© Thefirst instance of the variable SYMP is given just enough space ($2). Notice that the label

starts the word “ Symptom.”

126 Carpenter’s Complete Guide to the SAS REPORT Procedure

O The $SYM. format is applied to the alias SYMPNAME, which is the second instance of the
variable SYMP.

© With SPACING= set to 0, there are no spaces between this column and the one to the | eft
(SYMP). Thelabel finishes the word “ Symptom.”

Usi ng Proc REPORT
Define Statement SPACI NG Option
Rermovi ng Spaces
Nane
Last Fi rst Synpt om
Mast er s Martha 02: Coughi ng The column labeled
Maxi m Kur t “Symptom” isactually
Maxwel | Linda 06: Nausea two columnswith no
Mer cy Ronal d 04: Bl eedi ng space (SPACING=0)
Moon Rachel 10: Shortness of Breath between them.
Most Mat 02: Coughi ng
Naber s Davi d 04: Bl eedi ng
Nol an Terrie 04:Bl eeding
Ad sen June 10: Shortness of Breath
Portions of the table are not shown .

The reader of the report sees only three apparent columns. The SPACING= option haslittle
utility outside of the LISTING destination. Creating a computed variable with a concatenated
valueis generally amore robust solution, and one which works for destinations other than
LISTING (see Section 7.6.2 for an example that creates a character variable).

MORE INFORMATION
A user-defined format is used to form groups in the example in Section 7.4. Formats are used to
perform traffic lighting in Section 8.4.2 and to form links to other filesin Section 8.5.8.

SEE ALSO

A tutoria on building and using user-defined formats is provided by Carpenter (2004b). Chapman
(2003) and DeAngelis (2005) both create and use severa user-defined formats. Levin (2005)
creates user-defined formats to use with the STY LE= option. |zard and Chen (2005) also use the
SPACING= option to concatenate two columns.

6.4.2 Preloading Formats

When alevel of aclassification or grouping variable (define type GROUP, ORDER, or ACROSS)
isnot included in the data, the associated row or column does not appear in the table. Even though
we might not always know ahead of time which values are not in the data, we might still want to
have al of the potentia levelsin the report.

One solution isto use aDATA step to build observations into the incoming data table. However,
through the process of preloading formats, we can accomplish the same thing without using the
DATA step.

Chapter 6: Refining Our Understanding of the PROC REPORT Siep 127

The options associated with this process are a bit confusing in that they work together, and it is
the combination of options that determines the ultimate effect. Some of these options appear only
on the PROC statement and others only on the DEFINE statement.

The following options are used with the DEFINE statement:

PRELOADFMT loads the format levels prior to execution. This option is always present
when any of the others are al so used.

EXCLUSIVE specifies that only datalevels that are included in the format definition are to
appear in thetable.

The following PROC statement options work in combination with the DEFINE statement options:

COMPLETEROWS specifiesthat all rows representing format levels are to appear in the report.
COMPLETECOLS gpecifiesthat all columns representing format levels are to appear in the report.

Through the use of the DEFINE statement PRELOADFMT option and aformat, we can cause
each individual level of aclassification variable to appear on the table, regardless of whether it
existsin the data. The EXCLUSIVE option enables you to exclude those levels not on the format,
regardless of whether they arein the data table.

The examplesin this section demonstrate the various combinations of options associated with the
PRELOADFMT option by referencing the following two user-defined formats. Each format
contains alevel that is not in the data, and the SREGX. format specifies only some of the values
that do exist in the data.

* Usi ng PRELOADFMI wi th user defined fornmats;
proc format;
value $regx '1'=" 1' '2'=" 2" 'X' = X
val ue $genderu
'M="Male' 'F =" Female' 'U =" Unknown';
run;

If the PRELOADFMT option appears on the DEFINE statement, the documentation states that it
must be accompanied by aformat specification and either an ORDER= DATA or the
EXCLUSIVE option. However, at least for some operating systems and versions of SAS, the
specification of PRELOADFMT along with a FORMAT= option does not necessarily aso require
the ORDER= and EXCLUSIVE options.

In the following example, the EXCLUSIVE option is used to remove regions that are not on the
format.

* User Defined Fornats;
titlel 'Refining REPORT Appearance';
title2 'Using PRELOADFMI with EXCLUSI VE ;
proc report data=rptdata.clinics nowd;
colum region sex, (w=n w);
define region / group
f or mat =$r egx6.
prel oadf mt excl usi ve;

defi ne sex /| across f or mat =$Genderu. ' CGender';
define n [/ analysis n format=2.0 'N ;
define wt / analysis nean format=6.2 'Wight';

run;

128 Carpenter’s Complete Guide to the SAS REPORT Procedure

Notice that, although there is no WHERE clause to eliminate data, only regions 1 and 2 appear on

the table.

Refi ni ng REPORT Appear ance
Usi ng PRELOADFMI wi t h EXCLUSI VE

Gender
Fenal e Mal e
regi on N Wi ght N Wi ght
1 . 4 195.00
2 6 109.67 4 105.00

Since the format $REGX. contains
definitionsonly for regions 1 and 2 (X
isn’'t in the data), the EXCLUSIVE
option eliminatesall of the other
regions.

Simply replacing the EXCLUSIVE option with the ORDER= option (the PRELOADFMT option
usually expects either the EXCLUSIVE or the ORDER= options) does not cause the region X to
appear in the report. However, if we also use the PROC statement option COMPLETEROWS, we
get all the levels of the format (including region X, which has no data), aswell asal of the levels

of REGION actually occurring in the data.

* Using PRELOADFM;

titlel 'Refining REPORT Appearance';

title2 'Using PRELOADFMTI with';
title3 ' ORDER= and COVPLETEROWE ;
proc report data=rptdata.clinics
nowd
conpl et er ows;

colum region sex, (w=n w);
define region / group

pr el oadf mt

or der =dat a;
define sex | across
define n / analysis n
define wt / anal ysi s mean
run;

f or mat =$r egx6.

f or mat =$Genderu. ' CGender';
format=2.0 'N ;

format=6.2 ' Wi ght"';

Now, even though there is no data for region X, region X appears on the table.

Ref i ni ng REPORT Appear ance
Usi ng PRELOADFMT wi t h
ORDER= and COVPLETEROWS
Gender
Femal e Mal e
regi on N Wi ght N Wi ght
1 0 . 4 195.00
2 6 109.67 4 105.00
X 0 . 0 .
3 5 127.80 5 163.80
7 0 . 4 151.00
10 2 163.00 4 177.00
9 2 177.00 8 190.50
4 4 143.00 10 165.60
5 5 146.20 3 177.00
6 4 187.00 6 205.33
8 4 160.00 O

Notice the values of REGION. Thefirst
threerows are formatted (using
$REGX., which inserts a leading blank).
However, theremainder are
unformatted and in the same order as
the regionsthat first appear in the data
(ORDER=DATA).

Chapter 6: Refining Our Understanding of the PROC REPORT Sep 129

As one might anticipate, using COMPLETEROWS along with EXCLUSIVE limits the table to
the levels of the format, but also includes any format levels not found in the data.

* Usi ng PRELOADFM;
titlel 'Refining REPORT Appearance';
title2 'Using PRELOADFMI wi th EXCLUSI VE and COVPLETEROMS ;
proc report data=rptdata.clinics
nowd conpl et er ows;
colum region sex, (w=n w);

define region / group f or mat =$r egx6.
prel oadf mt excl usi ve;
define sex / across f or mat =$Gender u.
' Gender ' ;
define n / analysis n format=2.0
‘N
define w / anal ysis nean fornat=6.2
Wi ght';
run;

Remember that, generally, you should use either the EXCLUSIVE or ORDER= option along with
PRELOADFMT.

Ref i ni ng REPORT Appear ance

Usi ng PRELOADFMT wi t h EXCLUSI VE and COVPLETEROWG
EXCLUSIVE limitsthe

Gender regionsto 1 and 2,
Fenal e Mal e wher eas
regi on N Wi ght N Wi ght COMPLETEROWS
1 0 . 4 195.00 bringsin region X.
2 6 109.67 4 105.00
X 0 0

The previous examples in this section have to do with the control of rows. Since we are al'so
defining an ACROSS variable, we can preload formats for that variable as well.

* Usi ng PRELOADFM;
titlel 'Refining REPORT Appearance';
title2 'Using PRELOADFMI with EXCLUSI VE ;
title3 "as well as COWLETEROANS and COVWPLETECOLS' ;
proc report data=rptdata.clinics
nowd
conpl et erows conpl et ecol s;
colum region sex, (w=n w);
define region / group
format =$r egx6. prel oadf nt excl usi ve;

define sex / across
f or mat =$Genderu. ' Gender'
pr el oadf nt ;

define n / analysis n
format=2.0 'N ;

define w / anal ysi s nmean

format=6.2 ' Wi ght"';
run;

Since the format $GENDERU. includes alevel for unknown values of SEX, and since we have
included the COMPLETECOL S option on the PROC statement, that level now appearsin the
table even though there are no observations with that value of SEX.

130 Carpenter’s Complete Guide to the SAS REPORT Procedure

Ref i ni ng REPORT Appear ance
Usi ng PRELOADFMTI wi t h EXCLUSI VE
as wel | as COVPLETEROWS and COVPLETECOLS The COMPLETEROWS and
COMPLETECOL S options
Gender have caused the preloaded
Fenmal e Mal e Unknown formatsto include both arow
region N Wight N Wight N Wight and a column that do not
1 0 . 4 195.00 O . appear in the data.
2 6 109.67 4 105.00 0
X 0 0 0

In this example, PRELOADFMT is used without either an ORDER= or EXCLUSIVE option on
the DEFINE statement for SEX.

6.4.3 Order Based on Format Definition

Generally you will want to order the rows or columns of your report by using one of the four
primary values associated with the ORDER= option (see Section 2.4.3). Sometimes, however, you
might want to specify an order that does not fit any one of these types. A traditional approach has
been to create a nonprinted variable that can be used to force the desired order. Thiswas donein
the first examplein Section 6.4.1. Although effective, this technique can be a bit cumbersome. In
recent versions of SAS we have a better aternative.

Normally when a user-defined format is created, the format is internally placed into sorted order.
Thusit does not particularly matter what order the value/label pairings are specified in the value
statement. However, this reordering can be prevented through the use of the NOTSORTED option
on the VALUE statement. When this option is applied, theinternal order of the format remains as
it isdefined. In the following PROC FORMAT, the format $SYM is defined. However, the
researcher has placed the rows in the order that isto be used in the report.

proc format;
val ue $SYM (not sort ed)

01' = 'Sl eepiness'
'02' ="' Coughing'
'10' = ' Shortness of Breath'
'05' ="' Wak'
'03" = "'Linmping '
'07'" = ' Headache'
'06' = ' Nausea'
‘08" ="'CQCranps'
'09' = "'Spasns '
‘04" = 'Bleeding';

run;

When the NOTSORTED option is used on the VALUE statement, the order in which theitem
pairs are defined in the VALUE statement is preserved.

titlel 'Using Proc REPORT ;
title2 '"Using the Format Definition Order';
proc report data=rptdata.clinics

nowd conpl et er ows;

Chapter 6: Refining Our Understanding of the PROC REPORT Sep 131

colum synp n;
define synp [/ group

prel oadf nt order=data
format =$sym ' Synpt om ;
define n ["N
run;

We can take advantage of the nature of the format through the use of the PRELOADFMT and
ORDER=DATA options. Normally, the ORDER=DATA option would cause the table rows to be
data dependent. However, when it is used in conjunction with PRELOADFMT on aformat that
was built using the NOTSORTED option, the rows are instead arranged according to the order of
the format definition. Thisis shown in the resulting table.

Usi ng Proc REPORT
Using the Format Definition Order
Synpt om N
Sl eepi ness 4
Coughi ng 10
Shortness of Breath 14 Theorder of therowsin thereport are
Weak 8 now based on the order of theitemsin
Li rpi ng 4 the format definition.
Headache 0
Nausea 12
Cr anps 0
Spasmns 2
Bl eedi ng 14

Notice that, since the COMPLETEROWS option (see Section 6.4.2) isincluded on the PROC
statement, even symptoms with no records in the data set are included in the table.

For very large formats, there might be some performance access i ssues when you use the
NOTSORTED option.

SEE ALSO
In apaper not strictly directed at PROC REPORT, Stewart and Fecht (2002) give an example of
the use of these options.

6.5 Other PROC Statement Options

Most of the primary PROC REPORT statement options are detailed in other sections of this book.
A magjority of these are introduced in Section 4.4. This section discusses some of the other, often
less commonly used, options associated with the PROC REPORT statement.

6.5.1 Removing Headers

Generally the ability to define and control the header text is a magjor advantage of the REPORT
procedure. However, for one reason or another you might sometimes want to turn off these
headers. Y ou can use the NOHEADER option to suppress all of the text that appears in the header
section. Thisincludes text specified in the COLUMN statement and on the DEFINE statement.

132 Carpenter’s Complete Guide to the SAS REPORT Procedure

* Renovi ng headers;
titlel 'Refining REPORT Appearance';
title2 'Usi ng NOHEADER ;
proc report data=rptdata.clinics(where=(region in('1,"'2")))
noheader nowd;
colums region n (' Mean' ht w);
define region / group w dth=6;

define n I "N ;

define ht / anal ysi s nmean
format=6.2 ' Hei ght"';

define wt / anal ysi s mean

format=6.2 ' Wi ght"';
run;

The NOHEADER option suppresses the header text, resulting in the following table:

Ref i ni ng REPORT Appear ance
Usi ng NOHEADER

1 4 74.00 195.00
2 10 63.80 107.80

Obviously for areport of this type, turning off the headers would be an odd thing to do. However,
when the NOHEADER option is coupled with the options in the next two sections, advantages
emerge.

6.5.2 Using NAMED Output

The NAMED option writes the table in named format. Thisis similar to the NAMED input style
that can be used to read in datain the DATA step and the NAMED output style that can be used
on the PUT statement. In the report, the variable name is followed by an equals sign (=), whichis
followed by the value itself.

Unless you have multiple columns that you want to stack, it is unlikely that you will find many
uses for this option. However, when coupled with the NOHEADER option in the LISTING
destination, it can have some value. The following example uses the same data as the examplein
Section 4.4.8, and here we are using the NOHEADER and WRAP options along with the
NAMED option. The WRAP option (Section 4.4.8) applies only to the LISTING destination.

ods listing;
ods pdf file="&path\results\ch6_5_2.pdf";

* Using the WRAP opti on;
titlel 'Refining REPORT Appearance';
title2 'Using WRAP wi t h NOHEADER and NAMED ;

dat a denog;

input nane $ sex $ idnum scorel-scorel0 / comment $65.;

format nanme $5. sex $3. idnum 5. scorel-scorelO 6.
conment $65. ;

dat al i nes;

Russ M123 1 9 3847586 3

Cccasionally has difficulty with verbal conmuni cation

Kevin M456 4 7 56 85 4 3 2 3

Chapter 6: Refining Our Understanding of the PROC REPORT Sep 133

Is very particul ar about the placenment of personal objects
Paige F 789 6 743589234

Gets very excited by the success of those people close to her
run;

proc report data=denog | s=80 nowd
noheader w ap naned;
col um nanme conment;
define nane | group;
define conment / display;
break after name / skip;
run;

The NOHEADER option on the PROC statement removes the column headers, whereas the
WRAP option only affectsthe LISTING destination.

Ref i ni ng REPORT Appear ance
Usi ng WRAP wi t h NOHEADER and NAMED

name=Kevi n
conment =l s very particul ar about the placenent of personal objects

name=Pai ge
coment =CGets very excited by the success of those people close to her

name=Russ
coment =Cccasionally has difficulty with verbal conmmunication

Writing this table to the PDF destination resultsin the following:

Refining REPORT Appearance
Using WRAP with NOHEADER and NAMED

name=Kevin | comment=Is very particular about the placement of personal objects

name—Paige | comment—Gets very excited by the success of those people close to her

name=Russ | comment=Occasionally has difficulty with verbal communication

Although this technique has had limited utility in the reportsthat | have generated, it is presented
here for the sake of completeness.

MORE INFORMATION
Section 4.5.3 discusses the DEFINE statement FL OW option.

SEE ALSO

Sample 637 discusses the wrapping of observations that are too long to fit on areport line. SAS
Technical Report P-258 (1993, pp. 183, 225) and SAS Guide to the REPORT Procedure,
Reference, Release 6.1 (1995, pp. 61-62) both introduce and use the NAMED option.

134 Carpenter’s Complete Guide to the SAS REPORT Procedure

6.5.3 Debugging with the LIST Option

The LIST option can be used to expand the PROC REPORT step in the SAS log. The expansion
includes the statements and options that have been left at defaults. The following simple PROC
REPORT step has three variables on the COLUMN statement, but only two DEFINE statements.
The output is directed only to the LISTING destination, and the programmer might want to know
which options are being applied as defaults.

titlel 'Using Proc REPORT ;
title2 'Using the LIST Option';
proc report data=rptdata.clinics
list nowd;
colum region ht wt;
define region / group;
define ht / anal ysis nean ' HEl GHT' ;
run;

Since the LIST option has been specified, the SAS log includes the following expanded PROC
REPORT step code (the line breaks and code alignments are mine). The expanded code includes a
DEFINE statement for WT.

PROC REPORT DATA=RPTDATA. CLI NI CS
LS=126 PS=41 SPLIT="/" NOCENTER ;
COLUMWN (region ht wt);

DEFI NE region / GROUP FORMAT= $2.
W DTH=2 SPACI NG=2 LEFT "region" ;
DEFINE ht / MEAN FORMAT= BEST9.
W DTH=9 SPACI NG=2 RI GHT "HElI GHT" ;
DEFINE wt / SUM FORVAT= BEST9.
W DTH=9 SPACI NG=2 RI GHT "wei ght in pounds" ;
RUN;

SEE ALSO
The LIST option is mentioned in SAS Technical Report P-258 (1993, pp. 182-183).

6.5.4 Including MISSING Classification Levels

By default, missing values for classification variables are not displayed in SAS programs. In
Section 6.1.3, the MISSING option is used on the DEFINE statement to designate that a missing
valueisavalid level of the classification variable. Y ou can also place the MISSING option on the
PROC statement to designate missing values as valid classification levels for all classification
variables.

In the following example, afew missing values have been artificialy created for REGION and
CLINNAME inthe RPTDATA.CLINICS data set, and written to WORK.REGMISS. Without a
MISSING option on either the DEFINE statement (see Section 6.1.3) or on the PROC statement,
missing values of these grouping variables are ignored.

* Using M SSING on the PRCC statenent;

titlel 'Refining REPORT Appearance';

title2 "Artificial Mssing Val ues';

title3 'Wthout the M SSING Option';

proc report data=regm ss(where=(region<'4'))
nowd;

Chapter 6: Refining Our Understanding of the PROC REPORT Sep 135

colum region clinnane ('Height' ht ht=htnmean);
defi ne region / group format=%$6.;
define clinnane / group;

define ht / analysis N format=6.1 'N ;
defi ne htnmean / analysis Mean format=6.1 ' Mean';
run;
Ref i ni ng REPORT Appear ance
Artificial Mssing Val ues
Wthout the M SSING Option
Hei ght
region clinic nane N Mean
1 Bost on National Medi cal 2.0 74.0
Ver nont Treat nent Center 2.0 74.0
10 Portl| and General 2.0 69.0
Seattl e Medi cal Conpl ex 4.0 66.0
2 Geneva Menorial Hospital 2.0 64.0
New Yor k General Hospital 3.0 63.7
New York Metro Medical Ctr 3.0 64.0
3 Bet hesda Pi oneer Hospit al 4.0 72.5
Naval Menorial Hospital 4.0 65.5
Phi | adel phi a Hospit al 2.0 65.0

Inclusion of the MISSING option on the PROC statement has the same effect asitsinclusion on
the DEFINE statements for both REGION and CLINNAME. Because the MISSING optionison
the PROC statement, a missing value for REGION or CLINNAME is now avalid classification
level.

titlel 'Refining REPORT Appearance';
title2 "Artificial Mssing Val ues';
title3 "Wth the M SSING Option';
proc report data=regm ss(where=(region<'4'))
nowd ni ssing;
colum region clinnane ('Height' ht ht=htmean);
define region / group format=%$6.;
define clinnane / group;

define ht / analysis N format=6.1 'N ;
defi ne htnean / analysis Mean format=6.1 ' Mean';
run;

The MISSING option has forced the inclusion of six rows that would have otherwise not been
written to the final report.

136 Carpenter’s Complete Guide to the SAS REPORT Procedure

Ref i ni ng REPORT Appear ance
Artificial Mssing Val ues
Wth the M SSING Option
Hei ght
region clinic nane N Mean
1.0 70.0
Atlanta General Hospital 2.0 66.0
Dal | as Menorial Hospital 2.0 63.0
Houst on Gener al 2.0 69.0
San Di ego Menorial Hospital 1.0 70.0
1 Bost on National Medi cal 2.0 74.0
Vermont Treatment Center 2.0 74.0
10 Portl and General 2.0 69.0
Seattl e Medical Conpl ex 4.0 66.0
2 2.0 63.5
Geneva Menorial Hospital 2.0 64.0
New Yor k General Hospital 3.0 63.7
New York Metro Medical Ctr 3.0 64.0
3 Bet hesda Pi oneer Hospit al 4.0 72.5
Naval Menorial Hospital 4.0 65.5
Phi | adel phi a Hospit al 2.0 65.0

Asagenerd rule, | prefer to use the MISSING option on the DEFINE statement, as that location
offers more control and flexibility.

MORE INFORMATION
Missing classification levels can aso be included through the use of the MISSING option on the
DEFINE statement (see Section 6.1.3).

SEE ALSO
SAS Technical Report P-258 (1993, pp. 226—227) has an example that uses the MISSING option.

6.6 BY-Group Processing

The usage of the BY statement with PROC REPORT is similar to its usage in other procedures.
The similarity extendsto BY statement options, such as DESCENDING and NOTSORTED,
which are aso supported and a so behave the same as in other reporting procedures.

TheBY statement can be used to form groups much as the GROUP option is used on the DEFINE
statement. The primary difference between the two isin the appearance of the report. By defaullt,
the REPORT procedure creates a new page for each BY group.

MORE INFORMATION
Section 6.8 contains an additional brief discussion of paging issues.

SEE ALSO
SAS Technical Report P-258 (1993, pp. 191-192) introduces the use of the BY statement.

Chapter 6: Refining Our Understanding of the PROC REPORT Sep 137

6.6.1 Using the BY Statement

Asisthe case whenever the BY statement is used (except with PROC SORT of course), the data
is expected to be in the order specified by the BY statement variables, or else the NOTSORTED
option must be present.

* Using the BY statenent;
proc sort data=rptdata.clinics
out =clinics;
by region;
run;

titlel 'Refining REPORT Appearance';
title2 'Using the BY Statenent';
proc report data=clinics nowd ;

by region;

colums clinnanme ht wt;

define clinname / group;

define ht / anal ysi s nean;
define wt / anal ysi s nean;
run;

When the BY statement is used in the LISTING, RTF, or PDF destinations, a separate pageis
created for each value of REGION.

Ref i ni ng REPORT Appear ance
Usi ng the BY Statenent
regi on=1
hei ght wei ght
clinic nane in inches in pounds
Bost on National Medi cal 74 195
Vermont Treat ment Center 74 195
Ref i ni ng REPORT Appear ance
Usi ng the BY Statenent
regi on=10
hei ght wei ght
clinic nane in inches in pounds
Portl and General 69 177
Seattl e Medi cal Conpl ex 66 170
Renmi ni ng regions are not shown .

138 Carpenter’s Complete Guide to the SAS REPORT Procedure

MORE INFORMATION

The examplein Section 8.6.2 usesthe BY statement to build atable with separate pages for each
value of the BY statement, and includes the use of the TITLE statement option #BY VAL and the
NOBYLINE system option. These TITLE options are also discussed in Section 6.6.3.

6.6.2 Creating Breaks with BY Groups

Because the BY variable(s) are neither GROUP nor ORDER variables, you cannot use them in a
BREAK statement. Fortunately, the RBREAK statement does work with the BY statement, and it
creates a separate summary for each level of the BY variables.

* Using the BY statenent;
proc sort data=rptdata.clinics
out =clinics;
by region;
run;

titlel 'Refining REPORT Appearance';
title2 "Using the BY Statenent with RBREAK' ;
proc report data=clinics nowd;

by region;

colums clinname ht wt;

define clinname / group;

define ht / anal ysi s nean;
define wt / anal ysi s nean;
rbreak after / dol summmri ze;
run;

When the BY statement is used, the RBREAK statement generates a summary line after each
page (BY variable combination), rather than once at the end of the report.

Refi ni ng REPORT Appear ance
Using the BY Statenent w th RBREAK

regi on=1
hei ght wei ght
clinic nane in inches in pounds
Bost on National Medi cal 74 195
Vermont Treat ment Center 74 195

74 195

Chapter 6: Refining Our Understanding of the PROC REPORT Sep 139

Ref i ni ng REPORT Appear ance
Usi ng the BY Statenent w th RBREAK

regi on=10
hei ght wei ght
clinic nane in inches in pounds
Portl and General 69 177
Seattl e Medi cal Conpl ex 66 170

67 172.33333

Remai ni ng regi ons are not shown .

Because of the BY statement, the RBREAK summary now appears for each BY level. Thereisno
longer a summary across the entire report. When you need the summary for each region and a
summary across the entire report, using the BY statement would not be your best approach.
Instead, REGION could be the highest level of group variable, and the PAGE__ option (see
Section 5.4) could be used to create the page breaks for each region.

6.6.3 Using the #BYVAL and #BYVAR Options

Whenever the BY statement has been specified, the #BY VAR and #BY VAL TITLE and
FOOTNOTE options are available for use with the REPORT procedure.

#BYVAR isreplaced with the name of then" BY variablein the BY list.
#BYVAL, isreplaced by the value of then" BY variablein the BY list.

These options are not at al limited to PROC REPORT steps, and can be widely used in SAS
programming.

* Using the BY statenment;
proc sort data=rptdata.clinics
out =cl i ni cs;
by region;
run;

options nobyline; ©
titlel 'Refining REPORT Appearance';
title2 '"Using the BY Statenent with TITLE Options';
title3 '#byvarl is #byvall ; @
proc report data=clinics nowd;
by region;
colums clinnane ht wt;
define clinname / group;
define ht / anal ysi s nean;
define wt / anal ysi s nean;
run;

140 Carpenter’s Complete Guide to the SAS REPORT Procedure

O Because the value of the BY variableisin thetitle, the BY LINE option is no longer needed
and is suppressed by using the NOBY LINE system option.

@ In the resulting reports, #BY VAR1 is replaced by the name of the first variable in the list of
BY variables. In this case, thereisonly one BY variable, REGION. Similar action istaken for
#BYVALL, except the value of thefirst BY variable replaces the option.

Ref i ni ng REPORT Appear ance
Using the BY Statenent with TITLE Options
regionis 1

hei ght wei ght
clinic nane in inches in pounds
Bost on Nati onal Medi cal 74 195
Vermont Treat nent Center 74 195

Ref i ni ng REPORT Appear ance
Using the BY Statenent with TITLE Options
region is 10

hei ght wei ght
clinic nane in inches in pounds
Portl and General 69 177
Seattl e Medi cal Conpl ex 66 170

Rerai ni ng regi ons are not shown .

As an alternative to using the number of the BY variable, the name of the variable can also be
used by including it in parentheses. TITLE3 in the previous program becomes the following:

title3 '#byvar(region) is #byval (region)’;

The#BY LINE option places the entire BY LINE into the title. It appears in the same form as the
BY LINE would otherwise appear in the body of the report. For the BY statement

by region sex;
aTITLE statement such as this one

titled4 '#BYLINE ;

would produce atitle that might look like this:

regi on=9 patient sex=M

Chapter 6: Refining Our Understanding of the PROC REPORT Sep 141

MORE INFORMATION
The#BYVAL optionisused in Section 8.6.3 in an example that also puts page numbersin the
title.

SEE ALSO

Hamilton (2004) includes a discussion of the use of these optionsin atitle. They are briefly
mentioned in SAS Technical Report P-258 (1993, p. 96) and are more fully described in the
documentation for Base SAS. Burlew (2005, pp. 20-25) uses these optionsin a PROC PRINT
example, and in a PROC REPORT example on page 149.

6.6.4 BY Groups and the Output Delivery System

In Section 6.6.1 it was stated that each level of the BY variables causes a new page to be
generated. This behavior is strictly true for the LISTING destination; however, the definition of
what constitutes a page changes for other ODS destinations.

If we rerun the example in Section 6.6.1 and include another destination, such as HTML, we see
that although the individual regions appear on separate reports, they are al on the same HTML
file and on the same virtua page.

ods htm file="&path\results\ch6_6_4a.htm";

* Using the BY statement;
proc sort data=rptdata.clinics
out =cl i ni cs;
by region;
run;

titlel 'Refining REPORT Appearance';
title2 'Using the BY Statenent';
title3 '"Paging in HTM.';
proc report data=clinics nowd,

by region;

colums clinnanme ht wt;

define clinname / group;

define ht / anal ysi s nean;
define w / anal ysi s nean;
run;

ods html cl ose;

142 Carpenter’s Complete Guide to the SAS REPORT Procedure

Here are the first two regions shown in the HTML file;

Refining REPORT Appearance
Using the BY Statement
Paging in HTML

region=1
clinic name height in inches weight in pounds
Boston Mational Medical 74 195
Yermont Treatment Center 74 195

Refining REPORT Appearance
Using the BY Statement
Paging In HTML

region=10
clinic name heightin inches weight in pounds
Partland General 59 177
Seattle Medical Complex 56 170

Y ou can also create separate files by using the NEWFILE= option on the ODS statement. This
option can take on the following values:

NONE (the default) resultsin a single page, even across PROC step boundaries.
PROC creates anew file at each PROC step boundary.

OUTPUT writes each table for the OUTPUT destination into a separate table.
PAGE generates a new file each time a page is explicitly generated.

BY GROUP creates anew file for each level of the BY variables.

In the following example, the NEWFILE= optionis set to BY GROUP, which will force anew file
for each level of the BY variables. When multiple files are created, a number will be appended to
the name of the file for each new file. If the name already contains a number or numbers, the
right-most number will be incremented. In this example, the first file is named

ch6_6_4b0. ht m , successive values of regions will bewrittenintoch6_6_4b1. htm |
ch6_6_4b2. ht m , etc.

ods htm file="&path\results\ch6_6_4b0. htnm "
newf i | e=bygr oup;

* Using the BY statement;
proc sort data=rptdata.clinics
out =cl i ni cs;
by region;
run;

titlel 'Refining REPORT Appearance';
title2 'Using the BY Statenent';
title3 'Paging in HTM. wi th NEWFI LE=BYGROUP' ;

proc report data=c
by region;

Chapter 6: Refining Our Understanding of the PROC REPORT Sep 143

l'inics nowd;

columms clinnane ht wt;
define clinname / group;
define ht / anal ysis mean;
define wt / anal ysis mean;

run;
ods htnl cl ose;

Thefilech6_6_4b0. ht M contains the following:

Paging in HTML

Refining REPORT Appearance
Using the BY Statement

with NEWFILE=BYGROUP

region=1
clinic name height in inches weight in pounds
Boston MNational Medical 74 195
Yermont Treatment Center 74 195

Thefilech6_6_4bl. ht

m contains the following:

Refining REPORT Appearance
Using the BY Statement
Paging in HTML with NEWFILE=BYGROUP

region=10
clinic name height in inches weight in pounds
Fortland General 543 177
Seattle Medical Complex GE 170

MORE INFORMATION

Section 6.8 contains an additional brief discussion of paging issues.

144 Carpenter’s Complete Guide to the SAS REPORT Procedure

6.7 Calculations Using the FREQ Statement

The FREQ statement enables you to specify avariable to be used when generating statistics based
on collapsed observations. This statement is essentially the same in PROC REPORT asitisina
number of other procedures that make statistical calculations.

In the data table RPTDATA.CLINICS, thereis one observation per patient. If we had received a
summary table that had been rolled up so that it had discrete values for HT, we would still be able
to calculate statistics for HT as long as we knew how many patients had each individual height.
When this frequency is stored in avariable, we can point to it with the FREQ statement.

This capability is demonstrated in the following example by first summarizing the data and then
calculating the mean and variance in PROC REPORT using only the summarized data. A PROC
MEANS can be used to count the number of observations with each distinct value of HT. For this
example, | summarize the data here only to demonstrate how you would generate summary
statistics if you received data that was already summarized. | hope it is apparent that it would be
more than a bit silly to summarize in PROC MEANS or PROC SUMMARY just so that the
FREQ option could be used in PROC REPORT.

titlel 'Refining REPORT Appearance';
title2 'Using the FREQ Statenent';

proc neans data=rptdata.clinics(where=(region in('1,"'10")))
nopri nt;
cl ass region ht;
var ht;
out put out=clinics(keep=_type_ region ht count mean vari ance)
n=count nean=nean var=vari ance;
run;

The PROC MEANS output data (WORK.CLINICS) contains only one observation for each
distinct value of HT within aregion. Thisis sufficient information to accurately calculate the
variance. For regions 1 and 10, the data that will be used by PROC REPORT looks like this:

Ref i ni ng REPORT Appear ance
Usi ng the FREQ St at enent

Summari zed data used by REPCRT Summarized data can still be used to

calculate statistics such as means and

region ht count variances. Thisdata containsthe counts or
1 24 4 frequency of each value of HT.
10 63 2
10 69 4

Inregion 1, al four patients had the same height. The data listing also indicates that there were
four observations with a height of 69 inchesin the original data for region 10.

The PROC REPORT step uses the FREQ statement in order to cal culate the mean and variance
correctly. The variable named on the FREQ statement does not usually appear on the COLUMN
statement. Effectively, when the statistics are cal culated, each incoming observation is used the
number of times indicated by the frequency variable.

Chapter 6: Refining Our Understanding of the PROC REPORT Sep 145

title3 'Mean and Variance Cenerated by REPORT;
proc report data=clinics nowd;

colum region ht ht=htN ht=htvar;

define region / group format=%6.;

define htn / analysis n "N ;

define ht / anal ysis nean ' Mean';
define htvar /[analysis var 'Variance';
freq count;

run;

Notice that COUNT does not appear on the COLUMN statement. The report generated by PROC
REPORT correctly calculates the means and variances by taking the frequency of each height.

Ref i ni ng REPORT Appear ance
Usi ng the WEI GHT St at enment
Mean and Variance Generated by REPORT

regi on Mean N Variance
1 74 4 0
10 67 6 9.6

If you accidentally forgot to include the FREQ statement, the cal culations would be done
incorrectly because the wrong N size would be used. The report would be as follows:

Ref i ni ng REPORT Appear ance
Usi ng the WEI GHT St at ement
W thout including the FREQ St at enent

regi on Mean N Variance
1 74 1 .
10 66 2 18

MORE INFORMATION
The FREQ statement is used to calculate weighted means in Section 7.9.4.

6.8 A Further Comment on Paging Issues

Starting in SAS 9.2, PROC REPORT ignores the PAGESIZE and LINESIZE optionsin all non-
monospace destinations. Effectively, the page is treated as infinite in both dimensions. This means
that the only page boundaries are those introduced by a PAGE option on a BREAK, RBREAK
(see Section 3.2.4), or DEFINE statement (see Section 6.1.7).

Regardless of the ODS destination, the beginning of the report or the beginning of aBY groupis
treated as a start-of -page, and the end of the report or the end of aBY group istreated as an end-

of-page.

If areport isdirected to the LISTING destination and to a MARKUP destination such asHTML
(see Section 9.3) at the same time, any COMPUTE BEFORE/AFTER _PAGE_ blocks will be
executed at actual page boundariesin the LISTING output, but not in the MARKUP output.

146 Carpenter’s Complete Guide to the SAS REPORT Procedure

6.9 Chapter Exercises

1. Using the SASHEL P.RETAIL quarterly sales data, for each year calculate the following sales
statistics: N, MEAN, SUM, and STDERR. Use aliases and a DEFINE statement for each
statistic. Y ou might want to build on the results of Exercise 2 in Chapter 3.

2. Using the SASHEL P.RETAIL quarterly sales data, for each year display the SALES amount

for each quarter (DATE) in a separate column (ACROSS). Why isaformat such as QTR.
needed on DATE?

3. Building on the results of Exercise 2 in this section, add a spanning header for DATE and
modify the column labels. Isit necessary to nest SALES within DATE?

4. The datatable SASHEL P.ORSALES contains sales data from aretail outdoor sports clothing
and equipment store. Create a separate report BY YEAR that shows total PROFIT for each
PRODUCT_LINE and PRODUCT_CATEGORY.

Turn off the BY LINE option and place the year in thetitle using the #BY VAL title option.

Chapter 7
Extending Compute Blocks

7.1

7.2

7.3
7.4

7.5
7.6

7.7

Understanding the Events of the Compute Block Process 149

7.1.1 Setup Phase: Generating the Computed Summary Information 150
7.1.2 Report Row Phase: Generating the Report 150

7.1.3 Process Example 151

Referencing Columns and Report Iltems in a Compute Block 154

7.2.1 Using Direct Variable Name References 156

7.2.2 Using Compound Variable Names 159

7.2.3 Using an Alias as a Column Reference 160

7.2.4 Using Absolute Column References: Referring to a Column by Its
Number 161

7.2.5 Using the Automatic Temporary Variable BREAK 164
Using BEFORE and AFTER 166

Changing the Grouping Variable Values on Summary Lines 169
7.4.1 Specifying Text in a Compute Block 170

7.4.2 Using a Formatted Value 171

7.4.3 Creating a Dummy Column 173

Introducing the CALL DEFINE Routine 174

COMPUTE Statement Options and Switches 179

7.6.1 Justification of LINE Statement Text 179

7.6.2 Creating Character Variables with the CHARACTER and LENGTH=
Options 180

Using Logic and SAS Language Elements 182
7.7.1 Using the SUM Statement with Temporary Variables 183

148 Carpenter’s Complete Guide to the SAS REPORT Procedure

7.7.2 Repeating GROUP and ORDER Variables on Each Row 185
7.7.3 Counting ltems across Page Breaks in the LISTING Destination 187
7.8 Doing More with the LINE Statement 191
7.8.1 Creating Group Summaries 192
7.8.2 Adding Repeated Characters 194
7.8.3 Understanding LINE Statement Execution 197
7.9 Examples of Common Tasks 199
7.9.1 Writing a Grand Total on Every Page 200
7.9.2 Combining Values into One Field or Column 202
7.9.3 Combining Values with Nested ACROSS Variables 204
7.9.4 Calculating a Weighted Mean 206
7.10 Chapter Exercises 209

Although understanding the intricacies of compute blocks is essential for advanced work with
PROC REPORT, it is aso problematic. A number of issues make the successful use of compute
blocks difficult. This chapter discusses some of the issues surrounding their use.

As your compute blocks become more complex, understanding the compute block process
becomes even more essential. Often programmers who have trouble getting the compute block to
perform desired operations do not have a compl ete understanding of how the compute block
works and how it interacts with the various phases of the report generation process.

Unfortunately, the processitself is complex enough to provide ample opportunity for confusion.
Fortunately, the process can be broken down into components so that the source of the confusion
can be more easily explained. Several earlier sections of this book have provided increasingly
more complex overviews of the PROC REPORT step and specifically of the compute block
process. These sections include the following:

Section 1.4 provides an overview of the processing of the PROC REPORT step without
discussing compute blocks

Section 2.7 discusses the sequencing of step events with compute blocks. Emphasisis on the
timing issues associated with compute blocks that use the BEFORE and AFTER
locations.

Chapter 5 demonstrates a number of compute block examples and includes comments on the
compute block process.

The information in this chapter assumes that the reader has a reasonably good understanding of
the material in Section 1.4, Section 2.7, and Chapter 5. In order to get a better idea of what is
going on behind the scenes, Sections 7.1 and 7.2 provide views of the processing of the compute
block from different perspectives.

Section 7.1 looks at the events and process timing issues that take place during the processing of
the step.

Section 7.2 covers anumber of report item naming issues.

The remaining sections of this chapter expand on the compute block introductions provided in
Section 2.6 and in Chapter 5. Thisis accomplished by the introduction of additional options,

Chapter 7. Extending Compute Blocks 149

techniques, and capabilities of the compute block. Each of these examples extend our
understanding of how the compute block is processed.

MORE INFORMATION

A detailed presentation of the processing of the PROC REPORT step is provided in Chapter 11,
“Details of the PROC REPORT Process.”

SEE ALSO

Chapman (2002) has a number of very instructive examples that highlight the use of the compute
block. Russ Lavery’s*“An Animated Guide to the SAS REPORT Procedure,” which isincluded
on the CD that accompanies this book, highlightsin detail the compute block’ s relationship to the
report generation process.

7.1 Understanding the Events of the Compute
Block Process

Asthe PROC REPORT step is executed, a series of phased events takes place. Looking at the
process in terms of these phases can often prove to be helpful.

The following is a simplified diagram of the PROC REPORT process when compute blocks are
present.

proc report}
column;
define;

Evaluation
Phase

50 0 of
run; l

Setup Incoming
Phase Data

L 2

v
Computed
Summary
Information
A 4
Report Row f :
Phase : I
I s :
h 4
When '} As it is created
present, The rows of the each row is written
L compute |—p! report are built to each open ODS
blocks are one at a time. destination.
executed.

Thefirst phase of the process is the evaluation phase. It is during the execution of this phase that
determinations are made about the resources and summarizations that are needed during the setup
phase. The setup phase is the first of the two phases that are of primary interest to the SAS
programmer who desires a deeper understanding of the PROC REPORT process. The discussion
of these two primary phases includes the following sections:

150 Carpenter’s Complete Guide to the SAS REPORT Procedure

Section 7.1.1 The setup phase creates the computed summary information used in the
report row phase.

Section 7.1.2 The report row phase processes the computed summary information one
row at atime.

Section 7.1.3 Compute blocks are processed during the report row phase.

The order and position of the compute blocks within the PROC REPORT step is not what drives
this process. The process is driven by a combination of the order of the report items on the
COLUMN statement, presence of BREAK/RBREAK statements, and the compute blocks
themselves. Basically, the COLUMN statement defines the report columns and their order, while
the COMPUTE statements with BEFORE or AFTER and the BREAK or RBREAK statements
define how the summary rows should be constructed in the final report.

SEE ALSO
SAS Guide to the REPORT Procedure, Reference, Release 6.11 (Chapter 5) discusses event
timing in afairly simple report step that contains a compute block.

7.1.1 Setup Phase: Generating the Computed Summary
Information

During the setup phase, the incoming data.is read and, if necessary, the columns that are used for
summarizing are sent to the MEANS/'SUMMARY engine where the summarization takes place. If
the datais not in sorted order, and the report needs to be ordered or grouped, then the
MEANS/'SUMMARY engine also does the sorting.

If any variables have a define usage of ACROSS, then it is at this point that the number of levels
for the ACROSS variable is determined. This number enables PROC REPORT to calculate the
overall number of columns. After the total number of columns on the report is determined, the
absolute column names (_C1 , C2 , etc) can be assigned. Usually you do not need to worry
about these internal absolute column names. However, they can be very useful in some situations
(see examplesin Sections 7.2.4, 7.9.3, and 10.1.4).

The MEANS/'SUMMARY engine results are saved in the computed summary information. This
data summarization is stored in memory and is available for use during the report row phase.

7.1.2 Report Row Phase: Generating the Report

The actual rows of the report are generated during the report row phase. The report is created one
row at atime, and for each row the report items are processed from left to right in the same order
asthey areincluded on the COLUMN statement. As the items of the report row are processed,

any associated compute blocks are executed. Since PROC REPORT assigns values to the columns
in arow of areport from left to right, you cannot base the cal culation of a computed variable on
any column that appearsto itsright in the report.

Compute blocks that are tied to a specific report item are executed for each row of the report,
while compute blocks that are defined with BEFORE or AFTER on the COMPUTE statement are
executed at the time that the specified breakpoint occurs.

It is during this phase that summarized information that is used in the final report is drawn from
the computed summary information (which was generated during the setup phase).

Chapter 7. Extending Compute Blocks 151

7.1.3 Process Example

If REGION is agrouping variable, the compute block defined by the following COMPUTE
statement executes only before each new REGION is encountered in the report.

conpute before region;

Depending on the type of report being constructed during the report row phase (detail or
summary), the report rows are popul ated either directly from the input data set or from the
computed summary information held in active memory. When a compute block executes for a
particular report item, any summary information that is needed for the compute block statements
isretrieved from this memory area.

Asthe report rows are constructed, each report row is populated from left to right, corresponding
to the report items on the COLUMN statement. The report rows are constructed on the basis of
the statements that were set aside during the setup phase. For a simple report (such as a detail
report with no analysis variables or compute blocks) there might be no summary information for
the report. For these simple detail reports without compute blocks, the values for the report rows
might not change from what is found in the input data set.

The following step presents the number of visits per region and the percentage of the total number
of patient visits represented by each region. This requires a series of PROC REPORT step events.
Here isthe final table that we want to generate:

Regi onal Patient Visits

Nunber
regi on of Visits percnt
M d West 26 32.50%
No. East 24 30. 00%
So. East 14 17.50%
West ern 16 20. 00%

80 100.00% ©®

The PROC REPORT step utilizes the user-defined $SREGNAME. format to group regions. The
incoming data set RPTDATA.CLINICS contains 10 distinct regions (REGION is a $2 variable).
The format $REGNAME is used to consolidate these 10 regions into 4 areas or super regions. The
percentages, which are held in the computed variable PERCNT, are based on the totals of these
larger areas. One of the beauties of using aformat like thisto define groups is that we do not need
to first create a separate variable in a separate step. This gives us agreat dea of flexibility.

* Percentage of visits;
proc format;
val ue $regnane

'1','2',"3" ="'No. East'
"4 = 'So. East'
"5 - '8 ='Md West'
‘9, 10 = '"Western';
run,

titlel 'Regional Patient Visits';
proc report data=rptdata.clinics
out =r egout nowd;
colum region n percnt; @
define region / group f or mat =$r egnanes. ;
define n /' Nunmber of Visits';

152 Carpenter’s Complete Guide to the SAS REPORT Procedure

define percnt / conputed format=percent?9. 2,
rbreak after / sunmarize suppress; @

conpute before ; ©
totvisits = n;
endconp;

conpute percnt; @
percnt = n/totvisits;

endconp;

run;

© The COLUMN statement defines the order for the variablesin the report. Because we want to
use N to calculate PERCNT, N must appear to the left of PERCNT on the COLUMN
Statement.

® The RBREAK statement is executed only once—at the end of the report. It makes no
difference that the RBREAK statement appears in the code before the compute blocks; it till
executes last. The SUPPRESS option isignored when it appears on the RBREAK statement, as
it does here.

© This compute block assigns the current value of N to the temporary variable TOTVISITS. This
statement is executed only once (at the top of the report), when N contains the total number of
visits across the entire report. In this usage, N isthe count of the observations, so aslong as
every observation represents a visit, thisis the correct statistic to use here. However, when we
need to count something other than just observations (perhaps observations with a nonmissing
value of an analysis variable) N would probably not be the appropriate statistic.

® The compute block for PERCNT is executed once for each report row. The percentage is
calculated astheratio of N and the temporary variable TOTVISITS.

This report would fail completely if we simply reversed the order of the computed variable
PERCNT and the statistic N in the COLUMN statement.

colum region percnt n;

If we use this COLUMN statement, the compute block that cal culates the percentage now relies
on areport variable N that is on the right side of the computed variable PERCNT. When the
compute block for PERCNT executes, the value of N is not yet available, and the assignment
statement returns a missing value.

In the preceding PROC REPORT step, the OUT= option is used to generate a data set named
REGOUT. This table can often give us afairly good idea of what has gone on during the
processing of the step.

Chapter 7. Extending Compute Blocks 153

Regi onal Patient Visits
os regi on n percnt _BREAK _
1 80) _RBREAK_ ©
2 5 26 0.325 @
3 1 24 0. 300
4 4 14 0.175
5 10 16 0. 200
6 80 1. 000 _RBREAK_ @

Notice that the value for PERCNT is missing in the first row of this data set. This does not matter
for our table, because this row is not going to appear in our final report. However, we need to look
at thisahbit more closdly if we truly want to understand the timing of the events.

Remember that compute blocks that do not have a BEFORE or AFTER are executed for each
report row. Also remember that not all report rows are written to the final report. This means that
the COMPUTE PERCNT @ block is executed 6 times (because there are 6 report rowvs—whichis
not necessarily the same as the number of rows in the report). Compute blocks that do have either
aBEFORE or AFTER execute only on selected report rows. For the first row (Obs 1) two
compute blocks execute (© and @).

When more than one compute block executes on arow, it becomes important to understand how
they affect the final report rows. If we add some silly code into the compute block for PERCNT
we can see what happens.

conpute percnt; @
percnt = n/totvisits;
* Add two silly assignnent statenments to test order of
* events. Check the output data to see what happens;

if totvisits = . then percnt=22; ©
else if break ="' RBREAK ' then percnt=4; O
endconp;

Here is the resulting output data set:

Regi onal Patient Visits

Obs regi on n per cnt _BREAK_
1 80 22.000 ©® _RBREAK
2 5 26 0. 325
3 1 24 0. 300
4 4 14 0.175
5 10 16 0. 200
6 80 4.000 @ _RBREAK_

When the compute block for PERCNT @ executes, the value for TOTVISITS is still missing.
(Our silly code notes this by setting PERCNT to 22 ©. It would have been set to 4.0, asit was at
@, if TOTVISITS had a nonmissing value). This outcome means that the BEFORE report
compute block © has not yet executed. The conclusion isimportant! For a given report row,
compute blocks associated with report items are executed before the compute blocks that contain

154 Carpenter’s Complete Guide to the SAS REPORT Procedure

BEFORE and AFTER. Thiswould also be true if there were a COMPUTE AFTER statement; it
would execute last.

Because the report is processed one row at atime from left to right and from top to bottom, you
need to stage events so that information is available when you need it. Primarily this means that if
you need to use avalue, that value hasto be available in the computed summary information or to
the left on the current row. In fact, thisis the sole purpose of the COMPUTE BEFORE © block.
In our example, on every report row, we need to know the overall number of patient visitsin order
to calculate the percentage. This compute block makes that number available, and we retain it by
assigning it to atemporary variable (TOTVISITS).

Asin this example, if you need to retain a value from one row to the next, use atemporary
variable. Because temporary variables are initialized to missing only once (at the start of the
report row phase) and are not cleared from row to row as the table is processed, these variables
are perfect for retaining information as the rows of the table are processed.

SEE ALSO
Pass and McNeil (2003) discuss timing issues and show a number of examples with compute
blocks. Chapman (2002) provides some extensive examples.

Although SAS Technical Report P-258 (1993, Chapter 10) contains a great deal of good
information and discusses the sequencing of eventsin detail, it is documenting pre-ODS behavior.
PROC REPORT has been extensively modified to work with ODS and to continually improve its
processing efficiency. Therefore, although the overall processing concepts remain the same, the
actual behind-the-scenes processing that is being performed has changed.

7.2 Referencing Columns and Report Items in a
Compute Block
In Section 2.6.3, the example includes the following compute block, which writes the value of the

variable REGION using the format $SREGNAME. This compute block is referencing the report
item REGION.

conpute before region;
line @ region $regnanes8.;
endconp;

Y ou can reference any report item that forms a column, even columns that are not printed, and
there are four ways to reference a variable in a compute block. In the LINE statement of the
preceding compute block, the variable REGION, which is also areport item and a GROUP
variable, is referenced explicitly by name.

In acompute block you can reference report items in these ways:

= explicitly by name
= by using acompound name
= by specifying an alias

= directly by using the report column number

Chapter 7. Extending Compute Blocks 155

These four methods of referencing the report item are discussed specifically in the following
sections of this book:

Section 7.2.1 The variable name can be used directly, asin this example, when the
variable has a define type of GROUP, ORDER, COMPUTED, or
DISPLAY . Temporary variables, such asthose that are created and used in a
compute block, are always addressed explicitly by variable name.

Section 7.2.2 Compound variable names are needed when an analysis variable has been
used to calculate a statistic. The association between analysis variable and
statistic can be established on the DEFINE statement or through nesting on
the COLUMN statement. The compound name, which was introduced in
Section 5.1, is a combination of the variable name and the statistic that it has
been used to calculate. The general form is variablename.statistic, as shown
in the following example:

W . nean

Section 7.2.3 An alias can be specified in the COLUMN statement. Aliases are created
when you want to use an anaysis variable in more than one way—generally
to calculate more than one statistic. The creation of aliases was introduced in
Section 6.2, and the following COLUMN statement generates a series of
aliases for the HT analysis variable.

colums region ht
ht =ht m n ht =ht max
ht =ht mean ht =ht nedi an;

Section 7.2.4 Sometimes, as the report is constructed, a given column might not have a
specific name. Thisis especially the case when a variable with the define
type of ACROSS creates a series of columns. These, and indeed any column
in the report, can be referenced by using the column number as an absolute
column reference. This absolute column name is aways of the following
form:

CxXx_

(The xx isthe column number as read from left to right on the report.)
The column count includes any columns that ultimately do not print, e.g.,
those columns defined with NOPRINT or NOZERO.

Section 7.2.5 This section introduces the automatic temporary variable BREAK _.

SEE ALSO
Carpenter (2006b) and SAS Technical Report P-258 (1993, pp. 134-135) both discuss how to
reference report itemsin a compute block.

156 Carpenter’s Complete Guide to the SAS REPORT Procedure

7.2.1 Using Direct Variable Name References

When avariable has the define type of DISPLAY, that variable's nameis used explicitly in
compute blocks. Thisis shown in the following example, which calculates a computed column.

The Body Mass Index, BMI, is arough measure of health, and for most adultsaBMI between
18.5 and 24.9 is generally considered to be in the normal range. The following example calculates
the BMI for the studentsin the SASHELP.CLASS data set.

titlel ' Extendi ng Compute Bl ocks';
title2 'Using Variabl e Nanes';

proc report data=sashel p.cl ass nowd;
col um name wei ght hei ght BM;
define nane [displ ay;
define weight / display;
define height / display;
define bm [/ conputed format=4.1 'BM";
conpute bni;
bm = weight / (height*height) * 703;

endconp;
run;
Ext endi ng Conput e Bl ocks
Usi ng Vari abl e Nanes

Narre Wei ght Hei ght BM

Al fred 112.5 69 16.6

Alice 84 56.5 18.5

Bar bar a 98 65.3 16.2

Gar ol 102.5 62.8 18.3 The computed variable BMI is

Henry 102.5 63.5 17.9 . .
calculated using two display

Janes 83 57.3 17.8 .
variables, HEIGHT and

Jane 84.5 59.8 16.6
WEIGHT. Both of these

Janet 112.5 62.5 20.2 . .
variables are addressed directly

Jeffrey 84 62.5 151 by namein the compute block

John 99.5 59 20.1 y P :

Joyce 50.5 51.3 13.5

Judy 90 64.3 15.3

Loui se 77 56.3 17.1

Mar y 112 66.5 17.8

Philip 150 72 20.3

Rober t 128 64.8 21.4

Ronal d 133 67 20.8

Thomas 85 57.5 18.1

WIIliam 112 66.5 17.8

In this example, the two variablesHEIGHT and WEIGHT have adefine type of DISPLAY. This
means that they are not automatically set up to be used to calculate statistics. When DISPLAY
variables are used in a compute block, they are referenced directly, asis the computed variable
BMI, which is also addressed explicitly.

If these same variables (HEIGHT and WEIGHT) had been designated with a define type of
ANALY SIS (which istypical, and the default for numeric variables without DEFINE statements),

Chapter 7. Extending Compute Blocks 157

the previous compute block would not have worked (see the same examplein Section 7.2.2,
where these same variables are given a define usage of ANALY SIS). The SAS log would contain
the following message, which seems to be wrong and is therefore confusing.

NOTE: Variabl e height is uninitialized.
NOTE: Variable weight is uninitialized.
NOTE: Division by zero detected at

line 1 columm 15.

The misleading error
messages result from
our misnaming of the

analysisvariablesin
the compute block.

Of course, the variablesHEIGHT and WEIGHT do exist and both areinitialized, but they have different
namesin the compute block when they have adefinetype of ANALY SIS (see Section 7.2.2).

The following example converts the weight of each class member from pounds to kilograms (see
Section 5.1 for asimilar example). Notice that the compute block is associated with avariable

with a define type of DISPLAY .
titlel ' Extendi ng Conmpute Bl ocks';
title2 'Using Variabl e Nanes';
title3 'Converting Pounds to Kil ograns';

proc report data=sashel p.cl ass nowd;

colum nane sex ('Wight' weight);
defi ne nane | order ' Name' ;
define sex / display ' Sex';

define weight / display fornat=6.
conput e wei ght;
wei ght = weight / 2.2;
endconp;
run;

The compute block executes for each row of the report,

"Kg'

1

and since WEIGHT has a define type of

DISPLAY, adirect variable reference is used in the compute block to name the variable to be

converted.

Ext endi ng Conput e Bl ocks
Usi ng Vari abl e Nanes
Converting Pounds to Kil ograns

S

e Weight
Nane X Kg
Al fred M 51
Alice F 38
Bar bar a F 45
Car ol F 47
Henry M 47
Janes M 38
Jane F 38
Janet F 51

Portions of the report are not shown .

Thevariable WEIGHT ison
the COLUMN statement and is
in theincoming data table.
Thisvariableisthereforenot a
temporary variable.

Temporary variables are created in compute blocks and are always addressed explicitly using the
variable name. A temporary variableis created when a variable name that is not on the COLUMN
statement is declared in a compute block using a statement such as an assignment or a SUM

158 Carpenter’s Complete Guide to the SAS REPORT Procedure

statement. Thisis demonstrated in the following example, which counts observations using the

temporary variable CNT.

One of the default features of PROC PRINT isthe OBS column; however, thisis not even an
option in PROC REPORT. The following example adds this observation counter to output
generated by a PROC REPORT step. In the compute block where the OBS column is computed,
two variables, OBS and CNT, are used. Because the variable CNT does not appear on the
COLUMN statement, it is atemporary variable. Asisthe casein the DATA step, temporary
variables that appear on a SUM statement are automatically initialized to 0 by PROC REPORT.
And because temporary values will be retained from row to row, the SUM statement is especialy
useful @. The value of CNT, which contains the current row number, is assigned to the computed

variable OBS @.

titlel ' Extendi ng Conmpute Bl ocks';
title2 'Using Variable Nanes';
title3 'Creating an OBS Col umm';

proc report data=sashel p.cl ass nowd;
col utm obs nane sex wei ght;

defi ne obs / conputed ' Qbs’ format =3. ;
defi ne nane [order ' Nane' ;
define sex / display 'Sex';

define weight / display 'Wight' format=6.2 ;

conput e obs;

cnt + 1. ©
obs = cnt; @
endconp;
run;

Here is the resulting table:

Ext endi ng Comput e Bl ocks
Usi ng Vari abl e Nanes
Creating an OBS Col um

S
e
Obs Name x Wi ght
1 Afred M 112.50
2 Aice F 84. 00
3 Barbara F 98. 00
4 Carol F 102.50

Portions of the report are not shown .

Because values of report items
arenot retained from row to
row, the variable OBS could
not be used in the SUM
statement. Temporary
variablessuch asCNT are
automatically retained, but
cannot be displayed. Hence we
need two variables, CNT and
OBS, in the compute block.

It isactually very common to use temporary variables, such as CNT, to retain values from one
row to the next during the report row phase. A common mistake is to attempt to use report item
variables for this purpose (an approach that could be successfully used in the DATA step).
However, the values in report items are cleared from one row to the next and the values of report

items cannot be retained.

MORE INFORMATION

The use of the SUM statement in the compute block is discussed in more detail in Section 7.7.1.

Chapter 7. Extending Compute Blocks 159

SEE ALSO

In a paper with a number of interesting techniques, Chapman (2003) includes an example of a
compute block that directly references report variables. The problem of generation of the OBS
column is specifically addressed by Pass (2000).

7.2.2 Using Compound Variable Names

Compound names have two parts: the name of the variable on the COLUMN statement, and the
name of a statistic, such as SUM, MEAN, STD. The two parts are joined with a period.

In the first example of Section 7.2.1, BMI is calculated for the studentsin SASHELP.CLASS. In
that example, the variables WEIGHT and HEIGHT receive a define usage of DISPLAY . When
the define usage of ANALY SISis used, the variable cannot be addressed directly; instead the use
of compound namesiis required.

titlel ' Extendi ng Conpute Bl ocks';
title2 'Using Conpound Variabl e Names';

proc report data=sashel p.cl ass nowd;
col um nane wei ght height BM;
define nane / displ ay;
define weight / analysis;
define height / analysis;
define bmi / conputed format=4.1 'BM"';
conpute bni;
bm = weight.sum/ (height.suntheight.sum * 703;
endconp;
run;

Ext endi ng Conput e Bl ocks |

Usi ng Compound Vari abl e Names Thevariables WEIGHT
Name Véi ght Hei ght BM and HEI.GHT have both
Alfred 112.5 69 16.6 been defined asANALYSIS
Alice 84 56.5 18.5 variables. Direct reference
Bar bar a 98 65.3 16.2 to_th@evarlables, without
Car ol 102.5 62.8 18.3 using compound names,
Henry 102. 5 63.5 17.9 resultsin errors.

Portions of the report are not shown . . . |

A compound name is aways a combination of the variable name and a statistic. When a statistic
has not been directly specified, SUM is the default statistic.

Because HEIGHT and WEIGHT are analysis variables, compound names are required in the
compute block. Whereas the following assignment statement worked in the first example of
Section 7.2.1, it would not work here because compound names are not used.

conpute bm ;
bm = weight / (height*height) * 7083;
endconp;

When statistics are specified for analysis variables, they must also appear as part of the compound
name whenever that variable is used in a compute block. The following example converts the
mean weight of class members from pounds to kilograms. Natice that the compute block is
associated with a variable with adefine type of ANALY SIS, and this means that compound

160 Carpenter’s Complete Guide to the SAS REPORT Procedure

variable names are used in the compute block. In this case, because the requested statisticis
MEAN, . mean is appended to the analysis variable to form the compound name.

titlel ' Extendi ng Conmpute Bl ocks';
title2 'Using Conpound Variabl e Names';
title3 'Converting Pounds to Kilograns';

proc report data=sashel p.cl ass nowd;
colum sex ('Weight' weight);
defi ne sex / group 'Sex' format=%3.;
define weight / analysis mean format=6.1 'Kg';
conput e wei ght;
wei ght. nean = wei ght.nean / 2.2;
endconp;
run;

Notice that the name of the compute block itself is not a compound name. Only the variables
within a compute block require a compound name.

SEE ALSO
Cochran (2005) and Chapman (2002) both show several examples of the use of compound
variable names.

7.2.3 Using an Alias as a Column Reference

When aliases are used in a compute block, they are addressed by using the alias explicitly. In the
following example, the alias WTMAX, which is created with the specification WT=WTMAX in
the COLUMN statement, allows you to use the report item WT in two different DEFINE
statements. This alias can then be used directly in the compute block.

titlel ' Extendi ng Conmpute Bl ocks';
title2 "Using an Alias';

proc report data=rptdata.clinics nofs;
colum region ('Wight in Pounds' wt wt=wtnax w _range);
define region / group format=%$6.;

define wt / analysis min "Mn'; @
defi ne wt max / anal ysis max ' Max';
define w_range / conputed ' Range' ;

conmpute wt _range;

W _range = wnmax - w.mn; @
endconp;
run;

O The statistic MIN is specified for the variable WT.

® TheadiasWTMAX and the computed variable WT_RANGE are both referenced directly,
whereas the analysis variable WT is referenced as a compound name that includes the statistic
(MIN).

Chapter 7. Extending Compute Blocks 161

Ext endi ng Conput e Bl ocks
Using an Alias
Wei ght in Pounds

regi on M n Max Range
1 195 195 0
10 163 177 14
2 105 115 10
3 105 195 90
4 131 201 70
5 98 215 117
6 175 240 65
7 147 155 8
8 158 162 4
9 147 215 68

Notice the use of the compound names in the compute block assignment statement ®. Because
WTMAX isan dias, the following assignment statement would not work:

wt_range = wtmax.max - w.nin;

Nor could we ignore the compound name for the analysis variable WT. The following assignment
statement would also fail.

Wt _range = wtnmax - w;

In the early versions of PROC REPORT, variable aliases could not be used in compute blocks.
Fortunately, thisis no longer true. However, occasionally you might encounter legacy code that
contains workarounds that are no longer necessary.

7.2.4 Using Absolute Column References: Referring to a
Column by Its Number

Derived columns, such as those created by using the ACROSS define usage, do not have a
column name on the COLUMN statement. When these columns are used in a compute block, an
absolute column reference is required, although any column on the report can be referenced by
using its absolute column reference. These absolute column names have the form _Cxx_, where xx
is the column number.

Determining the column number

Sometimes you need to address the column of the report by number. These numbers are known as
the absolute column numbers, and sometimes they are also called indirect column references.
These column numbers are determined in the setup phase for PROC REPORT, which takes into
account a number of factors, such as the number of levels for the ACROSS variable and any
ORDER= option that might have an effect on the final report row column order.

For the programmer, the column number itself is usually determined by inspection. Start by
counting the variables in the COLUMN statement (from left to right). Columns that do not appear
in the report (NOPRINT columns and columns eliminated with the NOZERO option) are included
in the count. With the exception of ACROSS variables, each variable/alias/statistic combination
resultsin asingle column. ACROSS variables result in one column per value of the ACROSS
variable (not knowing the number of levels taken on by the ACROSS variable makes things more
interesting). When variables or statistics are nested within an ACROSS variable, the number of

162 Carpenter’s Complete Guide to the SAS REPORT Procedure

columns can increase drastically. As the table becomes more complex (and if it is not complex
then you will generally not need the absolute column number anyway), you can use the OUT=
option to take alook at the structure of the report. This should help with the counting process.

The following exampleis similar to the one used in Section 6.3. It nests three statistics for WT
under the ACROSS variable SEX.

titlel ' Extendi ng Conmpute Bl ocks';
title2 "Using Indirect Columm References';
title3 'Determ ning Colum Counts';

* Nesting statistics within an ACRGCSS ;

proc report data=rptdata.clinics nowd;
colum region sex, (' _Wight_' wt wt=wtnmean wt=wtstd);
define region / group wi dth=6;

define sex / across format =$2. ' _Gender_';
define wt / analysis n format=2.0 'N ;
define wtnean / analysis nmean format=6.2 ' Mean';
define wtstd / analysis nmean format=6.1 ' STD ;

run;

Here is the resulting table:

Ext endi ng Conput e Bl ocks
Usi ng I ndirect Colum References
Det er mi ni ng Col utm Count s
Gender
F M Thereisone column
_ — Veight Vi ght for REGION and then
regi on N Mean STD N Mean STD a column for each
1 . . . 4 195.00 195.0 combination of SEX
10 2 163.00 163.0 4 177.00 177.0 and the nested
2 6 109.67 109.7 4 105.00 105.0 variables(2X 3=6
3 5 127.80 127.8 5 163.80 163.8 columns).
4 4 143.00 143.0 10 165.60 165.6
5 5 146.20 146.2 3 177.00 177.0 Column numbers have
6 4 187.00 187.0 6 205.33 205.3 been added.
7 . . . 4 151.00 151.0
8 4 160.00 160.0 . . .
9 2 177.00 177.0 8 190.50 190.5
cl _c2_ _c3_ _c4_ _c5_ _c6_ _C7_

If we wanted to address the mean weight of malesin a compute block, we would use _C6_ asthe
indirect reference to that column.

In the following example, the ratio of the mean weight of the two gendersis calculated in a
compute block. It isour responsibility to determine whether column _C2_ will contain the mean
weight for the males or the females. In this example, the DEFINE statement for SEX has an
ORDER=DATA option @, and this option can affect which gender will bein_C2_.

We can inspect the data, or the first draft of the report, to determine that the mean weight of males
isin the second column. Because we want the weight of the females to be the numerator, we use
¢3/ _c2_astheratio @.

Chapter 7. Extending Compute Blocks 163

* Using indirect columm references;
proc format;
val ue $regnane

'1','2','3 ="'No. East'

"4 = 'So. East'

"5 - '8 = 'Md West'

‘9, 10 = '"Western';
val ue $gender

'M = 'Mle

"F = 'Female',

run;

titlel ' Extendi ng Compute Bl ocks';
title2 "Using Indirect Columm References';

proc report data=rptdata.clinics nowd split="*";
colum region (' Mean Wi ght*in Pounds' sex,w ratio);
define region / group w dth=10 ' Regi on’
f or mat =$r egnane. order =formatt ed;

defi ne sex / across ' Gender'
f or mat =$gender. order=data; ©
define wt / analysis nean format=6. ' ';

define ratio / conputed format=6.3 'Ratio*F/ M " ;
rbreak after / dol summari ze;
conpute ratio;
ratio= ¢c3_/ c2; @
endconp;
run;

We verify by inspection that the weight for malesisin the second column (_C2_) and that the
weight of the femalesisin the third column (_C3). The compute block therefore calculates the
correct ratio.

Ext endi ng Conput e Bl ocks
Using Indirect Columm References

Mean Wei ght
. g It isnot alwaysimmediately obvious
in Pounds
Ge what the order of the levelsof the
nder ACROSS variablewill b
Mal e Fenal e Ratio ittt e
Regi on F/' M .
Md Vst 182 163 0. 895 g%gaégfl_?peqa”y""h?‘ an
No. East 155 118 0.759 S e iz
So. East 166 143 0. 864
West ern 186 170 0.914
172 146 0. 846

Because the column numbers of the table are used in the compute block, the programmer must
have a certain knowledge of the final table before selecting absolute column numbers. In the
previous example, we can observe that in the incoming data table the first observation is for a
mal e patient and that the ORDER= option has been set to DATA. Changing the DEFINE
statement for SEX to use ORDER=FORMATTED

define sex / across ' Gender'
f or mat =$gender. order=formatted;

164 Carpenter’s Complete Guide to the SAS REPORT Procedure

would place FEMALES in column 2 (“F” sorts before “M”). The assignment statement for
RATIO would then be as follows:

conpute ratio;
ratio = _c2_/ _c3_;
endconp;

MORE INFORMATION
The examplein Section 7.9.3 adds another level of nesting and a computed variable to the list of
nested columns.

SEE ALSO
SAS Technical Report P-258 (1993, pp 82-83) and Burlew (2005, pp. 42-49) both include
examples of the use of indirect column names.

7.2.5 Using the Automatic Temporary Variable _BREAK_

As PROC REPORT executes the report row phase, the report rows are constructed and, when
break or summary rows are needed, the computed summary information is retrieved from the
memory area created in the setup phase. The automatic temporary variable BREAK _isused to
identify linesin the computed summary information that were generated as aresult of grouping
variables, BREAK statements, or RBREAK statements.

Adding an OUT= option to the PROC statement allows us to save the final report rowsin the
form of a SAS datatable. In the following example, an RBREAK statement creates a summary
line that summarizes across regions.

proc format;
val ue $regnane

'1',"2","3 ="No. East'
"4 = 'So. East'
"5 - '8 ="'"Md West'
‘9", 10 = '"Western';
val ue $gender
"M = "Male'
'"F = "'Fenale';
run;

titlel ' Extendi ng Compute Bl ocks';
title2 'Examining the _BREAK Variable';

proc report data=rptdata.clinics nowd split="*"
out =t enpt bl ;
colum regi on wt w =wt nean;
define region / group wi dth=10 'Region'
order=formatted fornat=%regnane. ;
define w [/ analysis n format =2. ;
define wnean / analysis mean f or mat =6. 2;

rbreak after / dol sunmari ze;
run;

proc print data=tenptbl;
run;

Chapter 7. Extending Compute Blocks 165

The following display shows the data table (WORK.TEMPTBL) resulting from the OUT= option.
Thevariable BREAK__has missing (blank) values for the detail rows of the report. However, for
the summary line that is generated for the report break, the variable BREAK _ takes on the value
of * RBREAK '. Aswe should anticipate, REGION is appropriately blank on the summary line,

because the numbers on this line represent all the regions.

Cbs

GO WOWNPF

regi on

5
1
4
10

w

26
24
14
16
80

Ext endi ng Conput e Bl ocks
Exam ni ng the _BREAK Vari abl e

w nmean

172. 538
138. 167
159. 143
182. 000
161. 775

BREAK

RBREAK

Thevariable BREAK _
has missing values on
detail rows. For
summary lines, it
indicatesthetype of
summary.

When a BREAK statement is added to this report, its associated summary lines are indicated by
the BREAK _variable. The following example repeats the previous example, but adds a second
group variable (SEX) and aBREAK statement.

Portions of the code are not shown .

proc report data=rptdata.clinics nowd split="*'

colum region sex w,

out =t enpt bl ;

define region /

defi ne sex
define w

/
/

define wnean /

(n mean);

group wi dt h=10 ' Regi on’

order=formatted fornat=%$regnane

group
anal ysi s

anal ysi s nean

n

f or mat =$gender 7.
format =2. ;

f or mat =6. 2;

break after region / summarize skip suppress
dol summari ze

rbreak after

run;

/

Portions of the code are not shown .

Because they were generated from the BREAK AFTER REGION statement the_ BREAK _
variable indicates these summary lines with the inclusion of the value of REGION. The data set
generated by the OUT= option showsthe BREAK _variable and its values.

bs

OCONOOUITRWNPE

regi on

sex

ST T ST T

Ext endi ng Conput e Bl ocks
Exam ni ng the _BREAK Vari abl e

wt

BREAK

regi on

regi on

regi on

regi on
RBREAK

166 Carpenter’s Complete Guide to the SAS REPORT Procedure

The value contained by the BREAK _ variable can be essential when performing logical
processing that must detect group or report boundaries. Several examplesin this book use
_BREAK _inlogical expressions (see Sections 7.4.3, 7.8.1, and 7.8.2).

MORE INFORMATION
Variousvalues of BREAK _are shown and used in Section 7.3.

SEE ALSO
Chapman (2002) includes examples that use the_ BREAK _ variable.

7.3 Using BEFORE and AFTER

Y ou can use the BEFORE and AFTER location options on the compute statement to determine
when the compute block isto be executed. These timing locations can be relative to both grouping
variables and to the overall report. In the following example, we want to calcul ate the percentage
of patients falling within each weight group both by and across gender. We want to generate the
following report.

Ext endi ng Conput e Bl ocks
Usi ng BEFORE and AFTER
Per cent Per cent :
) Per centage calculations
Gender Wi ght N by Sex Tot al d q
arealwaysa bit more
Femal e < 100 2 6% 3% : - b h
100-< 200 29 91% 36% mter_estmg, ecause they
200-< 300 1 304 19 requireacurrent value
s 0 0 and a group total.
0, 0,
32 100% 40% This example hastwo
f
Male 100-< 200 37 77% 46% tﬁ’&lo .percenéaghe o
200-< 300 11 23% 14% calculations and therefore
- requirestwo types of
48 100% 60% RER
80 . 100%

The variable WT is used as a grouping variable, and an alias of WT (WTN ©) is used to collect
the number of patients. The format PNDS. will be used to form the groups of interest.

proc format;

val ue pnds
| ow <100 = ' < 100
100-<200 = '100-< 200
200- <300 = ' 200-< 300
300- high = '300 and over';
val ue $gender
"M =" Mal &'
'"F' ="' Femal ' ;

run;

Chapter 7. Extending Compute Blocks 167

titlel ' Extendi ng Conmpute Bl ocks';
title2 'Using BEFORE and AFTER ;

proc report data=rptdata.clinics nowd
out =out pct split="*";
colum sex wt wt=wtn percnt tpercnt;
define sex / group format=$gender6.
' Gender' ;
define w / group fornat=pnds.
order=formatted
"Weight';
define wn / analysis n
f or mat =2.
'N; @
define percnt / conputed
format =percent8. @
' Percent *by Sex';
define tpercnt / conputed
format =percent8. ©
'Percent*Total ';
conpute before; @
* Total nunber of patients;
totcount = wtn;
endconp;

conpute before sex; ©
* Total nunber within gender group;
count = wtn;

endconp;

conpute percnt; @
* percent w thin weight group;
percnt= wtn/ count;

endconp;

conpute tpercnt; @
* Total percent wi thin weight group;
tpercnt= wtn/totcount;

endconp;

* Percent count for summary after SEX;
conpute after sex; ©

percnt= wtn/ count;

tpercnt= wtn/totcount;
endconp;

break after sex / suppress summarize dol skip;

* Percent count for summary after the report
* (across SEX);
conpute after; ©
percnt= .;
t percnt= wtn/totcount;
endconp;

rbreak after / summarize dol;
run;

168 Carpenter’s Complete Guide to the SAS REPORT Procedure

In each of the compute blocks above, notice the usage of the variable WTN. It has a very different
meaning in each of the compute blocks used in this PROC step.

O ThealiasWTN is used to collect the number of patients with nonmissing values of WT
(which is being used as a grouping variable).

® PERCNT is acomputed variable that holds the percentage of patients within each gender
and weight group.

© The report item TPERCNT is a computed variable that holds the percentage of patients across
genders.

® During the execution of this compute block, WTN contains the total number of nonmissing
values of WT. (Assuming that there are no missing values for WT, this count is al so the total
number of patients.) In order to retain thistotal, it is saved in the temporary variable
TOTCOUNT. Thisisthe denominator for all percentage calculations based on the overall
patient count. This compute block is executed only once for the entire report.

© During the execution of this compute block, WTN contains the number of nonmissing values
of WT within a gender. Because the timing location is specified as BEFORE, just before the
value of SEX changes, the number of patients (with aweight) is saved in the temporary
variable COUNT. Since the value of atemporary variable is automatically retained, this value
of COUNT isavailablefor all the detail lines associated with this value of SEX. COUNT
becomes the denominator for al percentage calculations within a gender. This compute block
executes only once for each value of SEX.

@ Thevalue of PERCNT is calculated for the detail lines of the report. During the execution of
this compute block, WTN contains the number of nonmissing values of WT within a specific
weight group. The assignment statement in this compute block cal culates a computed variable
(PERCNT) using the temporary variable COUNT and areport item variable (WTN).

@ The value of TPERCNT is calculated during the execution of this compute block for the detail
lines of the report. Although PERCNT and TPERCNT are both calculated for each detail line,
both the PERCNT and the TPERCNT compute blocks must appear. Thisis because for detail
lines, the report item’s computed value is only transferred to the report row from its own
compute block. During the execution of this compute block, WTN contains the number of
nonmissing values of WT within a specific weight group.

O This compute block and the BREAK statement both have the location of AFTER SEX,
so it is here that the values for PERCNT and TPERCNT are calculated for the group
summaries for each gender. During the execution of this compute block, WTN contains the
number of nonmissing values of WT within this value of gender.

® Since no variableis on this COMPUTE statement, it is executed after the entire report, along
with the RBREAK statement. It is at thistime that the values for PERCNT and TPERCNT are
calculated for the final summary line of the report. During the execution of this compute block,
WTN contains the number of nonmissing values of WT across the entire table. Of course,
WTN and TOTCOUNT will have the same value at this point. This compute block is executed
only once, at the end of the report.

Sometimes it can help to understand the relationship of the compute blocks and the report item
variables by looking at the data set created by using the OUT= option on the PROC REPORT
statement. The data set associated with the example in this section has been printed here.

title3 'Final Report Rows';
proc print data=outpct;
run;

Chapter 7. Extending Compute Blocks 169

Ext endi ng Comput e Bl ocks
Usi ng BEFORE and AFTER
Fi nal Report Rows
bs sex wt wtn per cnt t percnt _BREAK_
1 80 . . _RBREAK_ O
2 F . 32) 0. 4000 sex (5]
3 F 98 2 0. 06250 0. 0250 (63N 7]
4 F 105 29 0. 90625 0. 3625 (627
5 F 201 1 0.03125 0.0125 (627
6 F 32 1. 00000 0. 4000 sex (8]
7 M) 48 1. 50000 0. 6000 sex e
8 M 105 37 0. 77083 0. 4625 (62 7]
9 M 201 11 0.22917 0.1375 (62 7]
10 M 48 1. 00000 0. 6000 sex (8]
11 80 1. 0000 _RBREAK_ ©
SEE ALSO

Chapman (2002) and Cochran (2005) both show several good examples of the use of the
BEFORE and AFTER location options. SAS Technical Report P-258 (1993, Chapter 6) discusses
the use of compute blocks with summaries.

7.4 Changing the Grouping Variable Values on
Summary Lines

The BREAK and RBREAK statements both create summary rows in the computed summary
information, and if the SUMMARIZE option is specified, the summaries appear in the fina report
aswell. By default, when the SUMMARIZE option is used, the resulting summary row contains
the value of the grouping variable that is being summarized.

Often we want to replace the value of the grouping variable with text that we supply, but thereis
no option to do this. As close as we can come to directly controlling the text through optionsis
with the use of the SUPPRESS option, which merely removes the grouping variable value.
Fortunately, although text cannot be directly specified through options, it is possible for usto
supply thistext ourselves.

In the following example, regions are used to form groups based on the user-defined format
$REGNAME @. In addition, arequest for an overall summary line has been made through the
use of the RBREAK statement @. Remember that SUPPRESS is not used with the RBREAK
statement, as there is no value of the grouping variable to suppress ©.

170 Carpenter’s Complete Guide to the SAS REPORT Procedure

proc format;
val ue $regnane ©

'1','2',"3 = "'No. East'
"4 = 'So. East'
‘5t - '8 ='Md Wst'
‘9", "10' = '"Western';

run;

titlel ' Extendi ng Conpute Bl ocks';
title2 ' RBREAK Does not Create Summary Text';

proc report data=rptdata.clinics nowd split="*";
colum region edu ht w;
define region / group width=10 'Region' @
f or mat =$r egnane. order=formatted;

define edu / analysis nean 'Years of*Education'
format =9. 2 ;

define ht / analysis nean format=6.2 ' Height';

define wt / analysis nean format=6.2 'Wight";

rbreak after / summarize dol; @

run;

The resulting output table shows that for the summary line, the REGION isblank. ©

Ext endi ng Conput e Bl ocks
RBREAK Does not Create Sunmary Text
Red E;(earts_ of Hei ght Vi aht By default thereisno text ©
gl on ucatton '9 '9 under the grouping variable
Md West 14. 31 66.85 172.54 for the RBREAK summary
No. East 13. 25 67.33 138.17 line
So. East 15. 00 69.00 159.14 '
West ern 12. 63 67.25 182.00
(3] 13.78 67.45 161.78

The remaining examples in Section 7.4 show some techniques that can be used to supply text for
this and other summary rows.

7.4.1 Specifying Text in a Compute Block

Thisis simplest method for adding text to the summary line; however, it does have limitations. If
we expand the PROC REPORT step in the previous section by adding the following compute
block, we can change the value of REGION, which otherwise has a value of MISSING.

* Text for the report summary line;
conpute after;

region = ' Conbi ned';
endconp;

After adding the compute block, the following report is generated.

Chapter 7. Extending Compute Blocks 171

Ext endi ng Conput e Bl ocks
Usi ng COMPUTE to Supply Summary Text
Years of Thetext ‘Combined’ has

Regi on Educati on Height Weight become truncated because
Md West 14. 31 66.85 172.54 REGION isacharacter
No. East 13. 25 67.33 138.17 variablewith alength of 2
So. East 15. 00 69. 00 159.14 spaces.
West ern 12. 63 67.25 182.00
Co 13.78 67.45 161.78

Notice that only the first two letters of the word ‘ Combined’ are displayed. Thisis because
REGION isa$2 variable, and although awidth of 10 has been specified, only the first two letters
will fit into the variable. This problem is addressed in Section 7.4.2.

A problem can also occur if you try to assign avalue of the wrong type to the grouping variablein
the compute block. Y ou cannot assign text to a numeric variable or numbers to a character
variable.

The following two sections of this book demonstrate alternative approaches to this problem.

SEE ALSO
This approach is successful in an examplein SAS Technical Report P-258 (1993, pp. 146-147).

7.4.2 Using a Formatted Value

In the example in Section 7.4.1, only two of the letters of the text * Combined’ were displayed.
Because REGION has an associated format (SREGNAME.), the format is automatically applied
to the value stored in REGION by the compute block. Of course ‘Co’ is not on the format, so the
valueis displayed unformatted.

We can easily solve this problem by including aline in the format definition that will
accommodate the summary text @.

proc format;
val ue $regnanme

'1','2'",'3" = "'"No. East'
"4 = 'So. East'
‘5t - '8 ="'"Md West'
‘9", '10' = 'Western'
ot her = 'Conbined' ; O

run;

titlel ' Extendi ng Compute Bl ocks';
title2 "Using a Format to Renane Summary Text';

proc report data=rptdata.clinics nowd split="*";
colum region edu ht w;
define region / group w dth=10 ' Regi on'
f or mat =$r egnane. order=formatt ed;
define edu / anal ysis nean ' Years of *Educati on’
format=9.2 ;
define ht / analysis nmean format=6.2 'Height';

172 Carpenter’s Complete Guide to the SAS REPORT Procedure

define wt / analysis nean format=6.2 'Wight';
rbreak after / summarize dol;
* Text for the report summary line;
conpute after;
region = 'x'; @
endconp;
run;

© Values other than MISSING and the 10 region numbers are displayed as ‘ Combined’. The
only time this happens (in this particular data) is when avalue is assigned to the variable
REGION, and thisis done in the compute block @.

® REGION is assigned avalue other than MISSING or one of the acceptable region numbers.
Through the use of the SREGNAME. format, this value is displayed as ‘ Combined'.

Ext endi ng Conput e Bl ocks
Using a Format to Rename Summary Text

Years of ‘Combined’ isnot truncated
Regi on Education Height Veight hereasit wasin Section 7.4.1,
M d West 14. 31 66.85 172.54 becauseit is actua“y a
No. East 13. 25 67.33 138.17 formatted value.
So. East 15. 00 69.00 159.14
West ern 12. 63 67.25 182.00
Combi ned 13.78 67.45 161.78

Inthe DATA step, amissing valueis picked up by the OTHER in the format definition. That is
not the case in the PROC REPORT step when you are formatting avalue on asummary line. This
means that you have to assign a nonmissing value to REGION to make this technique work.

If you want to use the previous technique, but for one reason or another you do not have
permission to modify the SREGNAME. format, consider the use of atwo-step format. The PROC
FORMAT step becomes the following:

proc format;
val ue $regoth

1 - 'Y = [$regnane.]

ot her = ' Conbi ned' ;
val ue $regnane

'1','2","3 ="'No. East'

"4 = 'So. East'

‘5" - '8 = "'"Md West'

‘9, 10 = '"Western';
run;

The FORMAT= option now points to the outer of the two formats (the one you do have
permission to modify). The DEFINE statement is now the following:

define region / group w dth=10 ' Regi on'
f or mat =$r egot h. order=formatt ed;

For al the standard regions (1 through 9) the value is handed off to the $SREGNAME. format and
all other values are given aformatted value of ‘ Combined'. Actually | have been a bit carefree
here, because alternate unacceptable values of REGION, such as 1Q, are also passed to
$REGNAME.

Chapter 7. Extending Compute Blocks 173

7.4.3 Creating a Dummy Column

In the examplesin Sections 7.4.1 and 7.4.2, text is assigned to the summary column. Another
approach to adding the text is to build a computed column specifically designed to hold the text of
interest.

In this example, we are back to using the original format to map the values of REGION to the
appropriate name, and a new computed column, REGNAME, has been added to the COLUMN
statement ©.

proc format;
val ue $regnane

'1','2",'"3" = "No. East'

"4 = 'So. East'

‘5t - '8 ="'"Md West'

‘9, '10 = '"Western';
run;

titlel ' Extendi ng Compute Bl ocks';
title2 'Using COWUTE to Create a Text Colum';

proc report data=rptdata.clinics nowd split="*";
colum region regname edu ht w; @
define region / group noprint fornmat=%regnane.; @
define regnane / conputed 'Region'; ©

define edu / anal ysis nean ' Years of *Educati on’
format=9. 2 ;

define ht / analysis nmean format=6.2 ' Height';

define wt / analysis nean format=6.2 'Wight';

rbreak after / summari ze dol;

* Determ ne the region nang;

conput e regnane/ char | ength=8;
if _break_='_RBREAK ' then regnane = 'Conbined ; ®
el se regnane = put (region, $regnane.); ©

endconp;

run;

© Both REGION and REGNAME appear on the COLUMN statement.

® The column REGION is used for grouping, but is not printed. Notice that the format is still
required, asit is used to form the appropriate groups.

© Define the computed column REGNAME to hold the text (row identifiers).

O Since thisisacompute block associated with a computed variable, it is executed once for
each report row. We need to be able to distinguish the type of row, and we do this by using the
automatic variable BREAK _. When the summary line generated by the RBREAK statement
is being processed (BREAK_='_RBREAK_’), we supply the desired text (‘ Combined’) ©.

© Usethe PUT function to assign the text to REGNAME using the SREGNAME. format for each
line other than the final summary line.

174 Carpenter’s Complete Guide to the SAS REPORT Procedure

The resultant table is similar to that in Section 7.4.2.

Ext endi ng Conput e Bl ocks
Using COWUTE to Create a Text Colum
_ Years of _ _ Although not apparent from an
Regi on Education Height Veight inspection of the table, the column
Md West 14. 31 66.85 172.54 labeled REGION isactually a
No. East 13. 25 67.33 138.17 computed character variable.
So. East 15. 00 69.00 159.14
West ern 12.63 67.25 182.00
Conbi ned 13.78 67.45 161.78

MORE INFORMATION

The valuestaken on by the BREAK _ variable are discussed in Section 7.2.5. The CHARACTER
(CHAR) and LENGTH options on the COMPUTE statement are discussed in Section 7.6.2. The
examplein Section 7.7.2 also creates a computed region name.

SEE ALSO

An examplein SAS Technica Report P-258 (1993, pp. 78-79) uses aNOPRINT option to hide
the variables used to order the table and a computed variable to provide a variation of the order
variables. Also in P-285, a summary line text value is changed through the generation of a new
computed value (pp. 109-110).

7.5 Introducing the CALL DEFINE Routine

The CALL DEFINE routine is used to set the attributes of avalue in a particular cell. Thisroutine
has three arguments that specify the column, attribute, and the value for the attribute.

call define(columid, attribute, attributeval ue);

columnid identifies the column for which the attribute is to be applied. Thiscan bea
column name (literal or a character expression) or a column number
(including anumeric literal, name of the form _Cxx_, or anumeric
expression).
The column identifier can include two special keywords (as keywords, these
are not quoted):
COL_ refersto the current column.

_ROW__ refersto the entire row rather than the specific column.

attribute specifies the attribute. Attributes have specific names, some of which are
described in the following section.
attributevalue associates a specific attribute value with the attribute in the second

argument. Many attribute values are specific to particular attributes.

Chapter 7. Extending Compute Blocks 175

Only one attribute is specified per CALL DEFINE statement. However, multiple CALL DEFINE
statements can be specified.

The primary attributes that can be specified include the following:

FORMAT specifies a column format.

STYLE overwrites the ODS style attributes.

URL specifies that the contents of the cell form alink.
URLBP specifies that the contents of the cell form alink.
URLP specifies that the contents of the cell form alink.

Although the FORMAT attribute can be used with any ODS destination, including the output
window or LISTING destination, the other attributes are best used with ODS destinations other
than LISTING. The STYLE attribute is described in Section 8.3, and the attributes used to form
links (URL, URLBP, URLP) are described in Section 8.5.

The following simple PROC REPORT example calculates the N and MEAN for the variable WT,
which is nested within the ACROSS variable SEX. Consequently the report will have 5 columns.

proc format;
val ue $regnane

"1','2','3" = 'No. East'
"4 = 'So. East'
‘5" - '8 ='Md West'
‘9", "10' = 'Western';
val ue $gender

"M ="' Mal €'

"F' ="' Fenal e' ;

run;

titlel ' Extendi ng Compute Bl ocks';
title2 ' Mean Weight';
title3 '"Unformatted Anal ysis Col ums';

proc report data=rptdata.clinics nowd;
colum region sex,w, (n nmean);
define region / group f or mat =$r egnane. ;
define sex | across fornmat=%gender6. ' Gender'
define wt / analysis '
run;

176 Carpenter’s Complete Guide to the SAS REPORT Procedure

Ext endi ng Conput e Bl ocks
Mean Wi ght
Unfornmatted Anal ysis Col ums
Gender A format for MEAN
Fenal e Mal e would improvethe
appearance of this
regi on n nean n nean report.
M d West 13 163 13 182.07692
No. East 11 117.90909 13 155. 30769
So. East 4 143 10 165. 6
Vst ern 4 170 12 186

We would like to format the values for N and MEAN, and one approach might be to add a
FORMAT= option to the DEFINE statement.

define w / analysis ' ' format=5.1;

This does not really give us what we would like. Here is the resulting report:

Ext endi ng Conput e Bl ocks
Mean Wi ght
DEFI NE St at ement For nat
A format on the
Gender DEFINE statement
Fenmal e Mal e - .
for WT isapplied
regi on n mean n mean le)gztg Nand
Md West 13.0 163.0 13.0 182.1)
No. East 11.0 117.9 13.0 155. 3
So. East 4.0 143.0 10.0 165. 6
West ern 4.0 170.0 12.0 186. 0

We see that the format has been applied to all the columns associated with weight. This would not
be a problem for computed variables, because they have individual DEFINE statements. But when
columns have been generated by an ACROSS operation, the individual columns are no longer
associated with individual DEFINE statements.

We could also declare DEFINE statements for the individua statistics.

define w / analysis '
define n / format=3.;
defi ne nean / format=5.1;

In this example this actually gives us what we want, but we still do not have control over the
formatting in the individual columns (both N columns and both MEAN columns must be
formatted the same).

Chapter 7. Extending Compute Blocks 177

Ext endi ng Conput e Bl ocks
Mean Wi ght
DEFI NE Statenents for Individual Statistics

Gender The statistics are formatted
Fenmal e Mal e individually; however, we still do
not have control of theindividual
regi on n nean n nean columnswithin a statistic.
M d West 13 163.0 13 182.1

No. East 11 117.9 13 155.3
So. East 4 143.0 10 165.6
West ern 4 170.0 12 186.0

Fortunately, the CALL DEFINE statement provides the control that we are seeking, and it can be
used to apply formats to individual columns even when they have been generated with an
ACROSS. A compute block for the variable WT has been added to the previous example, and a
series of CALL DEFINE statements have been written, one for each of the columns generated by
the ACROSS operation. The PROC REPORT step becomes the following:

proc format;
val ue $regnane

"1','2','3" = 'No. East'
"4 = 'So. East'
‘5" - '8 ='Md West'
‘9", "10' = 'Western';
val ue $gender

"M ="' Mal €'

"F' ="' Fenal e' ;

run;

titlel ' Extendi ng Compute Bl ocks';
title2 ' Mean Weight';
title3 "Using CALL DEFINE to Format a colum';

proc report data=rptdata.clinics nowd;
col um region sex,w, (n mean);
define region / group f or mat =$r egnane. ;

defi ne sex | across format=$gender6. ' Gender' ;
define wt / anal ysis Yt
conpute w;

call define('_c2_','format','2.");

call define('_c3 ', ' format','5.1");

call define('_c4_','format','2.");

call define('_c5_', ' format','5.1");
endconp;

run;

178 Carpenter’s Complete Guide to the SAS REPORT Procedure

Ext endi ng Conput e Bl ocks
Mean Wi ght
Using CALL DEFINE to Format a col um
Gender For mats have now
Fenal e Mal e been applied to
each statistic
regi on n mean n mean individually.
M d West 13 163.0 13 182. 1
No. East 11 117.9 13 155. 3
So. East 4 143.0 10 165. 6
West ern 4 170.0 12 186.0

Four columns have been derived from WT. Because these are the columns that are to be
formatted, the appropriate report item to use on the COMPUTE statement is WT. The compute
block for WT is called for each statistic associated with WT, and each time it is called, all four
assignment statements are executed. Thisis abit of inefficiency, but this small level of
inefficiency is generally of minor concern. Even this minor inefficiency can be eliminated when
the variable that we need to format is not the furthest to the right on the COLUMN statement.

The following example repeats the previous example, but it adds one more variable to the
COLUMN statement. In this case, HT isto the right of WT on the COLUMN statement, and
therefore the report item on the COMPUTE statement can be HT.

Portions of the code are not shown .
proc report data=rptdata.clinics nowd;
colum region sex,w,(n nmean) ht;
define region / group fornmat=%regnane.;
define sex / across format=%$gender6. 'CGender' ;
define wt / analysis ' ';
define ht / analysis mean format=6.2 ' Height';

conpute ht;
call define('_c2_','format','2.");
call define('_c3 ', 'format','5.1");
call define('_c4_','format','2.");
call define('_c5 ', format','5.1");

endconp;

run;

The compute block for HT is executed only once for each row, rather than the four times when
WT was used as the report item on the COMPUTE statement. When you want to use this
technique, but do not want to display another variable, you can use a computed variable that is not
printed to accomplish the same resuilt.

Portions of the code are not shown .
proc report data=rptdata.clinics nowd;
colum region sex,w, (n nmean) dumy;
define region / group f or mat =$r egnane. ;

define sex / across format=$gender6. 'Gender' ;
define w / anal ysis Y
define dunmy / conputed noprint;
conput e dummy;

call define('_c2_', ' format',"'2.");

call define('_c3 ', 'format','5.1");

Chapter 7. Extending Compute Blocks 179

call define('_c4_ ', format','2.");
call define('_c5 ', format','5.1");
endconp;
run;

MORE INFORMATION
CALL DEFINE isdiscussed in greater detail, relative to the ODS environment, in Section 8.3. A
discussion on determining the indirect column numbers can be found in Section 7.2.4.

SEE ALSO

The online sample program Sample 608 extends the example in this section by placing a
computed variable under an ACROSS variable with an unknown number of columns. Molter
(2006) usesthe CALL DEFINE routine to set display attributes. In avery interesting paper, Poppe
(2005) usesthe CALL DEFINE routine to bring GRSEG entries into the report.

7.6 COMPUTE Statement Options and Switches

The COMPUTE statement supports only a few options, and these are not needed on aregular
basis. However, you do need to be aware that they exist.

7.6.1 Justification of LINE Statement Text

When the PAGE _ target is used with a compute block, justification options can also be included
on the COMPUTE statement. These options include RIGHT, CENTER (the default), or LEFT,
and will affect any text that is generated by a LINE statement in that compute block.

In the following example, text is generated in a compute block and added to the report between
the title and the report header. Notice that the text has been left-justified @ (to match thetitle,
since the NOCENTER system option has also been specified).

opti on nocenter;
proc format;
val ue $regnane

'1','2'",'3" = "'"No. East'
"4 = 'So. East'
‘5t - '8 ="'"Md West'
‘9, 10 = "Western';
val ue $gender
"M ="' Mal €'
'"F' =' Fenal e';
run;

titlel ' Extendi ng Compute Bl ocks';
title2 "Using Justification Options';
proc report data=rptdata.clinics nowd,
colum region sex ('Wight' wt w=wtnean);

define region / group f or mat =$r egnanes. ;
define sex [group f or mat =$gender .

' Gender' ;
define w / anal ysis format=3.

n'N ;

define wnmean / analysis format=5.1

180 Carpenter’s Complete Guide to the SAS REPORT Procedure

mean ' Mean';

conpute after region;

line '
endconp;

conpute before _page_ / left;
line 'Weight taken during';
line '"the entrance exam';

endconp;
run;

The compute block is executed at the start of each page, and the LINE statements place the text
between thetitles and the headers.

t he entrance exam

regi on Gender
Md West Fenml e
Mal e

No. East Fenmle
Mal e

So. East Fenmle
Mal e

West ern Fenal e
Mal e

Ext endi ng Conput e Bl ocks
Using Justification Options

Wi ght taken during ©

Wi ght
Mean

N
13
13

11
13

4
10

4
12

163.
182.

117.
155.

143.
165.

170.
186.

©

o

o

The BEFORE PAGE_causesthe
LINE statementsin the compute block
to execute at the top of each page before
the headersare written.

Thisjustification option (the default is CENTER) isindependent of the NOCENTER system

option.

7.6.2 Creating Character Variables with the CHARACTER and
LENGTH= Options

When you create a character variablein the DATA step, the attributes of the variable are
determined either indirectly by its usage or directly through declarative statements. In a compute
block that creates a character variable, either areport item or atemporary variable, the processis
similar to that in the DATA step. In addition, the COMPUTE statement supports the
CHARACTER and LENGTH= options, which can be used to assist in this declaration.

The CHARACTER option can be abbreviated as CHAR. The following example creates a
computed variable that contains the concatenated first and last names of the patient ©.

Chapter 7. Extending Compute Blocks 181

titlel ' Extendi ng Conmpute Bl ocks';
title2 'Defining Character Columms';

proc report data=rptdata.clinics(where=(region='2"))
nowd split="*";
colum | nane fnanme name wt ht edu;
define | name / order noprint;
define fname / order noprint;
define nane / conputed 'Patient Nane';
define wt / display 'Wight';
define ht / display 'Height';
define edu / display 'Years*Ed.';

conpute nane / character |ength=17; @
name = trim(fname) || ' ' ||| nang;

endconp;

run;

Ext endi ng Conput e Bl ocks
Defini ng Character Columms

Year s

Pati ent Nane Wei ght Hei ght Ed.
Teddy Atwood 105 64 14 The attributes of the
Li nda Haddock 105 64 14 computed variable
Samuel Har bor 105 64 14 NAM E have been

105 64 14 @ specified as options on
Mar ci a | ngram 115 64 14 the compute statement.
Zac Leader 105 64 14
Sandra Little 109 63 12
Mar got Long 115 64 14
Li nda Maxwel | 105 64 14
Li z Saunders 109 63 12

© The computed variable NAME is declared to be CHARACTER witha LENGTH of 17. The
default variable type is numeric, and the default length for character variablesis 9.

® Samuel Harbor has two visits, and because last and first names are order variables, the compute
block is executed only for the first occurrence. When this behavior is not desirable, the
examplein Section 7.7.2 discusses the process for adding repeated text for ORDER and
GROUP report items.

When you specify a character format using the FORMAT= option on the DEFINE statement
associated with a computed variable, you must also use one or both of these two COMPUTE
statement options. If you fail to do so, the SASlog will show an “Invalid numeric data’ note.
Although using both options together is recommended, either is sufficient when a character
format is present on the DEFINE statement. If both aformat and a LENGTH= option are present,
the length will be taken from the LENGTH= option.

182 Carpenter’s Complete Guide to the SAS REPORT Procedure

The previous code could have been written as follows:

titlel ' Extendi ng Conmpute Bl ocks';
title2 'Defining Character Columms';

proc report data=rptdata.clinics(where=(region='2"))
nowd split="*";
colum | nane fname name wt ht edu;
define I name / order noprint;
define fname / order noprint;
define name / conputed format=$17. 'Patient Nange';
define wt / display 'Wight';
define ht / display 'Height';
define edu / display 'Years*Ed."';

conpute name / char;

name = trim(fname) || " ' ||! naneg;
endconp;
run;

In both examples NAME will have alength of 17 characters.

MORE INFORMATION
The example in Section 7.4.3 creates a computed column using the CHAR and LENGTH=
options.

SEE ALSO

SAS Technical Report P-258 (1993, pp. 85-86) includes an example that shows the use of the
CHARACTER and LENGTH= options, and aso includes an example that usesthe LENGTH
statement (pp. 125-127).

7.7 Using Logic and SAS Language Elements

Within the compute block we can use most of the power of the DATA step. Functions,
assignment statements, SUM statements, and other executable statements are available to us. Most
of the elements that are not available would not logically be needed in the compute block anyway.
Some of the statements that are not available in the compute block include those that do the
following:

= read or write data—e.g., DATA, SET, MERGE, and UPDATE

= offect the PDV—e.g., KEEP, DROP, and RETAIN

Many other SAS Language elements are available in the compute block. Of these, some of the
more commonly used statements include the following:

= ARRAY
= CALL routines and functions

= comments (all types are recognized)

Chapter 7. Extending Compute Blocks 183

= DO block, iterative DO, DO WHILE, DO UNTIL
(asinthe DATA step, all DO loops and DO blocks expect the END statement)

= |F-THEN/ELSE and SELECT
= %INCLUDE

= SUM and assignment

Within these statements you can use SAS language functions in the same manner as you would in
the DATA step.

The use of macro variables and macro callsis the same in the compute block asit isin other
locations within SAS programs. There are some minor resol ution differences when a macro
variable is used inside of single quotation marks. However, these will not be of general interest
(see Section 10.2.2).

MORE INFORMATION

Section 2.6.4 introduces the topic of SAS language elements in the compute block. Using the
LINE statement with other SAS language €l ements can be problematic in a compute block (see
Section 7.8.3).

SEE ALSO

Cody (2004) provides an excellent discussion of SAS language functions. In SAS Technical
Report P-258 (1993, pp. 128-130) there is an example that includes logic in the compute block.
This same report (pp. 133-135) discusses the SAS language el ements available in the compute
block. Burlew (2005, p. 45) and Molter (2006) both have an example that uses the I F statement.

7.7.1 Using the SUM Statement with Temporary Variables

The SUM statement can be used as a counter or an accumulator. The form of the statement is as
follows:

vari abl e_name + expression;

The expression can be any valid arithmetic expression, but is typically a constant.

The SUM statement is as handy in the compute block asit isin the DATA step, and asin the
DATA step, it can be used to count the number of items within a group.

In Section 7.2.1, the SUM statement was used to create an OBS column for the entire report. In
the following example, we would like to have a consecutive counter for items within a group.

proc format;
val ue $regnane

'1','2",'"3" = "'"No. East'

"4 = 'So. East'

‘5t - '8 ="'"Md Wst'

‘9, '10 = '"Western';
run;

titlel ' Extendi ng Compute Bl ocks';
title2 '"Using the SUM Statenent';

184 Carpenter’s Complete Guide to the SAS REPORT Procedure

proc report data=rptdata.clinics
(where=(region in('1
nowd split="*";

colum region cnt clinnum (' Patient'
define region / group fornmat=%regnane. ;

define cnt / conputed ' '; @
define clinnunml group 'dinic*Nunber';
define wn / analysis n 'N;
define w / anal ysis nmean

format=6. ' Mean*\Weéi ght';

conput e before region;
clincount=0; @

endconp;

conpute before clinnum
clincount+1; ©

endconp;

conpute cnt;
cnt=clincount; @

endconp;

break after region/ suppress skip;
run;

© The computed variable CNT is used to display the item numbers.

'

w=wtn wt);

® CLINCOUNT isinitialized to 0 before each new REGION. Thistemporary variable is used
to accumulate the counts. Because CNT isareport item, its value is cleared before each row
iswritten to the report, and consequently it cannot be used to hold values from one row to the

next.

© The SUM statement is used to accumulate the count of the clinicsin the temporary variable

CLINCOUNT.

® The cumulative count in the temporary variable CLINCOUNT is written to the report item

variable CNT so that it can appear on the report.

Ext endi ng Conput e Bl ocks
Usi ng the SUM St at ement
Pat i ent
Cinic Mean
regi on Nurber N Wi ght
No. East 1 011234 2 195
2 014321 2 195
3 023910 4 105
4 024477 4 107
5 026789 2 115
6 031234 4 179
7 036321 4 130
8 038362 2 112
So. East 1 033476 4 156
2 043320 4 178
3 046789 2 160
4 049060 4 143

A counter hasbeen
added for each
detail row (within
REGION) of the
report.

Chapter 7. Extending Compute Blocks 185

Asisshown in this example, accumulated values are stored in atemporary variable. It isthis
variable that is used in the SUM statement, and it isthis variable that is used to assign the value to
the report item variable at the appropriate time.

In this example, we could have simplified the code a bit by eliminating the compute block for
BEFORE CLINNUM. Because this compute block © and the compute block for CNT @ both
execute once for each detail row (CLINNUM has a usage of GROUP), the SUM statement can be
moved into the second compute block. The new compute block becomes the following:

conput e before region;
cl i ncount =0;
endconp;
conpute cnt;
cli ncount +1;
cnt =cl i ncount;
endconp;

SEE ALSO
Pass (2000) adds an observation counter to areport in avery succinct explanation of the
difference between report items and temporary variables.

7.7.2 Repeating GROUP and ORDER Variables on Each Row

One of the characteristics of GROUP and ORDER variablesisthat only the first item of a series
of repeated valuesis shown. In the example in Section 7.7.1, the value of REGION is shown only
once, on the first report line for each region. Usually thisis a preferred behavior; however, you
might want to show the group value on each row.

The discussion of the example that follows touches on some fairly detailed aspects of the compute
block process (especialy at ©). (Thisis discussed even more fully in Section 7.7.3) A full
understanding of this processis not required to simply modify PROC REPORT steps. However,
as you write more complex steps you will need to understand this process in greater depth. This
may require that you reread this particular section, and other sections throughout the book that
deal with the PROC REPORT step process. And you might need to reread them multiple times;
the PROC REPORT step process is very much worth studying and understanding.

In the following example, the GROUP variable’ s value is repeated on every line. Thisis
accomplished by the creation of a computed variable @ to hold the name of the region @.

proc format;
val ue $regnane

'1','2'","3 = "'No. East'

"4 = 'So. East'

‘5t - '8 ="'"Md Wst'

‘9", "10' = '"Western';
run;

titlel ' Extendi ng Conpute Bl ocks';
title2 'Repeating a Group Nane';

proc report data=rptdata.clinics
(where=(region in("1" '2" "3 '4")))
nowd split="*";
colum region regnane clinnum
('Patient Weight' w=wtn wt);
define region / group format=$regname. noprint; @

186 Carpenter’s Complete Guide to the SAS REPORT Procedure

define regnane/ conputed 'Region'; @

define clinnum group "dinic*Nunber';
define wn / analysis n

format=5. 'N ;
define wt / anal ysi s mean

format =4. ' Mean';

conput e before region;
* Load the formatted region into a tenporary vari abl e;
rname = put(region, $regnane.); ©

endconp;

conpute regnane / character |ength=12;
* Move region fromtenporary variable to a report item
regnanme = rnane,;

endconp;

break after region/ suppress skip;

run;

© REGION is used to form the groups, but it is not printed.

@® The value of the repeated grouping variable is actually displayed through the use of a
computed variable, REGNAME.

© The current formatted value of the grouping variable REGION is stored in the temporary
variable RNAME. The assignment has to be made when the value of REGION is available, and
the easiest time to do thisisin a BEFORE REGION compute block. This compute block is
executed on the first detail line of each region. Thisisimportant since REGION is a grouping
variable, and thusits valueis only available for use in the computed summary information
on thisthefirst row of each group. Placing the assignment statement in the same compute
block asthe REGNAME assignment statement @ would not work, because as a grouping
variable, REGION is not on every row of the computed summary information; it is only
available for usein an assignment statement when it appears on the actual report row—in a
GROUP or ORDER usage. This means that the value is available only the first time the
GROUP or ORDER value appears.

O The value of the temporary variable RNAME is assigned to the report item REGNAME.
Notice the use of the CHARACTER and LENGTH= options on the COMPUTE statement.

Ext endi ng Conput e Bl ocks
Repeating a Group Name
Cinic Patient Wight
Regi on Nurber N Mean
No. East 011234 2 195
No. East 014321 2 195
No. East 023910 4 105
No. East 024477 4 107 Thevalue of REGION is actually the
No. East 026789 2 115 computed variable REGNAME.
No. East 031234 4 179
No. East 036321 4 130
No. East 038362 2 112
So. East 033476 4 156
So. East 043320 4 178
So. East 046789 2 160
So. East 049060 4 143
Portions of the table are not shown .

Chapter 7. Extending Compute Blocks 187

SEE ALSO

The online sample program Sample 611 gives asimilar but ssmpler example. The two papers by
Chapman (2002 and 2003) each show several examples of compute blocks that demonstrate
similar techniques. Chung and Dunn (2005) use similar, although more sophisticated, techniques
when they discuss how to create apage x of y counter. Molter (2006) discusses the problem of
repeating group headings when some rows are not displayed. Russ Lavery’s“An Animated Guide
to the SAS REPORT Procedure,” which is on the CD that accompanies this book, discusses these
issues in more detail.

7.7.3 Counting Items across Page Breaks in the LISTING
Destination

Unless you are using BY groups or writing to a monospace destination, such as LISTING,

physical page breaks have limited meaning. Thisis because the concepts of paging and page
breaks work differently for ODS destinations, such asHTML, RTF, and PDF. In the following
example, the PS= option is used to control page breaks. However, PS= isignored for other ODS
destinations, so you should not expect this example to work anyplace except for the LISTING
destination. Consequently, the example in this section has little practical value. However, even in
this limited context, this example does illustrate and reinforce concepts related to the timing issues
surrounding the execution of compute blocks.

This exampleillustrates how to conditionally perform an operation within a compute block at the
start of a page. This operation might include the counting of the page itself or the generation of
page-specific titles or footnotes. More importantly, it demonstrates the issues associated with the
useof PAGE_asthetarget on the COMPUTE statement.

In the example in Section 7.7.1, the SUM statement is used to count items within a group. In the
following example, the SUM statement is used to count items within a group as well as on a page.
The counters are used to demonstrate the timing and execution of compute blocks when the
PAGE target is used. Ostensibly this PROC REPORT repeats the value of the grouping variable
(REGION) at the top of each page, even if the page break occurs within a group. Of course, this
happens automatically with grouping variables, but then where would be the fun of this example?

proc format;
val ue $regnanme

'1','2'",'3 = '"No. East'

"4 = 'So. East'

‘5t - g ='Md West'

‘9, 10 = "Western';
run;

titlel ' Extendi ng Compute Bl ocks';
title2 'Counting Group and Page Breaks';

options ps=15;

proc report data=rptdata.clinics
out =outreg
nowd split="*";
colum regi on regnane clinnum
(' Patient*Weight' wt=wtn wt) rcnt pgent; @
define region / group format=%regnane. noprint;
define regnane/ conputed ' Region';
define clinnunml group ' dinic*Nunmber';
define wn / analysis n

188 Carpenter’s Complete Guide to the SAS REPORT Procedure

format=1. 'N;
define w / anal ysi s nmean
format=4. ' Mean';

conput e before region;
rnane = put(region, $regnane.);
* Initialize within region |ine counter;
rcounter=0; @

endconp;

conpute after _page_; ©
* Initialize within page |line counter;
pcounter=0; @

endconp;

conpute regname / character |ength=12; ©
rcount er +1;
pcount er +1;
* Create region name at the start of region
* and/ or page;
if rcounter=1 or pcounter=1 then regnane = rnane;
endconp;

conpute rcnt; @
rcnt = rcounter;
endconp;

conpute pgcnt; ©
pgcnt = pcounter;
endconp;

break after region/ suppress skip;
run;

opti ons ps=56;
proc print data=outreg; @
run;

© The two computed variables RCNT and PGCNT are added to the COLUMN statement.
Normally we would probably not show these columns (although the group counter is used in
Section 7.7.1), but they are included here so that we can see how their values change.

® The counter for the individual lines within REGION isinitialized.

© When PROC REPORT determines the need for a page break (in destinations that support page
breaking via PS=), this compute block is executed, and the counter that counts lines on a page
isinitialized.

O The page counter isreset to zero after the pageisfilled, and is then incremented © in the same
compute block where the assignment is made for REGNAME.

© The compute block for REGNAME is executed for each report row. It is here that we
increment the two counters for the group and page. We a so assign the region name to
REGNAME.

@ The output data set (WORK.OUTREG) created from the report rows is printed to help us see
what is going on row by row.

Chapter 7. Extending Compute Blocks 189

@ The value of the temporary variable RCOUNTER is transferred from memory to the report
item RCNT.

O The value of the temporary variable PCOUNTER is transferred from memory to the report
item PGCNT.

Because the PAGESIZE= option (PS=15) has been set, a new page is written after every 15 lines.
Here isthe first report page:

Ext endi ng Conput e Bl ocks
Counting G oup and Page Breaks
Pat i ent
dinic Wight
Regi on Number N Mean rcnt pgcnt
Md West 051345 2 215 1 2
054367 2 160 2 3
057312 2 158 3 4
059372 2 98 4 5
063742 4 221 5 6
063901 4 187 6 7
065742 4 151 7 8
066789 2 175 8 9
082287 2 158 9 10

Notice that while RCNT is 1 for thefirst row, PGCNT is 2. Because these two counters are
always incremented together, we might expect them to have the same value on the first line.
Examining the output data set created from the report rows might help to explain why thisis not
the case.

Ext endi ng Conput e Bl ocks
Counting Group and Page Breaks
Obs region regname clinnum wn wt rcnt pgent _BREAK.
1 5 26 172.538 1 1 regi on
2 5 M d West 051345 2 215.000 1 2
3 5 054367 2 160.000 2 3
4 5 057312 2 158.000 3 4
5 5 059372 2 98.000 4 5
6 5 063742 4 220.500 5 6
7 5 063901 4 187.000 6 7
8 5 065742 4 151.000 7 8
9 5 066789 2 175.000 8 9
10 5 082287 2 158.000 9 10
11 5 082287 2 158.000 9 10 _PAGE_

As we go through the processing steps, remember that for a given report row, compute blocks
associated with report items are executed before compute blocks containing BEFORE or AFTER.

190 Carpenter’s Complete Guide to the SAS REPORT Procedure

OBS=1 COMPUTE BEFORE REGION summary line

The COMPUTE BEFORE REGION compute block causes this line to appear, and thisis
the summary line calculated BEFORE the region. Each of the non-summary compute
blocks (@, @, and ©) are executed. Although RCOUNTER and PCOUNTER are not
explicitly set to 0 except at ® and @, they each appear in a SUM statement and are
therefore automatically initialized to 0. After execution of the REGNAM E compute block
© both counters contain a 1, as do the report items RCNT and PGCNT. Finally, the
summary line compute block @ is executed, and RCOUNTER isreset to 0 (we cannot
see thison the first line of the output data set, but it is reflected in OBS=2).

OBS=2
Thisisthefirst detail row of the report for this value of REGION. First the report item

compute blocks are executed, incrementing the two counters ©, and the resulting values
are placed in RCNT @ and PGCNT ©.

0OBS=10

Thisisthe last row of the report that will fit on the current pagein the LISTING
destination. However, thisis not the last row for this region, so we want the next row in
the table (first row on the second page) to have avalue for REGNAME.

OBS=11

Noticethat BREAK _takeson the value of _PAGE_. Thisrow in the output data setis
generated because we have used the PAGE _ target on a compute block ©, and asa
result, the compute block for AFTER _PAGE _ is executed on this row. Again, the
compute blocks associated with the report items are executed first, incrementing the
counters and setting values for RCNT and PGCNT. After PGCNT has been assigned a
value ©, the compute block for AFTER _PAGE_© executes for the first time, and the
PCOUNTER temporary variableisreset to 0 @. It is of course too late for thisto be
reflected in the report item variable PGCNT, because its compute block @ executes first

(before @).

s region regnane clinnum wn wt rcnt pgent BREAK
11 5 082287 2 158.000 9 10 _PAGE_
12 5 Md West 084890 2 162.000 10 1
13 5 26 172.538 11 2 region
14 1 24 138.167 12 3 region
15 1 No. East 011234 2 195.000 1 4
16 1 014321 2 195.000 2 5
17 1 023910 4 105. 000 3 6
18 1 024477 4 107.000 4 7
19 1 026789 2 115.000 5 8
20 1 031234 4 178.500 6 9
21 1 036321 4 130.000 7 10
22 1 036321 4 130.000 7 10 _PAGE_
23 1 No. East 038362 2 112.000 8 1

OBS=12

Thisisthe first observation on the second page. When the REGNAME compute block ©
executes, PCOUNTER isincreased to 1. The IF statement is true, and avaue is written
to REGNAME.

Chapter 7. Extending Compute Blocks 191

OBS=13 and 14

These are the AFTER and BEFORE summary rows for REGION. Notice the value of
BREAK. OBS=13is generated by the BREAK statement, which has a target of
AFTER REGION, and OBS=14 is generated by the BEFORE REGION compute block
@ . After the valuesfor RCNT and PGCNT have been determined in OBS= 14, the
BEFORE REGION compute block executes and resets the value of RCOUNTER to 0.

OBS=15
RCOUNTER isincremented to 1, and this value is written to the report item RCNT.

Here is the second page of the report:

Ext endi ng Conput e Bl ocks
Counting G oup and Page Breaks
Pat i ent
Cinic Wight
Regi on Nurmber N Mean rcnt pgcnt
Md West 084890 2 162 10 1
No. East 011234 2 195 1 4
014321 2 195 2 5
023910 4 105 3 6
024477 4 107 4 7
026789 2 115 5 8
031234 4 179 6 9
036321 4 130 7 10

Here are the two major lessons from this section:

1. For agiven report row, report item compute blocks execute first, and compute blocks
containing BEFORE and AFTER execute second.

2. The output data set reflects the end result of al of the compute block execution process.

Well actually, perhaps athird lesson is that it sometimes can be a bit difficult to determine exactly
what did take place and in what order.

SEE ALSO

I ssues associated with controlling page breaks are also discussed by Guttadauro (2003). Variables
created in aDATA step are used by Humphreys (2006) to control page breaks. Russ Lavery’s“An
Animated Guide to the SAS REPORT Procedure, which isincluded on the CD that accompanies
this book, a so includes a number of examples that cover compute block timing issues.

7.8 Doing More with the LINE Statement

The LINE statement is unique to the REPORT procedure step. When it is used in the compute
block with alocation designation (BEFORE or AFTER), it is roughly analogous to the PUT
statement in the DATA step. In Section 2.6.1, the LINE statement is introduced, and it is used to
write constant text in Section 2.6.2. Justification options are applied to LINE statement text in
Section 7.6.1. The LINE statement can also be used to write computed values.

192 Carpenter’s Complete Guide to the SAS REPORT Procedure

SEE ALSO

Guttadauro (2003) uses the LINE statement and preprocessing to control page numbering when
variables wrap. Dunn (2004) adds text lines to augment the number of titles.

7.8.1 Creating Group Summaries

Because the LINE statement is capable of writing both text and the values of variables, itis
commonly used to write summary information on the final report output.

Intheclinical study that we have been following, the manager of each of the four primary areas
(or groups of regions) is responsible for recruiting eight clinics with an average of five patients for
each clinic. The following report assesses the status for each area as the study progresses.

The LINE statement is used to write out the statistics associated with each area. The statistics

themselves are calculated in compute blocks.

Ext endi ng Conput e Bl ocks
Using LINE for Goup Totals

Cinic Patient
regi on Nurber Count
Md West 051345 2

054367 2

057312 2

059372 2

063742 4

063901 4

065742 4

066789 2

082287 2

084890 2
Total of 10 clinics is 125.0% of target
Patient enrollnent is 26
Per clinic this is 52. 0% of target

No. East 011234 2
014321 2
Portions of the report are not shown .

The summary following
each set of clinicswithin
aregional areaiswritten
using LINE statementsin
aCOMPUTE AFTER
block.

proc format;
val ue $regnane

'1','2'",'"3 = "'No. East'

"4 = 'So. East'

‘5t - g ='Md West'

‘9", '10' = 'Western';
run;

titlel ' Extendi ng Conmpute Bl ocks';
title2 "Using LINE for Goup Total s';

proc report data=rptdata.clinics
nowd split="*";
colum region clinnumn; @
define region / group f or mat =$r egnanes. ;

Chapter 7. Extending Compute Blocks 193

define clinnum/ group "dinic*Nunber';
define n / width=7 'Patient*Count"';

conpute before region; @

clincnt = 0;
patcnt = O;
endconp;

conpute n; ©
if break_="' ' then do; @
* Wthin region patient count;
patcnt + n; ©
* Cdinic count;
clincnt + 1; @
end;
endconp;

conpute after region;
* Fraction of target (8);
clinpct = clincnt/8; @
* Fraction of target (5);
patpct = patcnt/clincnt/5 ©
line @ 'Total of ' clincnt 3. ' clinicsis' ©

clinpct percent8.1 ' of target';

line @ 'Patient enrollnent is ' patcnt 4.;
line @ 'Per clinic this is ' patpct percent8.1 ' of target';
line " ';
line " ';

endconp;

run;

O The N statistic is added to the COLUMN statement. We can now associate DEFINE and
COMPUTE statements © with it.

@® Before processing each region, the counters are reset to 0.

© The compute block that istied to the N statistic is used to execute the SUM statement
accumulators.

® This compute block is executed for each report row, including summary rows.
Fortunately, through the use of the_BREAK _ variable, it isfairly easy to distinguish between
detail and summary rows. _BREAK _is nonmissing for summary rows, and has amissing
value for detail rows. Because we want to increment our counters only for detail rows, we need
to execute the SUM statements (@ and @) on report rows where BREAK _is missing.

© Because the table has been summarized to the clinic level (CLINNUM has a define type of
GROUP), each row represents the number of patient visits within the clinic, and this number is
stored in the report item N.

® Each row in the final report represents one clinic.

@ CLINCNT isthetotal number of clinicswithin the region. The ratio of this count to the target
value (8 clinics) is calculated here.

O The fraction of patients per clinic relative to the target value (5 patients) is calculated.

© The LINE statement is used to write out the calcul ated values.

194 Carpenter’s Complete Guide to the SAS REPORT Procedure

Although you can use the LINE statement to write out a value contained in either atemporary
variable or areport item variable, you cannot specify the calculations themselvesin the LINE
statement. In this example, the calculations of CLINPCT @ and PATPCT @ could not have been
placed on the LINE statements.

Y ou might also notice that when variables are used on the LINE statement, they are always
followed by aformat. Although aformat is not required on the PUT statement, it is required on
the LINE statement.

The compute block at © is specified as

conmpute n;

If instead it had been specified as

conpute clinnum

the SUM statement for PATCNT © would have failed. Thisis because N isto the right of
CLINNUM on the COLUMN statement. If the table were to have N to the left of the clinic
number (col umm regi on n clinnum) then either compute block specification would
have worked.

SEE ALSO
SAS Technical Report P-258 (1993, pp. 111-113) and Burlew (2005, pp. 118-122) both have
examples that use the LINE statement to build summaries between groups.

7.8.2 Adding Repeated Characters

The HEADLINE option (Section 4.1) and the ability to place repeating charactersin spanning
headers (Section 4.3.1) are only available for the LISTING destination. This functionality is not
generally needed in the other destinations; however, when you need it, you can use the LINE
statement to simulate some of this functionality for other destinations.

To create a string of 30 dashesis as simple as specifying the LINE statement as follows:

The same syntax that is used in the PUT statement to create repeated strings can also be used in
the LINE statement. The previous LINE statement could be smplified as follows:

line @ 30*'-';

When using this syntax, whatever quoted text follows the asterisk (*) is repeated the specified
number of times. Although the REPEAT function cannot be used in the LINE statement, it can be
used in a compute block. Consequently, another way of specifying a series of dashes could be
something like the following, which first creates the temporary variable STR to hold the 30
dashes (notice that the REPEAT function expects one less than the total number):

str = repeat('-',29);
line @ str $30.;

In the LINE statement, variable names must always be followed by aformat. Thisis not the case
for constant text.

Chapter 7. Extending Compute Blocks 195

The following example, which builds on the examplein Section 7.8.1, adds repeated text after the
summary of each region and also simulates the HEADLINE @ and HEADSKIP © options.

proc format;
val ue $regnane

'1','2'",'"3 = "'No. East'

"4 = 'So. East'

‘5t - '8 ="'"Md West'

9', '10 = 'Western';
run;

titlel ' Extendi ng Conmpute Bl ocks';
title2 "Using LINE to Add Repeated Text';

proc report data=rptdata.clinics
nowd split="*";
colum region clinnum n;
define region / group f or mat =$r egnanes. ;
define clinnum/ group "dinic*Nunber';
define n / wi dth=7 'Patient*Count';

conpute before; ©
line @8 ' @
line '

endconp;

1

conput e before region;
clincnt 0;
pat cnt 0;
endconp;

conpute n;
if _break_="' "' then do;
patcnt + n;
clincnt + 1;
end;
endconp;

conpute after region;
clinpct = clincnt/8;
patpct = patcnt/clincnt/5;
line @ 'Total of ' clincnt 3. ' clinics is '
clinpct percent8.1 ' of target';
line @ 'Patient enrollnent is ' patcnt 4.;
line @ 'Per clinic this is ' patpct percent8.1 "' of target';
line @ 8*' ------ B 4)
line " ';
endconp;
run;
ods htm cl ose;

© The COMPUTE BEFORE block executes after the headers have been written and before
any of the report rows.

® Thisline of underscores (8 * 6 underscores) simulates the HEADLINE option. Notice that no
format follows the constant text in the LINE statement.

196 Carpenter’s Complete Guide to the SAS REPORT Procedure

© Thisblank line simulates the HEADSKIP option.
O A line of 48 (8 * 6) dashes also follows the summary text.

Ext endi ng Conput e Bl ocks
Using LINE for Goup Totals

Cinic Patient
regi on Nurrber Count

Md West 051345 2
054367 2
057312 2
059372 2
063742 4
063901 4
065742 4
066789 2
082287 2
084890 2

Total of 10 clinics is 125.0% of target

Patient enrollnent is 26

Per clinic this is 52. 0% of target

No. East 011234 2
014321 2
Portions of the table are not shown .

In the previous example, the programmer already knows that the width of each of thelinesisto be
48 (8 * 6) characters. When you automate the step, you sometimes might not know this number
ahead of time. In that case, the length of the line could be based on the width of the pageitself. In
the LISTING destination, the width of the page is held in the LINESIZE= system option, which
can be abbreviated as LS. This value can be retrieved using the GETOPTION function, and this
means that you can create a set of repeated characters that span the page.

The following code creates a string of characters (stored in STR) that is 4 characters shorter than
the width of the page (LS).

str=repeat('_',getoption('LS) - 5);
line @ str $;

We could aso create aline of the same width by storing the number of times to repeat the
character in amacro variable (& PGWIDTH).

% et pgwi dth = %val (%sysfunc(getoption(LS)) - 4);

The LINE statement could then be written without creating the temporary variable or the
REPEAT function:

line @ &pgw dth*' _';

SEE ALSO

SAS Technical Report P-258 (1993, p. 216) has an example of the use of repeated charactersin
the LINE statement.

Chapter 7. Extending Compute Blocks 197

7.8.3 Understanding LINE Statement Execution

Although the LINE statement initially seems to be very similar to the DATA step PUT statement,
there are important differences that can, at the very least, cause consternation on the part of the
programmer.

The primary differenceisin the way that PROC REPORT executes the LINE statements. The
SAS language elements (statements, functions, etc.) are executed in sequence within the compute
block in essentially the same way asthey arein the DATA step. The LINE statements are not
executed in sequence with the other statements. In fact, PROC REPORT separates out the LINE
statements from the SA S language elements, which are then executed. After all of the SAS
language elements in the compute block have been executed, PROC REPORT then executes all
the LINE statements in the order in which they appear in the compute block.

Thistiming means that since all of the SAS language elements are executed before any of the
LINE statements, you can never conditionally execute a LINE statement with an IF-THEN/EL SE
statement, nor can you use a LINE statement inside of aDO loop.

Asif al of thiswere not confusing enough, things can get a bit more convoluted when aLINE
statement is to write the value of areport item or of atemporary variable. The general rule, as
stated previoudly, is that assignment statements, even those that follow the LINE statement in the
compute block, are executed first. The exception is for temporary character variables. When
temporary character variables appear on the LINE statement, the variables are evaluated when the
LINE statement is encountered, even though the LINE statement itself is actually executed later.

The following silly report demonstrates these rules.

titlel ' Extendi ng Conpute Bl ocks';
title2 'Understanding the LINE Statenent';
title3 "Just to show the LINE Execution';

proc report data=sashel p.cl ass nowd;
colum age sex, hei ght;
define age / group ;
define sex / across ;
define height / nean;

rbreak after / summmri ze;

conpute after;

line ;
value = 'DEF' ; ©
count = 5678; @

line 'Show letters ' value $3.; ©
line ' Show count ' count 5.1; @
line "Show MHT ' ¢3_5.1; ©
line " ';
docnt =1 to 5

line 'Loop counter is ' cnt 3.; (6]
end;

198 Carpenter’s Complete Guide to the SAS REPORT Procedure

if 1 =2thenline 'This is true: 1 =2": @

value = 'ABC ; ©
count = 1234; ©
¢3=11.11; ©
endconp;
run;

© Thetemporary character variable VALUE is given the value of ‘DEF'. Thisis changed later to
‘ABC’ @, presumably before the LINE statement © is executed.

® The numeric temporary variable COUNT isinitialized. Thisvalueislater changed to 1234 ©,
and it isthat value that shows in the report, even though the LINE statement @ appears earlier.

© This LINE statement displays the value of ‘DEF instead of ‘ABC'.

O Thevaue assigned in © is displayed, even though the assignment statement is after the LINE
statement.

© The report item value has been changed at ©®. Thisis reflected in the report and in the result of
the LINE statement.

@ The DO loop executes five times, leaving the temporary variable CNT with avalue of 6. The
LINE statement executes only once (outside of the loop).

@ The IF expression is clearly false; however, the LINE statement executes anyway. Y ou cannot
conditionally execute LINE statements.

O Although this assignment statement executes before the LINE statement © that uses VALUE,
the variable value on the LINE statement has already been resolved.

© The value for COUNT isredefined. Thisisthe value that is used by the LINE statement @.

® The vaue of areport item (mean male height) is changed. This new value appears twice in the
report.

Ext endi ng Conput e Bl ocks
Under st andi ng the LI NE Statenent
Just to show the LINE Execution

Sex
F M
Age Hei ght Hei ght
11 51.3 57.5
12 58.05 60. 366667
13 60.9 62.5
14 63. 55 66. 25
15 64.5 66. 75
16 . 72
60. 588889 11.11 @

Show letters DEF © ©
Show count 1234 ©® ©
Show MHT 11.1 © @

Loop counter is 6 @
This is true: 1 =2 @

Chapter 7. Extending Compute Blocks 199

It is generally considered a good programming practice to always put all of the LINE statements
at the end of the compute block as avisual reminder of their order of execution. The previous
compute block could/should be rewritten as:

conpute after;

do cnt =1 to 5;
end;

if 1 =2 then ;
value = ' ABC ;
count = 5678;
count = 1234;
c3 11.11;

val ue = ' DEF' ;

line ' ';

"Show letters ' value $3.;
' Show count ' count 5.1;
"Show MHT ' ¢3_ 5.1;
line ' ';
'Loop counter is ' cnt 3.;
'"This is true: 1 = 2';

line
line
l'ine

line
l'i ne

endconp;

Obviously the compute block is now full of silly stuff (actually it was there all along, but now we
can seeit). The point isthat LINE statements should appear at the end of the compute block. If
you are always in the habit of putting them last in the compute block, you will not get caught up
in the odd behaviors and rules demonstrated in this example.

7.9 Examples of Common Tasks

Although the types of reportsin this section are fairly common, it is unlikely that they will be
“just what you need.” They are presented here as additional examples of various uses of compute
blocks. Understanding how and why these examples work is much more important than exactly
what they do or produce.

These examples take advantage of a variety of the techniques that are discussed in the previous
sections of this chapter.

Section 7.9.1

Section 7.9.2

Section 7.9.3

In areport of multiple pages, acommon value (agrand total) is written
on each page as part of a header.
At times we need to combine multiple values into a single column or field.
In this example we combine the mean and standard deviation into one
column that takes the form of

mean (standard_deviation).
Combining numeric values asis donein Section 7.9.2 is even more
interesting when they are nested within an ACROSS variable. In a situation
such as the one shown in this example, columns must be addressed using
absolute column numbers (indirect variable names of the form _Cxx_).

200 Carpenter’s Complete Guide to the SAS REPORT Procedure

7.9.1 Writing a Grand Total on Every Page

In this report, we want to summarize the data so that we will have patients summarized within
clinics and clinics within regions with one page per region. Nested summaries like this are easy to
do with BREAK BEFORE and BREAK AFTER statements; however, we would also like to show
the overall study summary (RBREAK) on each page, not just before or after the report @. Just to
make things a bit more interesting, we would like the two grouping variables (REGION and
CLINNUM) to appear stacked in the same column. @

Thetarget final report will look something like this:

18]

West ern
093785
094789
095277
107211
108531

Ext endi ng Conput e Bl ocks
Repeati ng Report Wde Totals

(N MEAN) @

Vi
N
1

A NONMNDNO

Study Weights (80, 161. 78)
Study Heights (80, 67.45)

Pat i ent
ght Hei ght

Mean N Mean
182.0 16 67.3 O
177.0 2 65.0
185.0 2 70.0
192. 3 6 67.3
177.0 2 69.0
170.0 4 66.0

The study-wide statistics for height and weight are each written as a single value, which includes
parentheses, text, and converted numeric values @. These text values are constructed in a
compute block ® with the use of the PUT function to convert numeric values to characters, and
the CATS function to do the actual concatenation. This multiple-value construction processis

described in more detail in Section 7.9.2.

proc format;

val ue $regnane

1,02, 3

Cq

‘5 . g

‘9, 10
run;

'No. East'
' So. East'
'Md West'

'Western'

titlel ' Extendi ng Compute Bl ocks';
title2 'Repeating Report Wde Totals';

proc report data=rptdata.clinics

nowd;
colum region clinnumnane @
(' Patient'

defi ne
define
define
defi ne

("Veight' wi=wtn @ w)

(' Height' ht=htn @ ht));
region / group format=%regnane.
clinnum group noprint;
name / conputed ' right; ©
wtn / analysis n

format=2. 'N ;

noprint;

Chapter 7. Extending Compute Blocks 201

define wt / anal ysi s mean
format=5.1 ' Mean';

define htn / analysis n
format=2. 'N ;

define ht / anal ysi s mean

format=4.1 ' Mean';

break before region / sunmarize; @
break after region / page; ©

* Conpute the Report totals;

conpute before; @
* Hold values of interest in DATA step vari abl es;
allwn = put(wtn, 3.);

allw = put(wt.nean,6.2);

lineval w = cats('Study Weights (',allwtn,',";allwt,"')");

allhtn = put(htn, 3.);

allht = put(ht.nean,6.2);

lineval ht= cats('Study Heights (',allhtn,",",allht,")");
endconp;

* Wite the overall statistics;

conpute before page ; @
line @5 '(N, MEAN)';
line @ linevalw $35.;
line @ lineval ht $35.;
line ' ';

endconp;

* Determ ne the |ine header;
conpute nane / char |ength=8; ©

if clinnum=" ' then nanme=put(region, $regnane.); ©
el se name = clinnum
endconp;

run;

© The variable NAME must appear to the right of both REGION and CLINNUM in the
COLUMN statement, or the assignment statements in its compute block @ will not work.

® Anaias(WTN and HTN) is declared to hold the count (N) for the two analysis variables.

© The NAME column is used to display both the region name and the clinic number in the final
table ©.

O For this report, we would like the region’s summary line to appear before the detail lines of
that same region.

© The page break is inserted after each region has been completed. Because the SUMMARIZE
option does not appear on this statement, no summary lineis generated. Using two BREAK
statements, one before and one after region, gives us quite a bit of added flexibility.

@ The overall report-wide statistics are saved in temporary variables for use on each page @.
These values are created only once for the entire report, but they are used on each page.

@ The saved report-wide values @ are written out at the start of each new page.

202 Carpenter’s Complete Guide to the SAS REPORT Procedure

O The value for NAME is assigned from either REGION or CLINNUM, depending on the type
of summary or detail row.

© Thevaue of CLINNUM is missing for the row generated by the BREAK BEFORE
REGION statement.

The output page for the Western region is shown below. Notice that the report-wide (across all
regions) information appearsin the title area @. The region name (Western) appears in the same
column as the individual clinic numbers. This takes less horizontal space than the report in
Section 7.7.3.

Ext endi ng Conput e Bl ocks
Repeating Report Wde Totals

(N, MEAN) @
Study Weights (80, 161. 78)
Study Heights (80, 67.45)

Pat i ent

Wei ght Hei ght
N Mean N Mean
Western 16 182.0 16 67.3
093785 2 177.0 2 65.0
094789 2 185.0 2 70.0
095277 6 192.3 6 67.3
107211 2 177.0 2 69.0
108531 4 170.0 4 66.0

Keep in mind that this COMPUTE BEFORE _PAGE_ technique might not work in destinations
other than LISTING. For example, in the RTF destination, you have much less control over
vertical pagination; therefore, there is no guarantee that this technique would work for the RTF
destination. For other destinations, a related potential solution would be to use BY variables to
force the page breaks (see Section 6.6.2).

7.9.2 Combining Values into One Field or Column

Sometimes for convenience we would like to display two (or more) vaues in the same field.
Although not described in detail, this was done in the example in Section 7.9.1. In the following
example, we would like to display the mean along with its standard deviation in parentheses
within the body of the report.

proc format;
val ue $regnane

'1','2',"3" ="'"No. East'

"4 = 'So. East'

"5 - '8 ='Md West'

‘9, 10 = '"Western';
run;

titlel ' Extendi ng Conmpute Bl ocks';
title2 'Conmbining Values in One Field';

proc report data=rptdata.clinics
nowd;

Chapter 7. Extending Compute Blocks 203

colum region n

(' Patient'

S Wei ght' wt=wtrmean wt wtval) @

(" Height' ht=htmean ht htval));
define region / group format=%regnane. 'Area';
define n /| format=3. ' N; @
define wtrmean / analysis mean noprint; ©
define w / analysis std noprint; ©
define wtval / conputed ' Mean (SD)'; ©®
define htnean / anal ysis nmean noprint;
define ht / analysis std noprint;
define htval /[conmputed 'Mean (SD)';

* Combine the WI val ues; ©
conpute wtval / char |ength=15;
wtval = cats(put(wtnean,5.1)," (',
put(w.std,7.1),"')");
endconp;

* Conbi ne the HT val ues;
conpute htval / char |ength=15;
htval = cats(put(htnmean,5.1)," (',
put(ht.std,7.1),')");
endconp;
run;

O The analysis variable, WT, is specified along with an alias, WTMEAN, and a computed
variable that will contain the combined values.

® The N statistic is requested directly. This value counts observations and reflects the number
used to calculate the statistics, assuming that there are no missing values.

© The MEAN and STD are calculated but are not printed. Instead their values are loaded into the
computed variable WTVAL (® and ©).

O The computed variable that will hold the combined valuesis defined.

© The CATSfunction is used to concatenate the mean (WTMEAN), standard deviation
(WT.STD) and the parentheses. WTVAL is acharacter variable, and the COMPUTE statement
includes the use of the CHAR and LENGTH= options.

Ext endi ng Conput e Bl ocks
Conbi ni ng Values in One Field
Pat i ent
Wei ght Hei ght

Ar ea N Mean (SD) Mean (SD)
Md West 26 172.5(34.4) 66. 8(3.5)
No. East 24 138.2(38.5) 67.3(4.4)
So. East 14 159.1(23.7) 69. 0(2. 6)
West ern 16 182.0(22.7) 67.3(2.2)

This technique gives you a great deal of flexibility when building the value that is to be displayed.

204 Carpenter’s Complete Guide to the SAS REPORT Procedure

MORE INFORMATION
The techniques associated with combining variable values are also discussed in Sections 7.9.3 and
10.1.3.

7.9.3 Combining Values with Nested ACROSS Variables

The ACROSS define type is used when we want values of classification variables to be next to
each other horizontally. In this example, we want to nest ACROSS variables, and we want to
create a concatenated column as we did in Section 7.9.2. Because of the nested ACROSS
variables, we need to use absolute column numbers, which use the _Cxx_ column designations.

proc format;
val ue $regnane

'1',"2","3 ="No. East'

"4 = 'So. East'

"5 - '8 ="'"Md West'

‘9", 10 = '"Western';
val ue $gender

'm, 'M = 'Mle'

"f', "F ='"Female',

val ue birthgrp
'01j an1945'd - '31dec1959'd
ot her

run;

Booner' ©
' Non- Booner' ;

titlel ' Extendi ng Compute Bl ocks';
title2 ' Conbining Values in ACRGCSS Col umms';

proc report data=rptdata.clinics
out =outreg @
nowd;
colum regi on n sex, dob, (3)
(wt=wt nean wt wtval);
define region / group fornat=%regnanme. 'Area';

define n [/ format=3. ' N ;
defi ne sex | across format=$gender. ' ';
define dob across format=birthgrp. " ';

define w anal ysis std noprint;

/
define wtrmean / analysis mean noprint; @
/
define wval / conputed ' Mean (SD)';

* Conbi ne the WI' val ues;
conpute wtval / char |ength=12; ©

~¢5_ = cats(put(_c3 ,5.1)," (', O
put(_c4 ,7.1),")"): @
¢8 = cats(put(_c6_,5.1," (',
put(_c7_,7.1),")");
_cl1l1 = cats(put(_c9_,5.1)," (',
put(_c10_,7.1),")");
cl4 = cats(put(_c12_,5.1)," (',
put(_c13_,7.1),")");
endconp;

run;

proc print data=outreg;
run;

Chapter 7. Extending Compute Blocks 205

© Leading spaces are added to help center the text.

®\When working with columns during the program development phase, it is sometimes helpful to
print out the output data set of the report so that the column numbers can be accurately
determined.

©The commais used to nest the three weight variables within date of birth (DOB), which
is nested within SEX. Notice that parentheses are placed around the three weight
variables to form a group that can be nested within DOB.

O The statistics for weight (WT and WTMEAN) are calculated, but the NOPRINT option
preventstheir display.

© Notice that although we use the compute block for WTVAL, thisvariable is never actualy
created. Instead, because it is nested under ACROSS classification variables, we assign the
computed values directly into the appropriate columns using the absolute column numbers.

@Themean, _C3_, is added to the computed character string that will contain the statistics. We
cannot address the mean using the alias WTMEAN because of the nesting across age groups.
This solution only works because we know what is contained in each of the columns. Notice
that although WTMEAN is not displayed on the final report (because it has been defined with
the NOPRINT option @), it still occupiescolumns ((C3 _, C6_, C9 ,and_C12)onthe
output data set.

@ The standard deviation, C4 , is added to the computed value. The variable WT.STD would
not be available for use.

The output data set WORK.OUTREG, can provide a snapshot of the end result of the processing
of the compute blocks during the report row phase, and it can also be used to help determine the
column numbers that are used in the WTVAL compute block. The absolute column numbers
themselves are available for use because they have already been determined during the setup
phase.

Ext endi ng Comput e Bl ocks
Conbi ni ng Val ues in ACROSS Col ums

s region n _C3_ A _C5_ _C6_ _Cr_ _C8_

1 5 24 140.667 36.9504 140.7(37.0) 172.625 34.8668 172.6(34.9)
2 1 24 119.222 20.6505 119.2(20.7) 112.000 0.0000 112.0(0.0)
3 4 14 139.000 13.8564 139.0(13.9) 155.000 . 155.0(.)
4 10 16 177.000 0.0000 177.0(0.0) 163. 000 0. 0000 163.0(0.0)
Obs _C9_ _Cl10_ _Cl1_ _Cl2_ _C13_ _Cl4_ _ BREAK
1 161.000 20.2287 161.0(20.2) 200.143 33.4187 200.1(33.4)

2 121.286 27.8132 121.3(27.8) 195.000 0.0000 195.0(0.0)

3 170.667 27.6381 170.7(27.6) 158.000 18.9209 158.0(18.9)

4 187.800 37.2451 187.8(37.2) 184.714 13.8770 184.7(13.9)

206 Carpenter’s Complete Guide to the SAS REPORT Procedure

Here isthe final REPORT table:

Ext endi ng Conput e Bl ocks
Conbi ni ng Val ues in ACROSS Col umtms

Femal e Mal e
Booner Non- Booner Boormer Non- Booner
Area N Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Md West 24 140.7(37.0) 172.6(34.9) 161.0(20.2) 200.1(33. 4)
No. East 24 119.2(20.7) 112.0(0.0) 121.3(27.8) 195.0(0.0)
So. East 14 139.0(13.9) 155.0(.) 170.7(27.6) 158.0(18.9)
Western 16 177.0(0.0) 163.0(0.0) 187.8(37.2) 184.7(13.9)

Thisfinal report shows how PROC REPORT can provide some of the same functionality and
ability to create cross-tabular reports as PROC TABULATE (albeit with different syntax).

MORE INFORMATION
The alignment of decimal pointsin derived composite columns such as these can be problematic;
see Section 10.1.3 for afurther discussion on thistopic.

SEE ALSO

SAS Technical Report P-258 (1993, pp. 83-84) includes an example of computed variables that
share columns with nested variables. Burlew (2005, pp. 128-130) usesthe ARRAY statement
with aDO loop to calculate percentages using indirect column references.

7.9.4 Calculating a Weighted Mean

The FREQ statement (see Section 6.7) can be used to specify a variable that contains a row
frequency. This frequency isthen applied to all the analysis variables for that row. Sometimes we
have avalue that we would like to apply as aweight, but to only one other variable. To do thiswe
need to perform the calculations ourselves.

In the following example we would like to use the number of items sold (QUANTITY) and the
unit price for that quantity (PRICE) to calculate the weighted average and the total revenue. The
data has been simplified so that we can more easily see what is going on and what is going wrong.
The data shows that one unit was sold at $1.50, ten for $1.00, and 100 units were sold for $0.50.

data tenp;
i nput product $ quantity price;
| abel product ' Product Code'

quantity = ' Number Sol d'
price ="'Unit price';
dat al i nes;
allbs
a l1l0 1.0

a 100 .5
run;

Thefirst attempt to determine the total revenue and average price uses the FREQ statement (see
Section 6.7).

Chapter 7. Extending Compute Blocks 207

titlel ' Extendi ng Compute Bl ocks';
title2 'Calculating a Wighted Mean';
title3 'Using the FREQ statenent';
proc report data=tenp nowd;

col ums product quantity price price=revenue; @

define product / display;

define quantity / analysis sum

define price / analysis nmean fornmat=dollar5.2 w dth=7;

define revenue / sum' Total Revenue' fornat=dollar6.2 w dth=7;
freq quantity;, @

rbreak after / summarize dol;

run;

O REVENUE is defined as an dias of PRICE.

® The FREQ statement is used to identify the variable that contains the frequency.

The total revenue and weighted average unit price has been calculated correctly; however, since
we are also displaying the QUANTITY (the FREQ variable) that value is now incorrectly

displayed.

Ext endi ng Conput e Bl ocks
Cal cul ating a Wei ghted Mean
Usi ng t he FREQ st at enent

The FREQ variableis applied
to all analysisvariables

coge eyl i Jotal including itself

Code Sol d rice Revenue

a 1 21' 50 ;/;1 ?,O (QUANTITY**2). The

a 100 $1.00 $10.00 \t/v?agijhted averageprice zt;md
a 10000 $0.50 $50. 00 otal revenue are correct.

10101 $0.55 $61.50

We can take control of the weighting of the calculations by using compute blocks to calculate the
revenue.

title3 ' Conputed Val ues';
proc report data=tenp nowd;

col ums product quantity price revenue ©;

define product / display;

define quantity / analysis sum

define price / analysis nmean fornmat=dollar5.2 w dth=7;

define revenue / conputed 'Total Revenue' fornat=dollar6.2 w dth=7;

conput e revenue;

revenue = price.nmean * quantity.sum O
endconp;
rbreak after / summarize dol;

run,

© Revenueisdefined as a computed variable.

® Revenueisthe product of the quantity and the unit price.

208 Carpenter’s Complete Guide to the SAS REPORT Procedure

Inspection of the resulting table shows that the values are correct everywhere except on the
summary line generated by the RBREAK statement. The overall mean unit price is not weighted
consequently the total revenueisincorrect.

Ext endi ng Conput e Bl ocks

Cal cul ating a Wei ghted Mean
Conput ed Val ues Thedetail lines of thereport are
correct, however on the summary

Pr oduct Number Uni t Tot al line only the total quantity valueis
Code Sol d price Revenue correct. Themean priceis
a 1 $1.50 $1.50 unweighted, and this unweighted
a 10 $1.00 $10.00 averageisused to calculate the total
a 100 $0. 50 $50. 00 revenue.

111 $1. 00 111. 00

The problem is that we have failed to calculate the weighted average unit price on the report
summary line. We can do thisina COMPUTE AFTER block, however, because of the order that
compute blocks are executed we must be careful to control the process. Because compute blocks
associated with report items are executed before compute blocks associated with summary lines
(COMPUTE AFTER in this example), the value of the weighted average unit price and the total
revenue must both be recal cul ated.

title3 'Conmputed Values Uilizing the BREAK ';
proc report data=tenp nowd;
colums product quantity price revenue;
define product / display;
define quantity / analysis sum
define price / analysis nmean format=dollar5.2 w dth=7;
define revenue / conputed 'Total Revenue' format=dollar6.2 w dth=7;

conput e revenue;
revenue = price.nean * quantity.sum

if break_ ="' ' then _sumrevenue + revenue; ©

endconp;

conpute after;
price.mean = _sumrevenue / quantity.sum O
revenue = _sumrevenue;, @

endconp;

rbreak after / summarize dol;

run;
© For detail rows(_break_ = ' ') weneed to accumulate the total revenue, which we will

use for the summary row calculations.

@ The weighted average unit is defined as the total revenue divided by the total number of units
sold.

@ Thetotal revenue for this summary line was already calculated incorrectly in the compute
revenue block. Here it is recalculated using the total that we saved.

Chapter 7. Extending Compute Blocks 209

Ext endi ng Conput e Bl ocks
Cal cul ating a Wei ghted Mean
Conputed Values Utilizing the _BREAK_

Pr oduct Nurber Uni t Tot al
Code Sol d price Revenue
a 1 $1. 50 $1. 50
a 10 $1. 00 $10. 00
a 100 $0. 50 $50. 00

111 $0.55 $61.50

MORE INFORMATION

Section 6.7 introduces the FREQ statement and Section 11.3 discusses the order of compute block
processing.

7.10 Chapter Exercises

1. Thedatatable SASHELP.ORSALES contains sales data from aretail outdoor sports
clothing and equipment store. Create a report that shows total PROFIT and percentage of
annual salesfor each PRODUCT _LINE within each year. Y ou might want to build on the
results of Exercise 1 in Chapter 5.

Include a summary line (BREAK) for each product line and atotal summary line (RBREAK).
Use a compute block to change the percentage on the report summary to missing.

2. Building on the results of Exercise 1 in Chapter 7, add ‘Tota’ astext in the YEAR column
for each of the annual summary lines, and ‘Overall’ on the report summary line.

Use the OUT= option to examine the output data set, and note the values taken on by the
BREAK variable.

3. Instead of using the RBREAK statement to calculate the overall total profit, calculate the
value in a compute block and display it using a LINE statement.

210 Carpenter’s Complete Guide to the SAS REPORT Procedure

Chapter 8
Using PROC REPORT with ODS

8.1
8.2

8.3

8.4

8.5

Introduction to the STYLE= Option 213

Using STYLE=to Change Attributes 216

8.2.1 Changing Text and Cell Attributes 216

8.2.2 Adding a Logo to Your Report 219

8.2.3 Controlling Report Size 223

8.2.4 Adding Horizontal and Vertical Spaces to Separate Data 223
Using CALL DEFINE to Change Style Attributes 227
8.3.1 Using CALL DEFINE in a Simple Report 228
8.3.2 Creating Shaded Rows 229

8.3.3 Conditional Assignment of Attributes 231
Creating Trafficlighting Effects 232

8.4.1 Building Trafficlighting Formats 233

8.4.2 Using Formats with the STYLE= Option 234
8.4.3 Controlling Trafficlighting with CALL DEFINE 236

8.4.4 Trafficlighting in the Presence of Computed Variables and Summary
Lines 236

8.4.5 Trafficlighting When Differentiating between Columns 240

8.4.6 Differentiating between Columns on Group Summary Rows 242

8.4.7 Trafficlighting on the REPORT Summary Row 245

8.4.8 A Few Things to Remember When Using Formats for Trafficlighting 249

Embedding Hyperlinks within Your Table 249

8.5.1 Linking Titles and Footnotes Using HTML Anchor Tags and the LINK=
Option 250

212 Carpenter’'s Complete Guide to the SAS REPORT Procedure

8.5.2 HTML Anchor Tags as Data Values 255
8.5.3 Establishing Links Using CALL DEFINE 257
8.5.4 Forming Links Using STYLE= 260
8.5.5 Creating Links in a PDF Document 262
8.5.6 Creating Links in an RTF Document 265
8.5.7 Automation Using the Macro Language 266
8.5.8 Using Formats to Build aLink 268

8.6 Using the Escape Character for In-Line Formatting 270
8.6.1 Controlling Superscripts and Subscripts 271
8.6.2 Displaying Page Numbers 273
8.6.3 Generating a Dagger 277

8.6.4 Using the Escape Character with S={} and {STYLE} to Change Style
Attributes 279

8.6.5 Line Breaks and Wrapping 282

8.6.6 Passing Raw Destination-Specific Codes 289
8.7 Using TITLE and FOOTNOTE Statement Options 292
8.8 Creating Tip or “Flyover” Text for HTML and PDF 293

8.8.1 Using CALL DEFINE 293

8.8.2 Placing Tip Text Using STYLE= 295

8.8.3 Placing Tip Text Using ~S={} 297
8.9 Specifying Multiple Columns for RTF and PDF 298
8.10 Adding Text through the TEXT= Option 300
8.11 RIGHTMARGIN: Aligning Numbers When Using CELLWIDTH 301
8.12 Chapter Exercises 304

A number of sources contain information on the Output Delivery System that is both more
complete and more detailed than can be provided in this book. Since it is not possible to present
all aspects of ODS here, this book includes only those topics that either directly relate to PROC
REPORT or are commonly associated with the reporting process. The reader is encouraged to
investigate some of the sources highlighted in the various SEE AL SO sections.

For the most part, the topicsincluded in Chapter 8 are fairly independent of the ODS destination.
Related topics that apply only to specific destinations are presented in Chapter 9, “ Reporting
Specifics for ODS Destinations.”

Although this usage is not discussed in this book, the Output Delivery System can be used to
generate data sets through the use of the OUTPUT destination (see Smith (2003) for detailed
examples). For PROC REPORT, the OUT= option is generally sufficient if we need to “see” the
resultant table as data. As a matter of fact, for the current releases of SAS, PROC REPORT does
not even support the OUTPUT destination; consequently, this ODS destination has little utility for
the PROC REPORT programmer.

Chapter 8: Using PROC REPORT with ODS 213

MORE INFORMATION
Chapter 9 a so discusses ODS-related topics that are more destination-specific.

SEE ALSO

McNeill (2002) discusses a number of things that deal with ODS that are new to SAS°9 and in the
process provides a nice introduction to a number of itemsthat deal with reporting. The books by
Haworth (2001a) and Gupta (2003) are “must reads’ for the Output Delivery System.

8.1 Introduction to the STYLE= Option

When ODS is used, the basic formatting of display attributes, such asfont style, font size,
foreground color and background color, are controlled through an ODS style selected by the user.
PROC REPORT can override a majority of these display attributes through the use of the
STYLE= option. This option is distinct from the STY LE= option on the ODS statement, which is
used to select the overall ODS style.

The STY LE= option discussed in this section can be used on most PROC REPORT statements to
control attributes of the table such as color, font, and text size. The STY LE= option can be used
on the following PROC REPORT statements:

= PROC REPORT

= DEFINE

= COMPUTE
= BREAK

= RBREAK

= CALL DEFINE (Theform of the option isdlightly different; see Section 8.3.)

Here is the general form of the STY LE= option:

styl e(conponent) = {attribute=val ue}

component identifies what isto receive the style.
attribute identifies the style attribute(s) that isto receive the value.

Notice that the attribute specification (to the right of the equals sign) is enclosed in curly braces
{ }. Although other brackets can usually be used, the curly braces are recommended.

Because PROC REPORT controls all aspects of the construction of the report table, and because a
given statement can sometimes modify several different aspects of the table, we must have a
mechanism to identify which portion of the table is to be modified by a given application of the
STYLE= option. Thisis accomplished through a combination of the component portion of the
option, along with the statement on which the option appears.

214 Carpenter’'s Complete Guide to the SAS REPORT Procedure

There is adefault component for each PROC REPORT statement that supports the use of the
STYLE= option. If you know the default component and you want the option to apply to that
component, you can omit that portion of the option. The form of the option becomes as follows:

style = {attribute=val ue}

Obviously, because not all portions of the table are modified by al the statements, all of the
components cannot be used with all of the PROC REPORT statements. The following table shows
which components can be used with which statements.

PROC REPORT Supported
Statement Components Portion of Report Affected
PROC REPORT CALLDEF Cells identified by the CALL
DEFINE routine
COLUMN Cells of all columns
HEADER | HDR Column and spanning
headers
LINES Line statements
REPORT * Structural part of the report
SUMMARY Default summary lines
DEFINE COLUMN* Cells of this column
HEADER | HDR * Column headers
CALL DEFINE CALLDEF * Cells identified by the CALL
DEFINE routine
COMPUTE LINES * Line statements
BREAK SUMMARY * Summary lines
RBREAK SUMMARY * Summary lines

Although | think it is always a good idea, you are not required to specify a component when using
the STYLE= option. In the previous table, the * indicates the default component if the component
is not explicitly specified.

Since the purpose of the STY LE= option is to change the attributes of various portions of the
report, there is also an association between the components and the attributes. By implication, this
means that not all attributes are available for al components.

The following table shows a small subset of available attributes. The full list of attributes comes
from the ODS STY LE. Consult the ODS documentation or see Lund (2005), which has an
extensive list of attributes.

Chapter 8: Using PROC REPORT with ODS 215

Selected Selected
Components Attributes What the Attribute Does
REPORT JUST Controls justification (left, right, center)

CELLPADDING Specifies the amount of white space
surrounding the text

BORDERCOLOR Specifies the border color

HEADER BACKGROUND Specifies the background color
COLUMN CELLHEIGHT Specifies the cell height
SUMMARY CELLWIDTH Specifies the cell width

FOREGROUND Specifies the foreground color

FONT_WEIGHT Specifies the text thickness, e.g., light,
medium, bold

FONT_FACE Specifies the text type face, e.g., Arial, Times

FONT_SIZE Specifies the text size
FONT_STYLE Specifies the text style, e.g., italic, roman,
slant

RIGHTMARGIN Specifies the margin width within a cell

For each statement and component combination there is also a default attribute. The following
table is taken from the documentation and shows these default attributes. However, in the long run
it is generally more efficient, from the coder’ s perspective, to specify the component and
attributes rather than to rely on the defaults.

PROC REPORT
Statement Component Default Attribute
REPORT REPORT, COLUMN, HEADER|HDR, = TABLE
SUMMARY, LINES, CALLDEF
BREAK SUMMARY, LINES DATAEMPHASIS
CALL DEFINE CALLDEF DATA
COMPUTE LINES NOTECONTENT
DEFINE COLUMN DATA
HEADER HEADER

RBREAK SUMMARY, LINES DATAEMPHASIS

216 Carpenter’'s Complete Guide to the SAS REPORT Procedure

SEE ALSO

Stroupe (2002) introduces the STY LE= option, and Pass and McNeil (2003) provide extensive
examples. Haworth (2001b) provides a more complete enumeration of available style attributes,
as does Lund (2005). Tables similar to those presented in this section can aso be found in Burlew
(2005, p. 191).

8.2 Using STYLE= to Change Attributes

The syntax of the STY LE= option seems a bit odd at first. Be sure to remember that you must
specify both the attribute(s) and, either explicitly or implicitly by using the default, the component
to which the attributes are to be applied. Although the STY LE= option can be used in most of the
statements in the PROC REPORT step, it is the combination of statement, attribute, and
component that determines precisely the effect of the option.

8.2.1 Changing Text and Cell Attributes

It is easiest to describe the effects of various combinations of components, attributes, and
statements through an exampl e that shows most of these combinations. First consider the
following REPORT procedure, which does not use the STY LE= option.

options center;

ods listing close;

ods htm styl e=default
pat h="&pat h\resul t s"
body='ch8_2_ 1a. htm';

titlel 'Sales Sunmary';
proc report data=sashel p. prdsal e(wher e=(prodtype=" OFFI CE'))
nowd;
colum region country product, actual total sales;
define region [/ group;
define country / group;
define product / across;
define actual / analysis sum
f or mat =dol | ar 8.
' Sal es' ;
define total sales / conputed format=dol | ar10.
'Total Sales';

conput e total sal es;

total sales = sum(_c3_, _c4_, _c5));
endconp;
break after region / summarize suppress;
rbreak after / sunmari ze;
run;

ods htnml cl ose;

Chapter 8: Using PROC REPORT with ODS 217

Using the DEFAULT ODS style, this PROC REPORT step produces the following HTML table.

Sales Summary

Product
CHAIR DESK TABLE

Region Country Sales Sales Sales Total Sales

EAST CANADA $25200 $25020 $25845 $76,165
GERMANY $23277 $25403 $26,116 $74.796

US.A. $27378 $23193 $227258 $72829

§r5855 frsafs 74,519 $223,750

WEST CANADA $25039 $27167 $20.755 $72.961
GERMANY $23828 $23099 $23081 $70,008

USA. $23558 $25350 $24.045 $72.953

§r2425 §r56168 §67,881 §215022

$148280 §148232 §142200 $438,712

Destination: HTML Style: DEFAULT

The following REPORT procedure produces exactly the same report, except it uses various
STYLE= options.

options center;

ods listing close;

ods htm styl e=default
pat h="&pat h\resul t s"
body='ch8_2 1b.htnm"';

titlel 'Sales Sunmary';
proc report data=sashel p. prdsal e(wher e=(prodtype="OFFI CE'))
nowd
style(report)={just=right} @
styl e(header) ={ backgr ound=yel | ow @
font _wei ght=bold ©
foreground=green} @
styl e(col um) ={f or eground=red ©
backgr ound=whi t e};
colum region country product, actual total sales;
define region [/ group
styl e(header) ={ backgr ound=cyan} O;
define country / group
styl e(col um) ={ backgr ound=pi nk} @
styl e(header) ={font _face=ti nes};
define product / across;
define actual / analysis sum fornat=doll ar8.
' Sal es' ;
define total sales / conputed format=dollar10.
'Total Sales';

218 Carpenter’'s Complete Guide to the SAS REPORT Procedure

conput e total sal es;
totalsales = sun{_c3_, _c4_, _c5);
endconp;

break after region/sunmarize suppress
styl e(summary) ={f ont _wei ght =bol d} ©;
rbreak after /[sumari ze
styl e(summary) ={font _wei ght =bol d ©
font _size=4};
run;
ods html cl ose;

Clearly this procedure creates afairly ugly table (actually it isworse in color). However, it does
serve to demonstrate the effects of various combinations of statements and components.

Sales Summary e

2] Product
o © CHAIR O DESK TABLE

Region Country Sales Sales Sales Total Sales
EAST CAMNADA $25,200 $25,020 $25,.945 $76,165
GERMANY £23277 $25403 $26,116 £74.796
© LS A $27.378 23193 $22,258 $72.529
? $75.855 §73.616 $74,319 $223.790
WEST CAMNADA $25,039 $27 167 $20,755 $72 961
GERMANY $23.828 $23.099 $23.081 £70,008
LS A $23558 $25,350 $24 045 $72953
(8] $72.425 $75616 $67.881 $215,922
© $148,280 $149,232 $142,200 $439,712

Destination: HTML Style: DEFAULT

© The entire table has been right-justified. This makes the title, which is centered, appear to be
left-justified.

® The background color for the entire header areais yellow, with bolded ©®green @ letters.
© All of the cells of the table are given awhite background with red letters (foreground).

® The header areafor this particular column is given a cyan background. This overrides the color
specified in the PROC REPORT statement @.

Chapter 8: Using PROC REPORT with ODS 219

@ The column background color is changed to pink, overriding the white background specified
in ©. Notice that the font for the header has been changed to Times, and that two different
STYLE= options with two different components have been specified in the same
statement.

© The summary line has been bolded.

© The report summary line has been bolded and the size has been increased. Nominally the size
isin points. However, actua size seems to be dependent on destination and potentially on font.
Y ou might need to experiment a bit.

Although generally not useful and, in my opinion, a bit too much of ashortcut, it is possible to
combine components when the specified attributes are the same. At @ in the previous example,
two style options are applied in the same DEFINE statement.

define country / group
styl e(col um) ={ backgr ound=pi nk}
styl e(header)={font _face=ti nes};

If they had both been establishing the same attributes e.g.,

define country / group
styl e(col um) ={ backgr ound=pi nk
font_face=tines}
styl e(header) ={ backgr ound=pi nk
font _face=times};

the two options could have been combined into one option with two components:

define country / group
styl e(header col um)=
{backgr ound=pi nk
font _face=times};

SEE ALSO

Levin (2005) and Baroud, Senner, and Johnson (2006) both use the STY LE= option, as does
Sample 609, which shows how to form indented text in column 1. Smoak (2004) uses the
STYLE= option in RTF examples that generate tables to be exported to Microsoft Word. Girgis
(2006) usesthe STY LE= option extensively in a series of examples.

8.2.2 Adding a Logo to Your Report

The PREIMAGE style attribute can be used to add pictures or images to your report. The
following example adds not only text (using LINE statements), but also an image.

ods listing close;

ods htm styl e=default
pat h="&pat h\resul t s"
body='ch8_2 2a.htnm';

titlel;
proc report data=sashel p. prdsal e(wher e=(prodtype=" OFFI CE'))
nowd;
colum region country product, actual total sales;
define region [/ group;
define country / group;

220 Carpenter’'s Complete Guide to the SAS REPORT Procedure

define product / across;
define actual / analysis sum
f or mat =dol | ar 8.
' Sal es';
define total sales / conputed format=dollar10.
'Total Sal es';
conput e total sal es;
totalsales = sun{_c3_, _c4_, _c5);
endconp;

conput e before/style(lines)={prei mage="&pat h\ nagi c. gi f"
f ont _wei ght =bol d
font face=ari al
font _size=6};
line 'Magic Mystery, Inc.'
line 'Sales Summary';

endconp;

break after region / summarize suppress;
rbreak after / summari ze;

run;

ods htnml cl ose;

Although the image has been imported correctly and the STY LE= attributes have been applied,
the lines have been added to the table after the header section. Thisis due to the order that the
PROC REPORT events are processed (see Section 1.4.2, Section 7.1 and Chapter 11, “ Details of
the PROC REPORT Process’).

Region Country Sales Sales Sales Total Sales

Product
CHAIR DESK TAELE

EAST

WWEST

*Magic Mystery, Inc.
Sales Summary

CANADA $25200 $25020 $25845 $76 165
GERMARNY $23277 $25403 $26,116 $74,796
S A. $27378 $23193 $22258 $72.529

§r5855 $rigig §74.310 $§225 780
CANADA $25039 $27167 320755 $72.961
GERMARY $23828 $23089 $23 081 $70,008
USA. $23558 $25350 24045 $72 953

$r2425 §r56ig §67,0881 §215622
5148280 §140252 §142200 $450 712

Chapter 8: Using PROC REPORT with ODS 221

We can change when the lines from the COMPUTE block are added to the report by including the
PAGE option in the COMPUTE statement.

ods listing close;

ods htm styl e=default
pat h="&pat h\resul t s"
body='ch8_2_ 2b. htm';

titlel;
proc report data=sashel p. prdsal e(wher e=(prodtype=" OFFI CE'))
nowd;
colum region country product, actual totalsales;
define region [/ group
define country / group
define product / across
define actual / analysis sum
f or mat =dol | ar 8.
' Sal es' ;
define total sales / conputed format=dol | ar10.
'Total Sales';
conput e total sal es;

total sales = sun{_c3_, _c4_, _c5);
endconp;
conpute before _page_ /
| ef t

styl e={prei mage="&pat h\ magi c. gi f"
f ont _wei ght =bol d
font_face=ari al
font_si ze=6};
line 'Magic Mystery, Inc.';
line 'Sales Summary';
endconp;
break after region / summarize suppress;
rbreak after / summarize
run;
ods htm cl ose;

When the PAGE_ option is used on the COMPUTE statement, the results of the LINE
statements are laid down on the page first. Notice that, unlike all the other uses of thisoptionin
this PROC REPORT step, the STY LE = option does not have a component associated with it.
Since the style is being applied before PROC REPORT takes control of the page, a REPORT
component is not appropriate.

222 Carpenter’'s Complete Guide to the SAS REPORT Procedure

*Magic Mystery, Inc.
Sales Summary

Product
CHAIR DESK TABLE

Region Country Sales Sales Sales Total Sales

EAST CANADA $25200 $25020 $25945 $76,165
GERMANY $23277 $25403 26118 $74 796
USA $27378 $23193 $22258 $72.829

$r5855 Iri616 §r4,319 $225 780

WEST CANADA $25039 $27167 $20.755 $72 .96
GERMANY $23328 $23099 $23081 $70,008
USA $23558 $25350 $24045 $72 953

172425 $7E616 §67.881 5215922

$i48280 F148232 §{42200 5439712

The LEFT option causes the title to be left-justified. However, the justification options on the
COMPUTE statement (LEFT, CENTER, RIGHT) were originally designed to work with the
LISTING destination, and their continued functionality for non-LISTING destinations may
changein future releases of SAS. For these destinations, using the JUST= style attribute modifier
on the STYLE= option or the CALL DEFINE routine (see Section 8.3) is more appropriate. The
compute block becomes the following:

conpute before _page_ /
styl e={prei mage="&pat h\ magic. gi f"
just=left
f ont _wei ght =bol d
font _face=ari al
font_size=6};
line '"Magic Mystery, Inc.';
line 'Sales Sunmary';
endconp;

MORE INFORMATION
Section 5.4 introduces the PAGE _ location for the COMPUTE statement. The POSTIMAGE=
attribute modifier isused in Section 10.3.1.

SEE ALSO

Haworth (2001b) places alogo on the page using STY LE=, and Hadden (2006) uses CALL
DEFINE. Also using STY LE=, Burlew (2005, pp. 212-215) places images on the report using the
PREIMAGE= and POSTIMAGE-= attribute options.

Chapter 8: Using PROC REPORT with ODS 223

8.2.3 Controlling Report Size

There are two things that you need to take into consideration if you want to control the overall
size of the report. For instance, if you would like to decrease the overall size of the report,
reducing the size of the font would be insufficient for most destinations. Thisis because the size
of the individual cell depends on several factors, only one of which isthe size of the font. For
most destinations, reducing the size of the font merely results in the smaller text residing within a
cell of the same size.

Fortunately, we can control the cell size (spacing between rows) and the size of the font
independently through the use of the STY LE= option on the PROC REPORT statement. In the
following PROC REPORT statement, both the REPORT and COLUMN components are used.

proc report data=sashel p. prdsal e(wher e=(prodtype="OFFI CE'))
nowd
style(report)={font_size=9pt} @
styl e(colum)={font=('times new roman', 9pt)} ®;

© When applied with the REPORT component, the attribute FONT_SIZE resizes the cells by
specifying how much space is needed between the lines of text. Although the REPORT
component has less utility than most of the other components, it can be very helpful when you
need to set report-wide attribute characteristics.

® When used with the COLUMN component, the FONT= attribute, which combines both
FONT_FACE and FONT_SIZE, specifies the actua font size.

Notice also that the font name is enclosed in quotation marks in this example, whereas in the other
examples the FONT_FACE was specified without quotation marks. Generally, the quotation
marks will only be needed when you specify afont with multiple words, e.g., 't i mes new

ronan'.

8.2.4 Adding Horizontal and Vertical Spaces to Separate Data

It is often desirable to add either horizontal or vertical spacesto highlight certain portions of your
report. Vertical lines can be added by creating a computed variable (DUMMY in the following
example) that contains no text. As we have seen elsewhere in this book, the LINE statement can
be used to add blank horizontal spaces. In both cases, we might want to control the attributes,
especially width and height, of the space.

The STY LE= option can be used to control both the vertical column’s width and the horizontal
row’s height. In this example, we add a vertical space to the left of the TOTALSALES column
and blank horizontal spaces after each region.

ods htm styl e=default
pat h="&pat h\resul t s"
body='ch8_2_4a. htm';

ods pdf style=printer
file="&path\results\ch8_ 2 4a.pdf";

proc report data=sashel p. prdsal e(wher e=(prodtype="OFFI CE'))
nowd;
colum region country product, actual dummy total sal es;
define region [/ group;
define country / group;
define product / across;

224 Carpenter’'s Complete Guide to the SAS REPORT Procedure

define actual / analysis sum
f or mat =dol | ar 8.
' Sal es';
define durmy / conputed ' ' @
style(colum) = {cellw dth=2pt @
backgr ound=gr ay99 ©
bor der col or =gr ay99};
define total sales / conputed fornmat=dollar10.
'Total Sales';
break after region / summarize suppress;
rbreak after /| summari ze;

conput e total sal es;

totalsales = sun{_c3_, _c4_, _c5);
endconp;
conpute dummy /char | ength=2
dumy="";
endconp;

conpute after region/style(lines) = {font_size=2pt @
backgr ound=gr ayaa ©;
line' ' ; @
endconp;
run;

© The computed column DUMMY is empty and does not have a header. Thisforms avertical
space.

® The CELLWIDTH attribute determines the width of the column. The exact width varies
depending on the destination.

© The background color of the vertical space is specified as adark gray. Gray scale colors vary
from GRAY 00 (black) to GRAY FF (white). There are 256 shades of gray, and the last two
digits are the hex codes for these shades.

O LINE statements executed within this compute block are written after each region. Because
thereisaso aBREAK AFTER REGION summary, the line appears after the summary line.
The height of the space can be controlled by the specification of the font size.

© The background color is set to adark gray (afew shades lighter than the vertical space).

@ The LINE statement creates the blank line with the attributes specified in the STYLE=
option (@ and ©).

Chapter 8: Using PROC REPORT with ODS 225

Product

CHAIR DESK TABLE
Region Country Sales Sales Sales Total Sales
EAST CANADA $25200 $25,020 $25945 $76,165
GERMANY $23277 $25403 $26,116 $74,796
S A, $27378 $23193 $227258 372829
§r5855 §rigfa §74,519 $223 780
WWEST CANADA $25039 $27167 $20755 $72.961
GERMANY $23828 $23099 $23.081 $70,008
LS A $23558 $25350 $24,045 $72953
$r2425 §r5618 367,881 $215,622
$148280 F$149232 §142200 F430 712

Although it appears that the individual cells have bordersin the dummy column, what we are
actually seeing as borders is the space between the cells. Because the vertical spaceisformed by a
computed variable (DUMMY), itsindividual cells are surrounded by space, and this can itself be
annoying. The width of this space can be controlled by the CELL SPACING attribute modifier.
Here this attribute is applied to al the cells of the table.

proc report data=sashel p. prdsal e(wher e=(prodtype="OFFI CE'))
nowd styl e={cell spaci ng=0};
colum region country product, actual dummy total sal es;
Portions of the code are not shown .

Because the component has not been specified, the default component is REPORT. Hereisthe
new HTML table:

226 Carpenter’'s Complete Guide to the SAS REPORT Procedure

Product

CHAIR DESK TABLE
Region Country Sales Sales Sales Total Sales
EAST CANADA $25200 $25020 $25.3845 375,165
GERMANY $23277 $25403 $26116 $74 796
US.A. $27.378 $23193 $227258 3725829
§75855 §r3gfs §74,319 $223,780
WEST CANADA $25,039 $27187 $20,755 372 961
GERMANY $23828 $23099 $23,081 $70,008
USA. $23558 $25350 $24 045 372953
$r2425 §r56fs §67,88(1 5215822
$148,280 §149,252 §142,200 $438 712

Theblank linesare
given alight gray
color through the
use of the
BACKGROUND=
attribute modifier.

Unfortunately, CELL SPACING does not work equally well for al destinations.

If we want the dummy spaces to blend into the background we need to know the color of the

background. For STYLE=DEFAULT shown above, inspection of the style definition shows that
the default color for the data area background is the light gray cxD3D3D3. Using this value asthe

background color causes these lines to blend into the background.

define dunmy [/ conputed '

styl e(col um)

= {cel | wi dt h=1nm

backgr ound=cxD3D3D3} ;

Product

CHAIR DESK TABLE
Region Country Sales Sales Sales Total Sales
EAST CANADA $25200 $25020 $25945 $76,165
GERMANY $23277 $25403 $26116 $74,796
USA $27378 $23193 $22 7258 $72,829
§r5a855 Eriaig 74,319 $223 790
WEST CANADA $25.039 $27167 $20.755 $72961
GERMAMNY $23828 $23099 $23 031 $70,008
U.S.A. $23558 $25350 $24.045 $72,953
Yr2425 Fr5616 3678871 §215 922
$148280 §149232 §142 200 $439712

Destination: HTML Style: DEFAULT

Chapter 8: Using PROC REPORT with ODS 227

Learning how to tease information such as the data area background color from the style
definition is outside the scope of this book. Often, however, avisua inspection of the PROC
TEMPLATE step that defines the style (the definition is stored in SASHELP.TMPLMST) can be
sufficient, although there can often be some guessing and a bit of trial and error.

MORE INFORMATION
The examplein Section 8.3.1 uses CALL DEFINE to change attributes of a summary line.

SEE ALSO

Lund (2005) includes examples that create both blank columns and blank rows in PDF tables.
Carpenter (20044, p. 176) has an example of a macro that generates uniformly spaced gray scale
PATTERN statements. Cell and table borders can be further controlled through the use of the
FRAME= and RULES= attributes; see Sevick (2006).

8.3 Using CALL DEFINE to Change Style
Attributes

The CALL DEFINE routine can aso be used to set style attributes. Its usage is similar to that of

the STYLE= option. As amatter of fact, when CALL DEFINE is used to set style attributes, the
second argument is‘ STYLE' and the third argument is essentially the STY LE= option discussed
in Sections 8.1 and 8.2.

Because the CALL DEFINE routine is an executable statement, it can be conditionally executed
in acompute block. This gives the user afiner degree of control than the STY LE= option, and this
is one of the primary advantages of CALL DEFINE.

Hereisthe CALL DEFINE syntax:
call define(location, 'style', style<(conponent)>={attributespecification(s)});

Multiple callsto the CALL DEFINE routine are permitted, and agiven call can have multiple
attribute specifications.

MORE INFORMATION
The CALL DEFINE routine was introduced in Section 7.5 and is also used for linking table
elementsin Section 8.5.

SEE ALSO
Hadden (2006) uses the CALL DEFINE statement to add a company logo to areport.

228 Carpenter’'s Complete Guide to the SAS REPORT Procedure

8.3.1 Using CALL DEFINE in a Simple Report

We would like to emphasize the summary lines for each region. We can do this by changing the
summary line attributes. In this example, a compute block @ has been added for the sole purpose
of allowing usto execute a CALL DEFINE.

ods listing close;

ods htm styl e=defaul t
pat h="&pat h\resul t s"
body='ch8_3 1.htm";

titlel;
proc report data=sashel p. prdsal e(wher e=(prodtype=" OFFI CE'))
nowd;
colum region country product, actual total sales;
define region / group;
define country / group;
define product / across;
define actual / analysis sum
f or mat =dol | ar 8.
' Sal es' ;
define total sales / conputed format=dollar10.
'Total Sal es';
conput e total sal es;
totalsales = sun{_c3_, _c4_, _c5);
endconp;
conpute after region; ©
call define(_row, @
‘style',
" styl e={font_wei ght =bol d
background=whi te
font_face=arial}l');

endconp;

break after region / summarize suppress;
rbreak after /| summari ze;

run;

ods htnl cl ose;

© The compute block is executed after each region. Consequently, the style designated in the
CALL DEFINE statement applies to the summary row generated by the BREAK AFTER
REGION statement.

® The special location designator ROW _is used to apply the result of CALL DEFINE to the
entire row. Noticethat _ROW__is not enclosed in quotation marks.

Chapter 8: Using PROC REPORT with ODS 229

Product The summary

CHAIR DESK TABLE row.lsassgned
attributesfor a

Region Country Sales Sales Sales Total Sales bolded Arial

text with a
EAST CANADA $25200 $25020 $25945 $76.165 | | white

GERMAMY $23277 $25403 $26,116 $74,796 SEE el
USA. $27378 $23193 $22.258 $72,829
$758556 $73616 $74319 $223790
WEST CANADA $25039 27167 $20755 $72.961
GERMANY $23828 $23009 $23,081 $70,008
USA $23558 $25350 $24,045 $72.953

$72,425 $75616 $67881 $215,922
5148280 3149232 §{142200 $438 712

Destination: HTML Style: DEFAULT

8.3.2 Creating Shaded Rows

The previous example changes the background color for the summary lines. It is not unusual to
need to change the background color for the detail lines as well. In this example, we would like
the detail lines to alternate shades of gray, the summary lines for REGION to be white

(GRAY FF), and the overall summary line a bit darker (GRAY 00 is black) than the others.

ods listing close;

ods htm styl e=default
pat h="&pat h\resul t s"
body="ch8_3_2.htm " ;

titlel;
proc report data=sashel p. prdsal e(wher e=(prodtype=" OFFI CE'))
nowd;
colum regi on country product, actual total sales;
define region / group;
define country / group;
define product / across;
define actual / analysis sum
f or mat =dol | ar 8.
' Sal es' ;
define total sales / conputed format=dol | ar10.
'Total Sales';
break after region / summarize suppress; ©
rbreak after / summari ze;

conput e total sal es;
total sales = sun(_c3_, _c4_, _c5);
cnt+1; @
if mod(cnt,2) then call define(_row, ©
"style',

230 Carpenter’'s Complete Guide to the SAS REPORT Procedure

' styl e={ backgr ound=graydd}"');
el se call define(_row, ©®
"style',
' styl e={ background=graycc}"');
endconp;

conpute after region;
call define(_row, ©
"style',
"styl e={font_wei ght =bol d
backgr ound=gr ayf f
font_face=arial}l');
cnt=0; O
endconp;

conpute after;
call define(_row, @

"style',

' styl e={font_wei ght =bol d
backgr ound=gr aybb
font _face=arial}');

endconp;
run;
ods html cl ose;

O The BREAK and RBREAK statements are needed to create the summaries.

® The TOTALSALES compute block is executed once for each row. A counter (CNT) is created
so that we can determine odd vs. even rows.

© The MOD function returns a 1 for odd-numbered rows. Since 1 istrue, this CALL DEFINE
statement is executed when CNT is odd.

O This CALL DEFINE statement is executed for even-numbered rows.
© Therow attributes are set for the region summary.

® The counter isreset to zero so that the first line for each region will always have the same
shade.

@ The report-wide summary line attributes are set in this CALL DEFINE statement.

Chapter 8: Using PROC REPORT with ODS 231

Product
CHAIR DESK TABLE

Region Country Sales Sales Sales Total Sales

EAST CANADA $25200 $25020 $25845 $76,165
GERMANY $23277 $25403 $26 116 $74 796

S A $27376 $23193 $327258 $72.828

$75,855 $73,616 §$74,319 $223,790

WEST CANADA $25,039 $27167 $20.755 $72 961
GERMANY $23,828 $23,088 $23.081 $70,008

S .A, $23,558 $25350 $24 045 $72,953

$72,425 $75616 $67881 $215,922

$148,280 $149,232 $142.200 $439.712

Destination: HTML Style: DEFAULT

SEE ALSO
Haworth (2001b) and Burlew (2005, pp. 203-208) both use CALL DEFINE to change the shading
of rows.

8.3.3 Conditional Assignment of Attributes

One of the very real advantages of the CALL DEFINE routineisthat it is executable. That means
that we can use it to conditionally assign attributes based on the valuesin acell. Although it was
not directly pointed out, this was done in the example in Section 8.3.2. There IF-THEN/ELSE
processing was used to determine which CALL DEFINE statement was to be executed.

This capability can be expanded to look at the data itself with the objective of controlling column
attributes based on the data in those or other columns. In the following example, the background
and foreground colors are conditionally changed based on the cell values.

proc report data=sashel p. prdsal e(wher e=(prodtype="OFFI CE'))
nowd;
colum region country product, actual total sales;
define region / group;
define country / group;
define product / across;
define actual / analysis sum
f or mat =dol | ar 8.
' Sal es';
define total sales / conputed format=dollar10.
'Total Sal es';
break after region / summarize suppress;
rbreak after /| summari ze;

conput e total sal es;
totalsales = sun{_c3_, _c4_, _c5);
if ¢3_ < 25e3 then call define('_c3_',

232 Carpenter’'s Complete Guide to the SAS REPORT Procedure

‘style',
' styl e={backgr ound=red
foreground=white}');
if _c4_ < 24e3 then call define('_c4_',
"style',
' styl e={ background=red
foreground=white}');
if ¢5_ < 21e3 then call define('_c5 ',
"style',
' styl e={ background=red
foreground=white}');
endconp;

run;
ods htnml cl ose;

The resulting HTML table shows that the background and foreground colors have been changed

for selected célls.
Product The determination
of whether or not
CHAIR DESK TABLE to change the cel
Region Country Sales Sales Sales Total Sales attributes
(foreground and
EAST CANADA $25200 §25020 $25345 $76, 165 background color
in this case) is
GERMANY $25403 $26,116 $74,796 il TR
USA. $27,378 $22,258 $72,829 on thevalue of the
datain that
§75,655 $73616 874310 §223790 particular cell.
WEST CANADA $25,039 $27 167 $72 961
GERMAMNY $23,081 $70,008
USA, $25,350 $24 045 $72953

§r2425 §r5615 §67,801 §215 0822
5148280 §145232 $142200 $438 712

Destination: HTML Style: DEFAULT

The process of changing cell attributes based on the cell’ s value can quickly become tedious if
there are many conditions or cells. The process of trafficlighting (Section 8.4) simplifiesthis
process.

8.4 Creating Trafficlighting Effects

The term “trafficlighting” refersto table items whose characteristics, such as background color,
foreground color, font, and size, change according to the value that is being displayed. Most
importantly, the change of attributes is automatic and not implemented manually. Because control
isautomatic, you can highlight the values that you really want your reader to see without
manually editing the report table.

Chapter 8: Using PROC REPORT with ODS 233

The implementation is both ingenious and simple. We build custom formats using PROC
FORMAT. These formats map the values of interest into style attributes. This makes changing the
highlighted characteristics as easy as changing a format.

The formats are associated with report |ocations using various techniques. The trafficlighting
format can be applied to report items, statistics, summary columns, and summary rows.
Techniques include the use of the STY LE= option and the CALL DEFINE statement.

For simple reports, the implementation is very straightforward. However, as the reports increase
in complexity, timing issues relative to the resolution of the formats can become problematic.
Because formats depend on the value that is to be placed in the cell, the attribute determined from
the format is not available until the value has been determined. Because of the way that the
default report row attributes are assigned, we need to be extra careful with the application of
trafficlighting effects when using compute blocks on summary lines and computed variables.
Sections 8.4.6 through 8.4.8 discuss some of these issues.

SEE ALSO

Haworth (2001b), Thornton (2006), and Hadden (2006) each have trafficlighting examples. In a
paper written specificaly with PROC REPORT in mind, Carpenter (2006c) includes a discussion
of some of the special issues associated with trafficlighting. Burlew (2005, p.203) uses
trafficlighting techniques to control the row shading. Feng (2006) uses trafficlighting in a report
that is rendered in Microsoft Excel.

8.4.1 Building Trafficlighting Formats

Trafficlighting depends on customized formats. There is nothing special about these formats other
than the fact that they resolve not to avalue that isto be displayed, but rather to an attribute that
will be interpreted when the report is displayed.

The following PROC FORMAT creates two formats that can be used to control foreground and
background colors. However, additional formats can be created so that the formatted value (the
item on the right of the equals sign) can be used to ater other style attributes as well.

proc format;
val ue cfore

low - 21000 = 'white'

21000< - 25000 = 'bl ack’

75000 - high = "white';
val ue cback

low - 21000 = 'red

21000< - 25000 = 'vyellow

75000 - high = '"green';

run;

These formats specify that values less than 21,000 are to be displayed with white letters and ared
background, whereas values over 75,000 are to be displayed with a green background. These two
example formats are used throughout the examples in Section 8.4 and are assumed to exist even if
the PROC FORMAT step is not actually shown in each example.

Of course, even though these examples only change the foreground and background color, values
for the other attributes can also be specified. Y ou can control font, font size, and other attribute
values through the use of formats. Other clever usages have even included links and images that
are dependent on the value that is displayed.

234 Carpenter’'s Complete Guide to the SAS REPORT Procedure

In these examples, the colors are named. However, whenever colors are specified within SAS,
you can also use RGB hexidecimal codes or gray scales to specify the colors.

MORE INFORMATION
The examplein Section 8.5.8 generates alink based on aformat that depends on the value

displayed.

8.4.2 Using Formats with the STYLE= Option

The report value that is to be displayed must be associated with aformat, and one way that thisis
doneisthrough the STY LE= option. In the following example, the analysis variable ACTUAL
has a FORMAT= option @ on the DEFINE statement for the display of the values. It also hasa
STYLE= option @, which utilizes the trafficlighting formats to control the foreground and
background colors.

proc format;
val ue cfore

| ow - 21000 = "white'

21000< - 25000 = ' bl ack'

>50000 = "white';
val ue cback

| ow - 21000 = 'red'

21000< - 25000 = 'yel |l ow

>50000 = 'green';

run;

ods listing close;

ods htm styl e=default
pat h="&pat h\resul t s"
body='ch8_4 2a.htnm"';

titlel 'Sales Sunmary';
proc report data=sashel p. prdsal e(wher e=(prodtype="OFFI CE'))
nowd;
colum country regi on product actual;
define country / group;
define region / group;
define product / group;
define actual / analysis sum
format=dollar8. @
' Sal es'
styl e(col um) = {background=chack. @
f oreground=cfore.};

run;
ods htnml cl ose;

Chapter 8: Using PROC REPORT with ODS 235

A portion of the resulting table shows that values |ess than $25,000 are highlighted for quick
recognition by the sales managers:

Sales Summary

Country Region Product Sales

CANADA EAST CHAIR $25,200
DESK $25,020

TABLE $25,945

WEST CHAIR $25,038

DESK $27.167

TABLE
GERMANY EAST CHAIR $23.277
CiE= T3R8 AN

Destination: HTML Style: DEFAULT

Users often try to apply the trafficlighting formats to all the data columns by placing the STYLE=
option on the REPORT statement.

proc report data=sashel p. prdsal e(wher e=(prodtype=" OFFI CE'))
nowd
styl e(col um) = {background=cback.
f oreground=cfore.};

Although this approach can work to some degree, it usually causes some problems aswell. Thisis
because PROC REPORT attemptsto apply the formats to al the columns, including the grouping
columns (REGION, COUNTRY, and PRODUCT), and in this case these are all character
variables.

The report in the previous example was fairly straightforward. When we start adding summary
lines, things can become more complex. If we add aBREAK and RBREAK statement to the
PROC REPORT step, alogical extension of what we did in the previous example and Section
8.2.1 would be to add a STYLE(SUMMARY)= option to these two statements.

break after country / sunmarize suppress
styl e(summary) = {background=cback.
foreground=cfore.};
rbreak after / summarize
styl e(sumary) = {background=cback.
f oreground=cfore.};

Unfortunately, the timing is such that the execution of these statements and the resolution of the
formats will not yield the desired results. When we want to provide trafficlighting for summary
lines or even values under ACROSS variables, we usually need to use the CALL DEFINE
statement. Of course, this statement can be executed only inside of a compute block. However,
because we can assign a compute block for each column and summary line, we can use CALL
DEFINE. Thisis discussed in the following section.

236 Carpenter’'s Complete Guide to the SAS REPORT Procedure

MORE INFORMATION
The generation of trafficlighting effects in the presence of computed variables and summary lines
is discussed further in Section 8.4.4.

8.4.3 Controlling Trafficlighting with CALL DEFINE

The CALL DEFINE statement can be used in a compute block to create trafficlighting effects.
Thetrafficlighting in the first example in Section 8.4.2 could also have been accomplished with
CALL DEFINE. In the following code, a compute block containing a CALL DEFINE statement
has replaced the STY LE= option on the DEFINE ACTUAL statement.

ods listing close;

ods htm styl e=defaul t
pat h="&pat h\resul t s"
body='ch8 4 3. htm';

titlel 'Sales Sunmary';
proc report data=sashel p. prdsal e(wher e=(prodtype="OFFI CE'))
nowd;
colum country regi on product actual;
define country / group;
define region [/ group;
define product / group;
define actual / analysis sum
f or mat =dol | ar 8.
' Sal es' ;
conpute actual;
call define(_col _,
"style',
'styl e = {background=cback.
foreground=cfore.}");
endconp;
run;
ods htm cl ose;

This code, which uses the same formats as were established in Section 8.4.1, creates the same
table asin Section 8.4.2. The compute block exists only to establish alocation to place the CALL
DEFINE statement. Certainly other executable compute block statements could also be placed in
this compute block.

SEE ALSO
Fan (2005) uses CALL DEFINE to set style attributes for trafficlighting.

8.4.4 Trafficlighting in the Presence of Computed Variables
and Summary Lines

Often the best way to produce trafficlighting for reports that include computed variables and/or
summary lines iswith acombination of CALL DEFINE statements and STY LE= options.

In the following examples, we have complicated the previous examples by changing the
PRODUCT variable to an ACROSS variable, computing a product total, and requesting country
and report summarizations. We would like the trafficlighting formats established in Section 8.4.1
to be applied to al of the numeric values, including summary lines and the computed column.

Chapter 8: Using PROC REPORT with ODS 237

We can do thisin several ways, and it is worth discussing the differences between the approaches.
Aswas mentioned in Section 8.4.2, we cannot just use the STY LE= option on the BREAK,
RBREAK, or DEFINE TOTALSALES statements.

For our first attempt, in the following example we take the approach of assigning the attributes by
columns for all rows (detail and summary). Remember, the color versions of these tables are
availablein the “Results’ section of the CD that accompanies this book.

proc format;
val ue cfore

Low - 21--- = "white'

21000< - 25000 = 'black’

75000 - high ="white'
val ue cback

Low - 21000 = 'red'

21000< - 25000 = 'yell ow

75000 - high = "'green';
run;

ods htm styl e=default
pat h="&pat h\resul t s"
body='ch8 4 4a. htnm';

proc report data=sashel p. prdsal e(wher e=(prodtype=" OFFI CE'))
nowd;
colum region country product, actual totalsales;
define region / group;
define country / group;
define product / across; @
define actual / analysis sum
f or mat =dol | ar 8.
' Sal es'
styl e(col um) = {background=cback. @
foreground=cfore. };
define totalsales / conputed fornmat=dollar10.
'Total Sales'
styl e(col um) = {background=cback. ©
f oreground=cfore.};
break after region / summarize suppress;
rbreak after / summari ze;

conput e total sal es;
total sales = sunm{(_c3_, _c4_, _c5);
endconp;
run;
ods htm cl ose;

© The PRODUCT, which has three levels, is specified as an ACROSS variable (resulting in three
columns).

® The three columns associated with the sales values are assigned these attributes. In the
COLUMNS statement, ACTUAL is nested under the ACROSS variable PRODUCTS.

© The same attributes are applied to the computed ‘ Total Sales' column.

238 Carpenter’'s Complete Guide to the SAS REPORT Procedure

Although the detail values have been formatted correctly, the trafficlighting formats have been
incorrectly applied to the summary lines.

Product
CHAIR DESK TAELE

Region Country Sales Sales Sales Total Sales

EAST CANADA $25200 $25020 $25945

GERMANY $23277 $25403 $26,116 $74,796
USA. $27378 $23193 §22258 $72,829
§r5855 §ri6f6 $r4,319 $223 780

WEST CANADA $25039 $27.167 $72,961
GERMANY $23828 $23099 $23,081 £70,008
US.A. $23558 $25350 $24,045 $72.9853

$72425 $75616 $67,881 $215,922

5148280 $149,232 $142,200 $439712

Destination: HTML Style: DEFAULT

In fairly simple tables such as this, one way to apply the formatted style attributes to the summary
lines is with the use of the SUMMARY component on the STY LE= option—e.g.,
STYLE(SUMMARY)= @, asin the following:

ods htm styl e=defaul t
pat h="&pat h\resul t s"
body='ch8_4_4b. htm ' ;

proc report data=sashel p. prdsal e(wher e=(prodtype=" OFFI CE'))
nowd
styl e(summary) ={ backgr ound=cback. @
f oreground=cfore.};
colum region country product, actual total sales;
define region / group;
define country / group;
define product / across;
define actual / analysis sum
f or mat =dol | ar 8.
' Sal es'
styl e(col um) = {background=cback.
foreground=cfore. };
define total sales / conputed fornmat=dollar10.
'Total Sales'
styl e(col um) = {background=cback.
f oreground=cfore.};
break after region / summarize suppress;
rbreak after / summari ze;

conput e total sal es;
total sales = sunm(_c3_, _c4_, _c5);

Chapter 8: Using PROC REPORT with ODS 239

endconp;
run;
ods htnl cl ose;

O The style attributes specified here apply to al columnsfor all summary lines.

Product
CHAIR DESK TAELE

Region Country Sales Sales Sales Total Sales

EAST CANADA $25200 $25020 $25945
GERMANY $23277 $25403 $26,116 $74 796
USA $27378 $23193 $22258 $72 829

Srieig 74,319

WEST CANADA $25039 $27167 $72 961
GERMANY $23828 $23009 $23 081 $70,008
USA $23558 $25350 $24.045 $72.953

572425 Sa7 881

Destination: HTML Style: DEFAULT

Thisisafairly general “brute force” solution. It might not work for all tables, and it might be too
simplistic for more complex situations. At the very least, control islost by applying the same
attributes to al of the different summary lines (of course this might be just what you want).

A similar table can be obtained by including the use of CALL DEFINE statements. This
technique, which uses a combination of CALL DEFINE statements and STY LE= options, is far
more extensible.

The following example also produces the previous table; however, the STY LE= option has been
removed from the DEFINE TOTALSALES @, and is replaced with a CALL DEFINE statement
in the compute block ®. A good minimum rule of thumb isto use the CALL DEFINE statement
when a compute block is present. In fact, thereis no real penalty for creating a compute block just
in order to take advantage of the CALL DEFINE statement.

ods htm styl e=default
pat h="&pat h\resul t s"
body='ch8 4 4c.htnm';

proc report data=sashel p. prdsal e(wher e=(prodtype=" OFFI CE'))
nowd
styl e(sunmary) ={ backgr ound=cback.
f oreground=cfore.};
colum region country product, actual total sales;
define region [/ group;
define country / group;
define product / across;
define actual / analysis sum
f or mat =dol | ar 8.

240 Carpenter’'s Complete Guide to the SAS REPORT Procedure

' Sal es'
styl e(col um) = {background=cback.
foreground=cfore. };
define total sales / conputed format=dollar10.
"Total Sales': ©

break after region / summarize suppress;
rbreak after / summari ze;

conput e total sal es;
total sales = sunm{(_c3_, _c4_, _c5);
call define(_COL_,"'style', 'style={background=cback.

foreground=cfore.}"');

endconp;
run;
ods html cl ose;

8.4.5 Trafficlighting When Differentiating between Columns

Because the CALL DEFINE statement can be conditionally executed and can reference individual
columns, it provides us agreat deal of flexihility that is not available through the STY LE= option.
In the following example, we would like the trafficlighting attributes to vary by values of the
ACROSS variable (PRODUCT). Thisis accomplished by using direct column referencesin the

CALL DEFINE statements.

To illustrate this level of control, additional formats have been defined for the sales of chairs @,

desks @, tables ©, and for total sdles @.

proc format;
val ue cfore

| ow - 21000 = "white'

21000< - 25000 = ' bl ack’

75000 - high = "white';
val ue cback

| ow - 21000 = 'red'

21000< - 25000 = 'vyellow

75000 - high = 'green';
val ue fchair O

| ow - 23500 = "white';
val ue bchair

| ow - 23500 = 'red';
val ue fdesk @

| ow - 25000 = "white';
val ue bdesk

| ow - 25000 = 'red';
value ftable ©

| ow - 21000 = "white';
val ue btabl e

| ow - 21000 = 'red';
value ftotal ®

| ow - 72000 = "white';
val ue btotal

| ow - 72000 = 'red';

run;

ods htm styl e=default
pat h="&pat h\resul t s"

Chapter 8: Using PROC REPORT with ODS 241

body='ch8_4_5.htm " ;

proc report data=sashel p. prdsal e(wher e=(prodtype=" OFFI CE'))
nowd
styl e(sunmar y) ={ backgr ound=cback.
foreground=cfore.}; ©
colum regi on country product, actual total sales;
define region [/ group;
define country / group;
define product / across;
define actual / analysis sum
f or mat =dol | ar 8.
' Sal es' ;
define totalsales / conputed fornmat=dollar10.
"Total Sales';

break after region / summarize suppress;
rbreak after / summmri ze;

conpute actual;
if break_ ="' ' then do; @
call define(' _C3_@','style','style={background=bchair. @
foreground=fchair.}");

call define(' _C4 ', 'style','style={background=bdesk. @
f or egr ound=f desk. }"');

call define(' _C5 ', 'style',"'style={background=btable. ©
foreground=ftable.}");

end;

endconp;

conput e total sal es;
totalsales = sun{_c3_, _c4_, _c5);
if _break_ ="' ' then do;

call define(_COL_,"'style', 'style={background=btotal. @
foreground=ftotal .}");
end;
endconp;
run;
ods htm cl ose;

Formats are created and used to control the attributes of the sales of chairs @, desks @, tables ©,
and total sales @.

© In this example the summary lines are still controlled with a STY LE(SUMMARY)= option.
Trafficlighting for summary linesis discussed more in Section 8.4.6.

@ These CALL DEFINE statements are applied only to nonsummary lines(_break_ ="').

@ The specific column is named explicitly using the absolute column numbers. This permits usto
apply different formats to each type of saleitem.

242 Carpenter’'s Complete Guide to the SAS REPORT Procedure

Product
CHAIR DESK TAELE

Region Country Sales Sales Sales Total Sales

EAST CANADA 0 $25200 $25020 $25945 $76,165
GERMANY : 9325403 $36,116 $74 796
U.S.A $22 258 e $72.829

573,616
WEST CANADA $25039 $27.167
GERMANY $23828
USA. $23558 $25,350

574,319

$72,425

Destination: HTML Style: DEFAULT

8.4.6 Differentiating between Columns on Group Summary
Rows

The previous example trafficlights al cells of all summary lines with the same format. When we
need to fine tune the level of format application, we have to be especially careful. The application
of the attribute formats for cellsthat are determined through multiple compute blocks becomes
complicated very quickly.

In the following example, we want to apply the trafficlighting formats to the four columns of
interest on the summary lines for the grouping variable REGION. To do this, we have created two
new formats to apply to the region summaries (FREGN. © for the foreground and BREGN. @ for
the background).

proc format;
val ue cfore

| ow - 21000 = "white'

21000< - 25000 = ' bl ack'

75000 - high = '"white';
val ue cback

| ow - 21000 = '"red'

21000< - 25000 = 'vyellow

75000 - high = 'green';
val ue fchair

| ow - 23500 = "white';
val ue bchair

| ow - 23500 = 'red';
val ue fdesk

| ow - 25000 = "white';
val ue bdesk

| ow - 25000 = 'red';

value ftable
| ow - 21000 = "white';

Chapter 8: Using PROC REPORT with ODS 243

val ue btabl e

| ow - 21000 = 'red';
val ue ftotal

| ow - 72000 = "white';
val ue bt ot al

| ow - 72000 = 'red';
value fregn @

| ow - 73000 = "white';
val ue bregn @

| ow - 73000 = 'red';

run;

ods htm styl e=default
pat h="&pat h\resul t s"
body='ch8 4 6a. htnm';

proc report data=sashel p. prdsal e(wher e=(prodtype="OFFI CE'))

nowd; ©
colum region country product, actual total sales;
define region [/ group;
define country / group;

define prod
define actu

define tota

break after
rbreak afte

uct / across;
al / analysis sum
f or mat =dol | ar 8.
' Sal es';
| sal es / conputed format=doll ar10.
'Total Sales';

region / sumrarize suppress;
r / sunmari ze;

conpute actual;
if _break_ ="' "' then do;
call define('_C3_','style','style={background=bchair.
foreground=fchair.}");
call define('_C4_','style','style={background=bdesk.
f or egr ound=f desk.}"');
call define('_C5_','style','style={background=btable.
foreground=ftable.}");
end;
else if _break_="REGON then do; @
call define(' _C3 ', © 'style','style={background=bregn.
foreground=fregn.}');
call define('_C4_','style','style={background=bregn.
foreground=fregn.}');
call define('_C5_','style','style={background=bregn.
foreground=fregn.}');
end;
endconp;
conput e total sal es;
total sales = sun{(_c3_, _c4_, _c5);
if _break_ ="' ' then do;
call define(_CO_, " 'style', 'style={background=btotal.
foreground=ftotal .}");
end;

else if

break='REG ON' then do; @

(6]

244 Carpenter’s Complete Guide to the SAS REPORT Procedure

cal l

end;
endconp;
run;
ods html cl ose;

© Foreground format is specified for the REGION totals for sales of individual products.
@® Background format is specified for the REGION totals for sales of individual products.

© The STYLE(SUMMARY)= option has been removed from the PROC REPORT statement. If it
had been Ieft in (asit was in the previous example), the CALL DEFINE statements would
override the STY LE= option. However, it has been my experience that CALL DEFINE
does not always override the STYLE (SUMMARY)= option, as the timing for the declaration
of the formats tends to conflict. My rule of thumb is to never allow a cell to be controlled by
attributes derived by more than one format. Attributes specified directly (not through formats)
do not seem to have this problem.

O A different set of CALL DEFINE statements is declared for the summary lines.

define(_col _,"'style',"styl e={background=cback.
foreground=cfore.}"');

© The specific column is designated using the absolute column number.

® The same format is applied to each of the three summary row columns. The formats could have

been different for each of the columns (as they are for the detail rows).

@ This styleis applied to the summary line for TOTAL SALES.

Product
CHAIR DESK TABLE
Region Country Sales Sales Sales Total Sales
EAST CANADA $25200 $25020 $25945 376,165
GERMANY $25403 $26.116 374,796
USA. 27378 $22.258 7Y $72.3829
$75855 $73616 $74.319
WEST CANADA $25039 $27 167
GERMANY $23 828 $23.081
USA. $23558 $25350 $24045 7y $72.953
$75,61fb
$148280 §i40252 Fi42200 $450712

Destination: HTML Style: DEFAULT

Chapter 8: Using PROC REPORT with ODS 245

In this example, all three columns for salesin the summary row (C3 , C4 ,and C5) each
receive the same format. When this happens, the code in the compute block could be simplified
toasingle CALL DEFINE statement. The COMPUTE ACTUAL block becomes the following:

conput e actual ;
if _break_ ="' ' then do;
call define('_C3_','style','style={background=bchair.
foreground=fchair.}");
call define('_C4_','style','style={background=bdesk.
f or egr ound=f desk.}"');
call define('_Co5_','style','style={background=btabl e.
foreground=ftable.}");
end;
else if _break =" REG ON then do;
call define(_row_,'style',"'style={background=bregn.
foreground=fregn.}');
end;
endconp;

Although this approach worksin this example, | have not found thisto aways be the case. The
problem, when it is a problem, seems to be caused by the use of ROW _. Effectively, because we
areusing _ROW _, our formatted attributes are applied to columns other thanjust _C3 , C4 |,

and _C5_, and this could cause a conflict in the TOTALSALES column.

8.4.7 Trafficlighting on the REPORT Summary Row

The specification of trafficlighting formats in the REPORT summary row is similar to that in the
previous example. However, there are additional complications.

First we have create two more formats to handle the overall product totals (FPROD. and
BPROD.). Here are the VALUE statements:

val ue fprod

| ow - 145000 = "white';
val ue bprod
| ow - 145000 = 'red';

To apply these new formats, we add another EL SE |F statement used to detect the REPORT
summary line(BREAK _=*‘ RBREAK). The COMPUTE ACTUAL block (from Section
8.4.6) becomes the following:

conput e actual ;
if _break_ ="' "' then do;
call define('_C3_','style','style={background=bchair.
foreground=fchair.}");
call define('_C4_','style','style={background=bdesk.
f or egr ound=f desk.}"');
call define('_Co5_','style','style={background=btabl e.
foreground=ftable.}");
end;

else if _break ="' REG ON
,"style',"styl ex{background=bregn.

f or egr ound=f r egn.
,'style',"styl ex{background=bregn.

f or egr ound=f r egn.
','style', "' styl e={background=bregn.
f or egr ound=f r egn.

call define('_C3_'
call define('_C4_'
call define('_C5_
end;
else if

call defi ne(' _C3_'

call define('_C4_"'
call define('_C5_'
end;
endconp;

The following tableis produced:

break_='_ RBREAK '
,'style',"styl ex{background=bpr od.
f or egr ound=f pr od.
,'style', " styl ex{background=bpr od.
f or egr ound=f pr od.
,'style', " styl e={background=bpr od.
f or egr ound=f pr od.

246 Carpenter’'s Complete Guide to the SAS REPORT Procedure

t hen do;

t hen do;

Destination: HTML Style: DEFAULT

Product
CHAIR DESK TABLE
Region Country Sales Sales Sales Total Sales
EAST CAMADA $25,200 325020 $25045 $76,165
GERMANY $25403 $26,116 $74,796
S A $27 378 $22 258 $72 829
$75.855 373516 $74.319
WEST CAMADA $25039 327 167 $72 961
GERMANY — $23 828 $23,081
S.A. $23558 325350 $24,045 $72953
$75 616

1)
1)
)

1)
)
1)

Chapter 8: Using PROC REPORT with ODS 247

Clearly there is something wrong for the overall sales of chairs and desks. This error isatypical
result when there is atiming issue with the determination of attributes that are established by
using formats. In this case, the two values that have been “ colored over” @ did not receive a
attribute from the format (their values are both over 145,000), but it was too late to use the default
foreground and background colors. Here we can solve the problem through the use of the OTHER
range specification, which provides a place for al values in the format definition. Actually, thisis
generally agood practice anyway. The format specifications become the following:

val ue fprod

| ow - 145000 = 'white'

ot her = 'bl ack';
val ue bprod

| ow - 145000 = 'red

ot her = "white';

Here isthe table that is created using these format definitions:

Product
CHAIR DESK TABLE

Region Country Sales Sales Sales Total Sales

EAST CANADA $25200 $25020 $258945 $76.165
GERMAMNY $25403 $26.116 $74,796
US.A 327378 $22,258 $72,829

$755855 $73616 $74.319

WEST CANADA $25039 $27167
GERMANY $23 528 $23.081

US.A $23558 $25350 $24.045 £72.953
$75616

$£1482380 $149,232

To highlight what is happening in this example, the background color (WHITE) used here does
not match the default background color for these cells. If you want the unformatted cells to blend
in, the values for the OTHER specification should be the same as the default attributes for that
ODS style.

248 Carpenter’'s Complete Guide to the SAS REPORT Procedure

Asin the example in Section 8.4.6, we could consolidate the three CALL DEFINE statements into
one, as follows:

conput e actual ;
if _break_ ="' ' then do;
call define('_C3_','style','style={background=bchair.
foreground=fchair.}");
call define('_C4_','style','style={background=bdesk.
f or egr ound=f desk.}"');
call define('_Co5_','style','style={background=btabl e.
foreground=ftable.}");
end;
else if _break =" REG ON then do;
call define(_row_,'style',"'style={background=bregn.
foreground=fregn.}');
end;
else if _break_='"_RBREAK ' then do;
call define(_row_, 'style',"'style={background=bprod.
foreground=fprod.}');
end;
endconp;

Theresulting tableis dightly different. The background color for the overal total for sales (the
cell in the lower right corner) is now receiving trafficlighting formats and as a result has a white
background. This cell is now being assigned attributes because the CALL DEFINE statement has
alocation of _ROW_, which includes the total sales column. Hereis the resulting table:

Product
CHAIR DESK TABLE

Region <Country Sales Sales Sales Total Sales

EAST CAMNADA, $25200 $25020 $25945 $76,165

GERMAMNY $25403 326,118 £74.796
USA $27.378 $22.258 $72.629
$75855 $73616 $74.319

WEST CANADA $25,039
GERMANY $23528 $23.081
US.A $23,558 $25350 $24.045 $72,953
$75616
$£1482380 $149,232

$27 167

$439.712

Destination: HTML Style: DEFAULT

Chapter 8: Using PROC REPORT with ODS 249

8.4.8 A Few Things to Remember When Using Formats for
Trafficlighting

As has been discussed el sawhere in Section 8.4, anumber of issues are associated with the use of
formats in the process of assigning style attribute values. Most of these are aresult of timing
issues. The problems are complex enough, and come up often enough, to warrant the summary
that follows. Remember that these are only issuesif you are assigning style attributes using
formats.

Trafficlighting formats cannot be applied to statistics that are defined only on the COLUMN
statement. Rather, the statistic should be associated with either an analysis variable or an alias
through the use of a DEFINE statement.

Both CALL DEFINE routines and STY LE= options can be used with trafficlighting formats, and
in some cases they can be used interchangeably. Both can be used in the same step.

Asageneral rule, trafficlighting effects that are desired for a given cell should be applied through
asingle CALL DEFINE routine or STY LE= option. When two different sources address the same
cell, the resulting conflict can produce interesting, but unanticipated, results.

A CALL DEFINE routine in a compute block takes precedence over a corresponding STY LE=
option.

| generally prefer the CALL DEFINE routine to the STY LE= option. The CALL DEFINE routine
usually offers more control, especially when absol ute column addressing is involved. However, |
often make an exception if a STY LE= option does the trick, and the use of a CALL DEFINE
would require an otherwise unnecessary compute block.

One caveat associated with the use of the CALL DEFINE routine is memory usage. For very large
reports or for memory-constrained environments, the STY LE= option might be preferred over
CALL DEFINE, asit tends to use less memory. It is anticipated that this will become even less of
anissuein SAS9.2.

Itis not abad ideato specify your trafficlighting formats to cover the full range. Not doing so
alows the default style attributes to be displayed. However, in some cases, especialy for report-
wide summary lines (see Section 8.4.7), timing issues prevent the default attributes from being
correctly interpreted.

8.5 Embedding Hyperlinks within Your Table

Aswe move away from reports that are generated strictly for printing on paper, we can take
advantage of anumber of techniques that can be used to link one table to another. In their more
sophisticated application, these techniques allow usto even link individual cells of our report to
another report or table. These links, or hyperlinks as they are more formally known, are used to
point from a specific location in one table to another table.

Generaly your linked tables will all be of the same type (HTML, PDF, or RTF), but thereis no
reason why this has to be the case. In the following examples, HTML tableslink to HTML tables,
PDF tables link to PDF tables, and so on. However, when you create areference to afile, it rarely
matters which of these file types you are pointing to or from. An HTML table can link to a PDF
file, for example.

250 Carpenter’s Complete Guide to the SAS REPORT Procedure

The process of moving from one table to alinked table of finer detail is known as drilling down,
and thisis one of the most common applications of linked tables.

Obviously the process does not apply for documents that are not being viewed electronically.
However, through ODS we how have a number of choices of destinations that allow usto display
our documents in such away as to take advantage of these techniques.

Section 8.5.1 Titles and footnotes can be used to form links to other documents or
locations within a document.

Section 8.5.2 The techniques in this section apply only to HTML files, but the links could
point to other file types.

Section 8.5.3 Unlike the STYLE= option, CALL DEFINE is an executabl e statement and

can therefore be controlled with logic in a compute block. This technique
can be used to create linksfor HTML, PDF, or RTF files.

Sections 8.5.4— Although a number of destination-specific examples and considerations are
8.5.6 shown for HTML, PDF, and RTFfiles, there isagreat deal of similarity
among technigues used in each of these destinations.

Section 8.5.7 Automating the process of building links through the use of the SAS macro
language can save time and increase accuracy.
Section 8.5.8 Links can also be built through the use of user-defined formats.

Because of the overlap among destinations, if you are new to linked documents or are not very
well versed in ODS, it will probably be wise to read over all of these sections, not just those
associated with the destination of interest.

SEE ALSO
The process of creating linked tables with drill-down capability is discussed by Gilbert (2005) and
Carpenter and Smith (2003a).

8.5.1 Linking Titles and Foothotes Using HTML Anchor Tags
and the LINK= Option

HTML Anchor Tags

Although some knowledge of HTML is helpful, it fortunately is not particularly necessary to
create linked HTML tables. Y ou will, however, need to understand the basic structure of the
HTML anchor tag statement. Here isits general syntax:

di spl ay_t ext </ a>

When the HTML statement appearsin a SAS title or footnote, the display_text is displayed. If the
display text is selected by the reader, the browser then links to and displays the file named by the
HREF= option.

In the following somewhat silly example, three reports are generated. The first is the summary of
the two regions and then the detail reports for each of those regions. Each report is directly linked
to the other two through the FOOTNOTE statements, each of which contains HTML anchor tags.

Chapter 8: Using PROC REPORT with ODS 251

* Regl Onal Report R I R I I I I I I I I I I O
ods htm styl e=default
pat h="&pat h\resul ts" (url=none) ©
body='ch8_5_1a_Regi on. htm " ;

titlel 'Region Summary';

footnotel "<a href='ch8 5 la_ Regi onVEST. htril* @
>Detail for Western Region";

footnote2 "<a href='"ch8_5 l1la Regi onEAST. htm'
>Detail for Eastern Region";

proc report data=sashel p. prdsal e
(wher e=(prodtype=" OFFI CE'))
nowd;
colum regi on product, actual ;
define region / group;
define product / across;
define actual / analysis sum
f or mat =dol | ar 8.
' Sal es';
rbreak after / summari ze;
run;
ods html cl ose;

* V\éstern Reg| on Report ***********************;
ods htm styl e=default
pat h="&pat h\resul ts" (url=none)
body='ch8_5_1a_Regi onVEST. htm ' ;

titlel 'Western Region Sunmary';

footnotel "<a href="ch8_5 1la Region.htm"
>Regi on Sunmary";

footnote2 "<a href="ch8_ 5 l1la Regi onEAST. htm'
>Detail for Eastern Region";

proc report data=sashel p. prdsal e
(wher e=(prodt ype=' OFFI CE and regi on=' \EST")) ©
nowd;
colum region country product, actual ;
define region / group;
define country / group; ©®
define product / across;
define actual / analysis sum
f or mat =dol | ar 8.
' Sal es';
rbreak after / summari ze;
run;
ods html cl ose;

* East ern Regl On Report ***********************;
ods htm styl e=default
pat h="&pat h\resul ts" (url =none)
body='ch8_5_1a_Regi onEAST. htm ' ;

titlel 'Eastern Regi on Summary';
footnotel "<a href="ch8 5 la Region.htm"
>Regi on Sunmary";

252 Carpenter’'s Complete Guide to the SAS REPORT Procedure

footnote2 "<a href="ch8_5_la_Regi onVEST. htm '
for Western Region";

>Det ai |

proc report data=sashel p. prdsal e

n
col umm
define reg
define cou

define product /

defi ne act

r br eak
run;
ods html clos

(wher e=(prodt ype="' OFFI CE

owd;

ion /
ntry /

ual /

f or mat =dol | ar 8.
' Sal es' ;

€;

after / summari ze;

Region Summa

ry

CHAIR

Region Sales

Product
DESK

Sales

TABLE

Sales

EAST
WEST

$75.855
$72425

11482680 $149,232

$73.616
$75616

$74,319
$67.351
$142,200

Detail for Western Region

Detail for Eastern Region o

A

Western Region Summary
Product

CHAIR DESK TABLE
Region Country |[Sales Sales Sales
WEST CANADA [$25039 $27 167 $20,755
GERMANY [$23,628 $23,099 $23,081
US.A. $23558 $25350 $24.045
672425 $75616 $67,881

Region Summary

Detail for Eastern Region

~

«—

regi on country product, actual ;
group;
group;
acr oss;
anal ysi s sum

and regi on=' EAST'))

Eastern Region Summary

CHAIR

Region Country Sales

Product
DESK TAELE
Sales Sales

EAST

CAMNADA $25200
GERMAMNY $23,277
$27.378

$75,855

USA.

$25,020 $25045
$25403 $26,116
$23,103 22268
§73616 §r4319

Region Summary

Detail for Western Region

© The URL=NONE option allows indirect addressing in the internal HTML code. Generally a
good idea anyway, this option allows you to move your linked images to other locations.

@® Each set of footnotes always references the other two tables.

© The WHERE= option includes a subsetting clause for REGION.

® COUNTRY isadded to the COLUMN statement as a grouping variable.

Chapter 8: Using PROC REPORT with ODS 253

Links can aso be created through the use of the LINE statement. The linked footnotes used in the
previous example are replaced by LINE statementsin the following example. Of course you can
still also change the text attributes as was done in Section 8.2.2.

The following isthe PROC REPORT step that creates the overall summary:

titlel; ©
f oot not el;

proc report data=sashel p. prdsal e

col umm
define
define
defi ne

nowd;

(wher e=(prodt ype=' OFFI CE'))

regi on product, actual ;

regi on

/

product /

act ual

/

group;

acr oss;

anal ysi s sum

f or mat =dol | ar 8.
' Sal es' ;

rbreak after / summmri ze;

conpute before page ; @
line @ 'Region Sunmary'; @
endconp;

conpute after;

18]

line @ "<a href='"ch8_5 1b_Regi onVEST. ht i *
>Detail for Western Regi on";
line @ "<a href="ch8_5_1b_Regi onEAST. htm '
>Detail for Eastern Region";

endconp;

run;

ods htnml cl ose;

© No title or footnotes are defined. Instead both are controlled with LINE statements.

@ The LINE statement in this compute block will write at the top of the page.

@ This becomes the report title.

O At the end of the report we write the two anchor tags, this time using the LINE statement
instead of the FOOTNOTE statement.

254 Carpenter’'s Complete Guide to the SAS REPORT Procedure

Fegion Summary
Product
CHAIR DESK TABLE

Region Sales Sales Sales

EAST $75.855 $73616 $74.319
WEST $72425 $75616 $67.881
$148280 $140232 $142200

Detail for Western Region
Detail for Eastern Region

Destination: HTML Style: DEFAULT

In some versions of SAS, you may need to have a<DIV> and a </DIV> tag surrounding the
anchor tag in the title or footnote so that the parser or processor will not interpret the angle
brackets (< >) as “lessthan” and “greater than” comparison operators.

Using the LINK= Option

Both the TITLE and FOOTNOTE statements support the LINK= option. This option enables you
to directly specify the link without using the anchor tags shown earlier in this section. Also, unlike
the anchor tags, which are used with the HTML destination, the LINK= option can generally also
be used with the PDF and RTF destinations.

The following PDF example takes the first example of this section and replaces the HTML anchor tags
with the LINK= option. Since PDF and RTF footnotes tend to be at the bottom of the page (rather than
at the bottom of the report), the footnotes have been replaced with titles for this example.

* Regl Onal Report EE R R R S S O I S O S)
ods pdf style=printer
file="&path\results\ch8_ 5 1c_Regi on. pdf";

titlel 'Region Summary';

title2 link='ch8_5 1c_Regi onVEST. pdf"'
"Detail for Western Region";

title3 link='"ch8_5_1c_Regi onEAST. pdf"'
"Detail for Eastern Region";

Usually the LINK= option will work for both the PDF and RTF destinations. However, depending
on the level of PDF file created by your system and the word processor used to open an RTF file,
sometimes LINK= will not be able to create avalid link for those destinations.

MORE INFORMATION

Building a series of tables like these can be time-consuming and tedious. Fortunately, the macro
language excels at building this type of code. Section 8.5.7 generalizes this example using the
macro language. Additional options that can be used on the TITLE and FOOTNOTE statements
are discussed in Section 8.7.

SEE ALSO

Chapter 8: Using PROC REPORT with ODS 255

DeAngelis (2005) creates avariable that holdsa URL that is used in aL LINE statement.

8.5.2 HTML Anchor Tags as Data Values

Anchor tags can also be placed in data fields as well as column and row labels. The tags can be
built into adatavaluein aDATA step or in a compute block. Because the latter is more fun, this
is approach taken in the next example.

ods listing close;

* Regi onal Report

Rk R R b O R R R R O R
)

ods htm styl e=default
pat h="&pat h\resul ts" (url =none)
body='ch8_5 2 Region.htm"';

titlel 'Region Summary';

f oot not el;

proc report data=sashel p. prdsal e

nowd;

(wher e=(prodtype=' OFFI CE'))

col um region regtag product,actual; @

define region /
define regtag /
define product /
define actual /

conpute regtag /

group noprint; @

conputed format=$4. 'Region'; ©
acr oss;

anal ysi s sum

f or mat =dol | ar 8.

' Sal es' ;

char |ength=60; ©®

if region=' \EST' then ©

regtag = "West </ a>";
else if regi on='" EAST' then

regtag = "East </ a>";

endconp;

rbreak after / summmri ze;

run;
ods htnl cl ose;

© The computed variable REGTAG is added to the COLUMN statement.

® The variable REGION is not printed.

© The computed variable that holds the anchor tag is defined.

® Even though only four characters are displayed, be sure to use a LENGTH= specification
sufficient to hold the whole anchor tag designation.

© The anchor tag for each region is assigned to the computed variable. By using more flexible
but slightly more complex code, we could reduce these two | F/EL SE IF statementsinto one
assignment statement (without the comparison). This refined statement will work for any
number of regions, and avoids the use of an IF-THEN/EL SE statement.

regtag = "<a href="ch8_ 5 2 Region"||trimn(region)

[]". htrn

"S"||trim(region)]||"";

256 Carpenter’'s Complete Guide to the SAS REPORT Procedure

Region Summary

Product
CHAIR DESK TABLE

Region Sales Sales Sales

EAST $75855 $73/16 $74.319
e

WEST $72475 $75616 $67.881
$148280 3149232 $142.200

Destination: HTML Style: DEFAULT

The code that generates the detailed reports for each of the two regionsis similar to that shown
above. Instead of grouping on REGION, however, we are using COUNTRY . Thelink for the
summary tables for the individual regions points back to the regional summary @.

* V\éstern Regl on Report ***********************;
ods htm styl e=default
pat h="&pat h\resul ts" (url =none)
body='ch8_5_2 Regi onVEST. htm ' ;

titlel 'Western Region Sumary';

proc report data=sashel p. prdsal e
(wher e=(prodtype=' OFFI CE' and regi on=" V\EST"))
nowd;
colum country ctag product, actual ;
define country / group noprint;
define ctag / conputed format=$7. ' Country'; O
define product / across;
define actual / analysis sum
f or mat =dol | ar 8.
' Sal es' ;
conpute ctag / char | ength=60;
if break = RBREAK ' then @
ctag = "Total </ a>";
el se ctag=country;
endconp;
rbreak after / summmri ze;
run;
ods htnl cl ose;

® The computed variable, CTAG, is defined to hold the anchor tag for country.

@ On the line summarizing the region, an anchor tag points back to the overall summary.

Chapter 8: Using PROC REPORT with ODS 257

Western Region Summary

Product
CHAIR DESK TABLE

Country Sales Sales Sales

CANADA 325039 $27167 $20,755
GERMANY $23828 $23099 $23 081
US.A. $23558 $25350 3324045
Total @ §r2425 §r5616 J67,081

Destination: HTML Style: DEFAULT

MORE INFORMATION

This process can be automated somewhat through the use of the CALL DEFINE routine, which is
used in Section 8.5.3 to build HTML links. The use of HTML tags in report headers is discussed
in Section 9.3.3.

SEE ALSO

Squire (2003) and Don Li (2006) both discuss the creation of embedded linksin HTML
documents. Y u and Shen (2006) place the links on numeric cells through the use of user-defined
formats.

8.5.3 Establishing Links Using CALL DEFINE

The examplesin Section 8.5.2 create computed variables to hold the HTML anchor tags. Rather
than creating special computed variables, you can specify the file references directly by using the
CALL DEFINE statement.

The same links are created in the following examples as were created in Section 8.5.2. However,
here there are no computed variables. Instead, the CALL DEFINE statement is used with the URL
attribute to assign the URL to the column values. Although the examples in this section are for the
HTML destination, the URL also works for PDF and, depending on the word processor, the RTF
destination as well.

* Regl Onal Report EE R R S O R S)
ods htm styl e=default
pat h="&pat h\resul ts" (url=none)
body='ch8_5 3a_Regi on. htm"';

titlel 'Region Summary';
f oot not el;

258 Carpenter’'s Complete Guide to the SAS REPORT Procedure

proc report data=sashel p. prdsal e
(wher e=(prodtype=' OFFI CE'))
nowd;
colum regi on product, actual ;
define region [/ group ;
define product / across;
define actual / analysis sum
f or mat =dol | ar 8.
' Sal es';
conpute region; ©

rtag = "ch8_5_3a_Region"||trimregion)||".htm"

call define(_col _,"url',rtag);
endconp;
rbreak after / summari ze;
run;

ods html cl ose;

2]

© A compute block is established for the variable to which we want to assign the link.

® The temporary variable RTAG is used to store the location. Notice that the value to be
displayed is not included, only the location. The value of the variable REGION isthe display
value. This makes our coding easier than in the similar example in Section 8.5.2. We can also
make the assignment of the location directly without first creating atemporary variable ©.

© The location stored in the temporary variable RTAG is assigned as a URL attribute value for

this column.

Region Summary

Eastern Region Summary

Product Product
CHAIR DESK TABLE CHAIR DESK TABLE
Region Sales Sales Sales Country Sales Sales Sales
EAST $75855 $73616 $74.319 CANADA $25200 $25020 $25945
WEST $72425 $75616 $67 881 GERMANY $23 277 $25403 $26116
$748280 $149232 $142200 USA. 27378 $23193 $227288
Reglon §r5855 fr3gia Sr4 319

In this example, we have decided that the summary for an individual region (here the “ Eastern
Region Summary” is shown) will only link back to the primary table (“Region Summary”). This
means that the detail summaries for the individua regions will have alink only for onevaluein

the column.

* V\est ern Regl On Report ***********************;
ods htm styl e=defaul t
pat h="&pat h\resul ts" (url=none)
body='ch8_5_3a_Regi onVeEST. htm ' ;

titlel 'Western Regi on Sumary';

proc report data=sashel p. prdsal e

(wher e=(prodtype=' OFFI CE' and regi on=" V\EST"))

Chapter 8: Using PROC REPORT with ODS 259

nowd;
colum country product, actual ;
define country / group;
define product / across;
define actual / analysis sum
f or mat =dol | ar 8.
' Sal es' ;
conmput e country;
if break = RBREAK ' then do; @
country = 'Region'; ©
call define(_col _,'url',"ch8 5 3a_Region.htmi"); @
end;
endconp;
rbreak after / summari ze;
run;
ods htm cl ose;

O We only want to create the link for the summary line.

© Thelink will be available only if thereis something for it to attach to in the cell. Because
country is otherwise missing (blank) for this summary row, we have added text to the cell.

@ Rather than create atemporary variable (aswas done at @), the value has been placed directly
into the CALL DEFINE statement.

In the previous example, three HTML files were created, each with links that pointed to other
files. It isaso possible to create links that point to other locations within a document. The
following example builds on the previous example. However, rather than creating threefiles, it
creates a single file with three internal links.

When alink pointsto an internal location, an extension is added to the file name ® using a pound
sign (#). In this case we add the region (EAST or WEST).

* Regl Onal Report ER R R O S ok S O S S O O)
ods htm styl e=defaul t
pat h="&pat h\resul ts" (url =none)
body='ch8 5 3b.htm'; ©

titlel 'Region Summary';
f oot not el;

proc report data=sashel p. prdsal e
(wher e=(prodt ype=' OFFI CE'))
nowd;
colum regi on product, actual ;
define region [/ group ;
define product / across;
define actual / analysis sum
f or mat =dol | ar 8.
' Sal es' ;
conput e region;
rtag = "ch8 5 3b.htm#'||trinm(region); @
call define(_col _,"url',rtag);
endconp;
rbreak after / summmri ze;
run;

260 Carpenter’'s Complete Guide to the SAS REPORT Procedure

O A single HTML fileis used to hold all three reports.

® Theinternal link is named by appending the link identifier to the file name. Theidentifier
follows the pound sign (#). Thisidentifier will be used in the ANCHOR= option © totiethe
individual reports together.

The two reports for the individual regions are generated without closing the HTML destination.
The ODS HTML statement © that precedes the REPORT step does not open a new report (there
isno BODY = option); it only exists to add the ANCHOR= option.

* \Mstern Regl On Report EE R I S I S I O I S S O
ods htm anchor='WEST'; ©

titlel 'Western Regi on Summary';

proc report data=sashel p. prdsal e
(wher e=(prodtype=' OFFI CE' and regi on=" \\EST"))
nowd;
colum country product, actual ;
define country / group;
define product / across;
define actual / analysis sum
f or mat =dol | ar 8.
' Sal es' ;
conmput e country;
if break = RBREAK ' then do;
country = 'Region';
call define(_col ,'url',"ch8 5 3b.htm"); @
end;
endconp;
rbreak after / summmri ze;
run;

© The ANCHOR= option provides the identifier that follows the pound sign (#) at ®.

O Since there is no anchor specification (no #) for thislink, this link points back to the top of
the report.

MORE INFORMATION
The examplein Section 8.5.5 usesinternal linksin a PDF document.

SEE ALSO
Y eh (2004) uses CALL DEFINE to specify aURL ina COMPUTE BLOCK. Don Li (2006) uses
internal anchorsto link files.

8.5.4 Forming Links Using STYLE=

Considering the considerable overlap between the capabilities of the CALL DEFINE routine and
the STYLE= option, it should not be surprising that you can form URL links by using the
STYLE= option as well. Because this option is not executable asisthe CALL DEFINE routine, it
is more suitable when the link is either a constant or at least does not include data dependencies.

Chapter 8: Using PROC REPORT with ODS 261

In the following example, asin the example in Section 8.5.3, we want to link from the region-
specific summary back to the overall summary. The STY LE= option is used to form the link. The
code for the Western Region becomes the following:

ods htm styl e=default
pat h="&pat h\resul ts" (url =none)
body='ch8_5_4 Regi on\EST. htm ' ;

titlel 'Western Region Sumary';

proc report data=sashel p. prdsal e
(wher e=(prodtype=' OFFI CE' and regi on=" \\EST"))
nowd;
colum regi on country product, actual ;
define region [/ group
styl e(header)={url = ch8 5 4 Region.htnml'}; @
define country / group;
define product / across;
define actual / analysis sum
f or mat =dol | ar 8.
' Sal es';
rbreak after / summari ze;
run;
ods html cl ose;

© The header for REGION is made to be alink through the use of the URL attribute.

Western Region Summary

Product

CHAIR DESK TABLE
(1)
Region Country Sales Sales Sales

WEST CANADA $25039 $27167 $20,755
GERMANY $23.828 $23009 $23.081

US.A. $23558 $25350 $24045
$72425 $75616 367,691

Destination: HTML Style: DEFAULT

Establishing links with the STY LE= option is also appropriate for PDF and RTF file types.
MORE INFORMATION

I ssues associated with the direct use of HTML tagsin report header text are discussed in
Section 9.3.3.

262 Carpenter’'s Complete Guide to the SAS REPORT Procedure

8.5.5 Creating Links in a PDF Document

The syntax for creating linked documents when using the PDF destination is very similar to each
of the previous methods used with HTML. The difference isin the appearance of the link on the
table, and how the files are addressed in the code (with an extension of PDF rather than HTML).

The examplein Section 8.5.4 has been rewritten here to create a series of linked PDF documents.
For the PDF destination, the style has been specified as PRINTER. Thisisthe default style for
PDF, but | like to explicitly specify the STY LE= option, even when it is the default. The code that
creates the table for the Western Region is shown:

ods pdf style=printer
file="&path\results\ch8_5_5a_ Regi onVEST. pdf ";

titlel 'Western Region Sumary';

proc report data=sashel p. prdsal e
(wher e=(prodtype=' OFFI CE' and regi on=" V\EST"))
nowd;
colum region country product, actual ;
define region [/ group style(header)={url="ch8_5_5a Region. pdf'};
define country / group;
define product / across;
define actual / analysis sum
f or mat =dol | ar 8.
' Sal es' ;
rbreak after / summari ze;
run;
ods pdf cl ose;

Theresulting link is located on the column header. The report table for the Western Region
(ch8 5 5a RegionWEST .pdf) is shown here:

EE g+ options + X
=H[}4 The Report Procedurefis Western Regfﬂﬂ Summﬂf:}’
D Detailed andfor surmi

Product
CHAIR | DESK | TABLE

Region| Country Sales Sales Sales

WEST | CANADA $25.039 | 27,167 | $20,755
GERMANY | $23.828 | $23.099 | $23.081
USA $23.558 | $25.350 | $24.045
$72,425| §75,016 | $07,881

polel Tree \I Pages\|§ Signatures \I Bookmarks

Destination: PDF Style: PRINTER

In the previous example, three different documents are linked. Asin Section 8.5.3, it would also
have been possible to create a single document with links pointing to other locations within that
one document. In the following example, asingle PDF fileis created with the same three
interconnected tables as in the previous example. However, the links all point to other places
within the same PDF file, rather than to other PDF files.

Chapter 8: Using PROC REPORT with ODS 263

* Regl Onal Report ER R R S I k)
ods pdf style=printer
file="&path\results\ch8 5 5b.pdf"; ©@

titlel 'Sales Sunmary';

ods procl abel =' Sal es Surmary'; @
proc report data=sashel p. prdsal e
(wher e=(prodtype=' OFFI CE'))
nowd
contents='Overal ' ©

colum regi on product, actual ;
define region [/ group ;
define product / across;
define actual / analysis sum
f or mat =dol | ar 8.
' Sal es' ;
conput e region;
rtag = "#"||trimregion); @

call define(_col _,"url',rtag);
endconp;
rbreak after / summmri ze;
run;

* Wst ern Regl On Report EE R R R I 2 S I I I I O o I
ods pdf anchor="VWEST" ©

startpage=now, @
ods procl abel ="Wstern";

titlel 'Western Regi on Summary';

proc report data=sashel p. prdsal e
(wher e=(prodtype=' OFFI CE' and regi on=" V\EST"))
nowd;

colum country product, actual ;

define country / group;

define product / across;

define actual / analysis sum
f or mat =dol | ar 8.
' Sal es' ;

rbreak after / summmri ze;

run;

* Eastern Regl On Report EE IR R S I I I S I I I O I O o I
ods pdf anchor="EAST"

st ar t page=now,
ods procl abel ="Eastern";

titlel 'Eastern Region Sumary';

proc report data=sashel p. prdsal e
(wher e=(prodtype=' OFFI CE' and regi on=" EAST"))
contents='' @
nowd;
colum country product, actual ;
define country / group ;

264 Carpenter’'s Complete Guide to the SAS REPORT Procedure

define product / across;
define actual / analysis sum
f or mat =dol | ar 8.
' Sal es';
rbreak after / summmri ze;
run;
ods pdf cl ose;

O A single PDF file iswritten for all three PROC REPORT steps.
® The ODS PROCLABEL = option can be used to provide a name for the bookmark tab.

© The CONTENTS= option provides an additional location with the associated text on the
bookmark panel.

® The CALL DEFINE routine is used to create the association with the text and the specified
link. Notice that because the link is to be internal to the document, it is prefixed with a pound
sign (#). For thisreport, the two links are #WEST and #EAST.

© The ANCHOR= option is used to specify the link to the output from the upcoming procedure.
Notice that the link does not include a# (it is assumed).

® The STARTPAGE= option forces a new page in the PDF document.

@ The bookmark area contains a default value when the CONTENTS= option is not included as it
wasat ©.

O The CONTENTS= option overrides the default contents value @ that is displayed in the
bookmark section. When you want to suppress the value altogether, you should try using
CONTENTS="" (although there have been some problems reported with this option for

SAS9.1).
i EE == options ~ =
-
z =H Sales Summary @ =
E |D Owerall ©
oy | EHDY wWestem)
i |E| Detailed andfor summarized report
% [Eastern ©

Typicaly, bookmarks are created for each step between ODS PDF and ODS PDF CLOSE.
However, the bookmarks are linked only by the ANCHOR= option. The display of the bookmarks
can be controlled through the use of the BOOKMARKLIST= option.

* Regl Onal Report EE R R R I R R S

ods pdf style=printer
file="&path\results\ch8 5 5b. pdf"
booknar kl i st =hi de;

The BOOKMARKLIST= option can take on the following values:

NONE The bookmarks are not created.
HIDE The bookmarks are created but not displayed (until requested).
SHOW The bookmarks are displayed as in the previous example (this is the default).

Chapter 8: Using PROC REPORT with ODS 265

The table of bookmarks can aso be turned off by using the NOTOC option on the ODS PDF
Statement.

CAVEATS

Aswas mentioned earlier, the ODS CONTENT S= option does not always perform as expected in
SAS9.1. This becomes more evident as the tables become more complex, and especially when
BREAK statements are included. Extensive changes are anticipated for SAS 9.2 that should
correct these problems.

It is hoped that PROC REPORT and PROC DOCUMENT will work together in SAS 9.2. If so,
tracking bookmarks should become much easier.

SEE ALSO

FAQ #4473 discusses links between pages within a PDF document, and FAQ #4148 discusses
PDF linksin general. The CONTENTS= and other PDF bookmarking options are described by
Delaney (2003b). The STARTPAGE= option is discussed by Burlew (2005, p. 250).
Karunasundera (2006) discusses PDF bookmarksin more detail and includes a discussion of
corrections to their limitations.

8.5.6 Creating Links in an RTF Document
The generation of linksin RTF is similar to the process used in both Sections 8.5.4 and 8.5.5.

* %Stern Regl On Report EE IR R S S I I S I S I I I I O
ods rtf style=rtf @
file="&path\results\ch8 5 6_Regi onWEST.rtf"; @

titlel 'Western Region Sumary';

proc report data=sashel p. prdsal e
(wher e=(prodtype=' OFFI CE' and regi on=" V\EST"))
nowd;
colum region country product, actual ;
define region / group style(header)={url="ch8 5 6 Region.rtf' ©};
define country / group;
define product / across;
define actual / analysis sum
f or mat =dol | ar 8.
' Sal es' ;
rbreak after / summmri ze;
run;
ods rtf close;

© The RTF destination and the RTF file extension ® create the RTF file that contains the table
with the embedded links. The RTF style has been especially designed for use with the RTF
destination.

© This extension could also be PDF or HTML if you wanted to link to a non-RTF file.

A portion of thisreport asit is viewed in Microsoft Word is shown here.

266 Carpenter’'s Complete Guide to the SAS REPORT Procedure

When viewed in aword processor,
such asMicrosoft Word, the
Prod header “Region” islinked to
ble b i overall summary
CHAIR | DESK | TAELE ch8 5 6 Region.rtf. Although hard
- : to seein black and white, by
Fegion| Country Sales Sales Sales default the labdl is shown in an
WEST ([CaNADA $25.039| $27,167 | $20,755 alternate color.
CERMANY | $23,828| $23,099| $23,081
U3A $23,558 | $25,350| $24.045
372 €25 I7a615| B67.A841

Destination: RTF Style: RTF

When you want to follow alink from an RTF document, be sure to use the CTRL key with a
single click, rather than a double click.

SEE ALSO

FAQ #4019 has a couple of examples that create HTML hyperlinksin RTF documents. Burlew
(2005, pp. 225-232) creates hyperlinksin an RTF report using the URL= and URLLINK=
attribute options. Osowski and Fritchey (2006) use RTF control words to establish internal and
external links.

8.5.7 Automation Using the Macro Language

Building a series of linked tables by hand can be tedious. After two or perhaps three tables, | have
reached my tolerance for repeated code. Fortunately, the SAS macro language has a number of
extremely powerful techniques that can be used to automate the process of generating the
necessary code.

In the examples in Sections 8.5.2 through 8.5.6, one primary table is used as the index to point to
a series of secondary tables. This particular example uses only two secondary tables, one for each
region. However, if the number of regions were either unknown or perhaps dependent on the data,
we would need to write more flexible code.

The ideaisto create code that removes data dependencies or hardcoded data elements. The
following code takes the example from Section 8.5.6 and generalizesit to work for any number of
regions. When you generalize code in this way, you need to watch for things like the following:

(wher e=(prodtype=' OFFI CE' and regi on=" V\EST"))

In this WHERE clause, both the value of PRODTY PE and REGION are hardcoded, and to
generalize for all regions we need to eliminate any hardcoded items that change within the
program.

Thefirst step in the process is to determine the number of regions and their individua values. One
easy way to do thisisto use a PROC SQL step to create a series of macro variables.

Chapter 8: Using PROC REPORT with ODS 267

%racro |inked(prod=CFFI CE); @
% ocal i;

* Determne the count and |ist of regions;
proc sql noprint;
sel ect distinct region @
into :regl- :reg99 ©
from sashel p. prdsal e(wher e=(prodt ype="&prod"));
% et regcnt = &sqlobs; @
quit;

© Because we are using macro %DO loops, we need to define a macro.
® We are interested in each distinct value of the variable REGION.

© Each individual value of REGION is saved into a macro variable of the form & REG1,
®2, & REGS,... . This code allows up to 99 distinct regions. There is no real penalty for
picking a number that is too big.

® The PROC SQL step counts the number of distinct values of REGION and stores them
temporarily in the macro variable & SQLOBS. This number is saved in the macro variable
& REGCNT.

The PROC REPORT step that creates the index table does not need to change, asit will
automatically adjust for each value of REGION @. In asenseit is already generalized.

* Regl Onal Report ER R R O S kS O S S O O)
ods rtf style=rtf
file="&path\results\ch8 5 7 Region.rtf";

titlel 'Region Summary';
f oot not el;

proc report data=sashel p. prdsal e
(wher e=(prodt ype="&prod"))
nowd;

colum regi on product, actual ;

define region [/ group ;

define product / across;

define actual / analysis sum
f or mat =dol | ar 8.
' Sal es' ;

conput e region;

rtag = "ch8_ 5 7 Region"||trim(region)||".rtf"; ©

call define(_col _,"url',rtag);
endconp;
rbreak after / summmri ze;
run;

ods rtf close;

© Because we are using the name of the region (which is the value of the variable REGION) as
the nonconstant part of the name of the file, this portion of the code is already data-independent
and does not require any further generalization.

Rather than creating a separate PROC REPORT step for each region, we generalize the step and
put it inside of a macro %DO loop @, which is executed once for each region (the number of

268 Carpenter’'s Complete Guide to the SAS REPORT Procedure

regionsis stored in & REGCNT). Whenever we want to code for a particular value of REGION,
we use the indirect macro variable reference & & REG& | @.

%loi =1 %o &egent; @
* Indl Vl dual Regl on Report ***********************;
ods rtf style=rtf
file="&path\results\ch8 5 7 Region&®& @...rtf";

titlel "Region Summary for &®&i " @;

proc report data=sashel p. prdsal e
(wher e=(prodt ype="&prod" and regi on="8&&r eg&i " @))
nowd;

colum region country product, actual ;
define region / group

styl e(header)={url = ch8_5 7 Region.rtf'};
define country / group;
defi ne product / across;
define actual / analysis sum

f or mat =dol | ar 8.

' Sal es';
rbreak after / summarize;
run;

ods rtf close;
%end; O

%rend |inked; ©
% i nked(pr od=OFFI CE) ©

® The %DO loop cycles through & REGCNT iterations. For each iteration the macro variable &1
isincremented by 1. %DO loop definitions are terminated with an %END statement.

@ Thevaue of thei” region is stored in the macro variable & & REG&|. When &1 is 2, this
becomes & REG2, which for our example becomes WEST.

© The macro definition is terminated with a%oMEND statement.

© The macro %LINKED is called.

SEE ALSO

A more complete discussion of the process of automatically generating links can be found in
Carpenter and Smith (2003a) and Carpenter (2004a, Section 10.4). Additional discussion of the
macro language itself can be found in Carpenter (20044).

8.5.8 Using Formats to Build a Link

The links can also be established through the use of user-defined formats. Using this technique
enables you to store the link in aformat rather than in the code itself. This approach has the
advantage of not having hardcoded links embedded within the code. To change alink, all we have
to do is change the format.

Here the example from Section 8.5.2 is rewritten using a format to hold the links that point to the
secondary tables.

Chapter 8: Using PROC REPORT with ODS 269

proc format;
val ue $regtag @
" VEST' "West </ a>"
' EAST' "East";
run;

* Regl Onal Report ER R R S R O O
ods htm styl e=default
pat h="&pat h\resul ts" (url =none)
body='ch8_5 8 Region.htm"';

titlel 'Region Summary';
f oot not el;

proc report data=sashel p. prdsal e
(wher e=(prodtype=' OFFI CE'))
nowd;
colum regi on product, actual ;
define region / group formt=$regtag40. @ 'Region';
define product / across;
define actual / analysis sum
f or mat =dol | ar 8.
' Sal es' ;
rbreak after / summmri ze;
run;
ods htm cl ose;

In the similar examplein Section 8.5.2, a computed column is created to hold the link. This
becomes unnecessary when you use this technique.

O Theformat SREGTAG definesthe HTML anchor tags that are used to form the groupsin
the PROC REPORT step.

@® Theformat is used directly against the grouping variable. Only the display_text portion of the
formatted value appearsin the table.

Region Summary

Product
CHAIR DESK TABLE

Region Sales Sales Sales

East $75855 $73816 $74.319
Yest @ $72425 $75616 367881
5148280 §145232 §142200

Destination: HTML Style: DEFAULT

SEE ALSO
Burlew (2005, p. 229) creates hyperlinksin a user-defined format for an RTF report.

270 Carpenter’'s Complete Guide to the SAS REPORT Procedure

8.6 Using the Escape Character for In-Line
Formatting

Thetiming of events can often be important when you are dealing with the Output Delivery
System. Because SASis an interpreted language, we are used to having the code that we write
translated into actions. But as we take the results of PROC REPORT and render them using ODS,
sometimes we want to pass instructions to the ODS processitself. At other times, usually when
using RTF, we want some portion of our code to be interpreted not by ODS at all, but by the
application, such as Microsoft Word, that receives the document.

Because a sequence of events always takes place, we must have some way of marking codethat is
to be interpreted differently, or that is to be interpreted later by a different process. In SAS this
marking is done with an escape character, which is designated by the ODS ESCAPECHAR=
option. You can use almost any character as an escape character, but it is generally recommended
that you use a character that does not aready have meaning in your code.

In the examples that follow in this book, the escape character is specified asthe tilde (~).

It isimportant to note that the discussion in this section does not apply to all ODS destinations
and versions of SAS equally. In SAS 9.1.3 the escape character has been fully implemented and
should work for amajority of the described techniques and formatting functions in the PDF
destination, for most in the RTF destination, and only generally in the HTML destination. Check
the documentation for destination specifics, or easier yet, try the destinations using the
supplemental SAS programs that are referenced in this book.

The escape character is used with special escape character strings and special escape character
functions to pass information to ODS and at times beyond ODS. Functionality within the Output
Delivery Systemis evolving rapidly but currently these take several genera forms.

For matting functions

Used to control pagination, superscripts, and subscripts
Genera form:
~{function <text>}

Discussed in Sections 8.6.1 - 8.6.3

S={}and {style....}

Used to assign style attributes
Genera form:
~S={attribute characteristics}
~{style style elenents and attri butes}

Discussed in Section 8.6.4

Escape character sequence codes

Used to manipulate line breaks, wrapping, and indentations
Genera form:
~code

Discussed in Section 8.6.5

Chapter 8: Using PROC REPORT with ODS 271

Raw text insertion sequence codes
Used to insert destination-specific codes
General form:
~R/ destination"raw ext"
~R'rawt ext"

Discussed in Section 8.6.6

Significant changes in the use of escape character sequences are anticipated starting in SAS 9.2;
however, the current syntax (SAS 9.1.3) is expected to continue to work.

MORE INFORMATION

In addition to the SAS programs discussed in the examples, the test program s8_6TestAll.sas can
be used to further test the various in-line sequences, codes, and functions described in this section.
You will find s8_6 TestAll.SAS in the sample code on the bonus CD that accompanies this book.

SEE ALSO

Lund (2005), Parsons (2006), Sevick (2006), and Gianneschi (2006) each demonstrate many of
the techniques that utilize the escape character in a series of examples. Huntley (2006) discusses
some of these techniques and shows some new ones that are anticipated for SAS 9.2.

The original documentation for in-line formatting sequences can be found at

http://support.sas.conml rnd/ base/topi cs/expv8/inline82. htm

8.6.1 Controlling Superscripts and Subscripts

The in-line formatting functions SUPER and SUB can be used to generate superscripts and
subscripts. The functions take the form of ~{ super text} and~{sub text}. For the supported
destinations, these functions are not at all restricted to PROC REPORT, and (excluding
SAS/GRAPH) can be used wherever text is specified. These text locations include titles, headers,
labels, and even formatted values.

The ODS ESCAPECHAR= option is used to designate the character that you would like to use
as the escape character @. When used, the escape character is followed by curly brackets that
contain the in-line formatting function and the text to which it isto apply @.

ods pdf style=printer
file="&path\results\ch8_6_1la.pdf";
ods escapechar = '~'; ©

titlel "Ages 11 - 16";
proc report data=sashel p.cl ass nowd;
colums sex hei ght weight;

define sex [group;
define height / analysis nean
format =5. 2

' Hei ght ~{ super 1}' @;
define weight / analysis nean

format =6. 2

' Wi ght ~{ super 2}' @;
rbreak after / summari ze;

272 Carpenter’'s Complete Guide to the SAS REPORT Procedure

conpute after;
line @ '~{super 1} © Mean height in inches.";
line @ '~{super 2} © Mean wei ght in pounds.';
endconp;
run;
ods pdf cl ose;

O Thetilde (~) is designated as the escape character.
® The 1 and 2 will both appear as superscripts.
© A footnote containing the superscriptsis generated using LINE statements.

Here is the resulting PDF table:

Ages 11 -16

Sex | Height' | Weight?

I 60.59 90.11
M 63.91 108.95
62.34 100.03

! Mean height in inches.
? Mean weight in pounds.

Destination: PDF Style: PRINTER

Superscripts and subscripts can also be generated using these same in-line functionsin RTF and
HTML destinations.

These in-line formatting functions can also be specified in formats. In the following example, the
superscripts are placed on formatted val ues through the use of a user-defined format.

ods pdf file="&path\results\ch8 6 1b. pdf";

ods escapechar = '~';

proc format;
val ue $ngen
‘M ‘ Mal e~{super 2}' @
"F ' Femal e~{ super 1}';
run;
titlel "Ages 11 - 16";
proc report data=sashel p.cl ass nofs;
colums sex hei ght wei ght;
define sex / group fornat=%ngen.; ©
define height / analysis nean
format =5. 2

' Hei ght ' ;
define weight / analysis nean

format =6. 2

"Weight';
rbreak after / sunmari ze;

Chapter 8: Using PROC REPORT with ODS 273

conpute after;
line @ ' ~{super 1} Grls Swi m Teani;
line @ ' ~{super 2} Boys Soccer Teani;
endconp;
run;
ods pdf cl ose;

® Thein-line superscript function is placed in the VALUE statement.

© The format is applied to the grouping variable.

@ The formatted value contains a superscript.

Ages 11 -16

Sex | Height | Weight
Female! 60.59 90.11

Male> ®| 6391 | 10895

62.34 | 100.03

L Girls Swim Team
2 Boys Soccer Team

Destination: PDF Style: PRINTER

8.6.2 Displaying Page Numbers

With the exception of the RTF destination, SAS determines page numbers directly. However,
sometimes we want a bit more control over how the page number isto be displayed. Thisis
especially true when we want to display the total page count along with the current page. Here is
one such commonly requested pagination scheme:

Page x of y

Generation of thiskind of page counting in RTF is especially problematic for SAS, because the
page count determination is not made until after SAS has relinquished control. Once the
document is rendered in the final application, such as Microsoft Word, the page count can be
determined. This means that the pagination must take place when the document is finalized—
long after SAS has completed its part of the process. SAS solves this problem by using in-line
formatting functions to pass pagination instructions, which can be executed when the pages can be
determined.

Three in-line formatting functions can be used with page numbering. These are { THISPAGE},
{LASTPAGE}, and { PAGEOF} . Although these formatting functions do not behave the same or
even necessarily work for both the RTF and PDF destinations, they can still be very useful.

Because these in-line functions are used to pass destination-specific instructions to the rendering
software, there are some issues with regard to these functions and the parts of the report in which
they are being used.

274 Carpenter’'s Complete Guide to the SAS REPORT Procedure

Can Be Used in Can Generally Be
In-Line Paging Report Body Used in Page Header

Function Areas Areas
{PAGEOF} RTF only
{THISPAGE} PDF only RTF and PDF
{LASTPAGE} RTF and PDF

Notice that HTML does not support these paging functions.

Using {PAGEOF}

The in-line formatting function { PAGEOF} does not work for the PDF destination; however, it
can be very useful in the RTF destination. In the following example, a new page is generated for
each value of the BY variable. The page counts are noted using a LINE statement ©.

ods rtf style=rtf
file="&path\results\ch8_6_2a.rtf"
bodytitle;

ods escapechar='~'; ©

proc sort data=sashel p. prdsal e
out =prdsal e;
by prodtype;
run;

option nobyline; @
titlel '#byvall'; ©
proc report data=prdsale
nowd;
by prodtype; @
colum regi on product, actual ;
define region [/ group ;
define product / across;
define actual / analysis sum
f or mat =dol | ar 8.
' Sal es';
conpute after _page_;
line @ 'Page ~{pageof}'; ©
endconp;
rbreak after / summmri ze;
run;
ods rtf close;

O Thetilde is designated as the escape character for use with the in-line formatting functions.

® The NOBYLINE option turns off the BY line generated by PROC REPORT (sinceit is going
to be displayed in the title through the use of #BYVAL1 ©).

© The value of thefirst BY variable (PRODTY PE) is placed into the title.
® The BY PRODTY PE forces a new page for each value of the variable PRODTY PE.

© Thein-line function { PAGEOF} is used to form the x of y portion of the page number.

Chapter 8: Using PROC REPORT with ODS 275

Here are the two pages of the report:

FURNITURE OFFICE
Product Product

BED SOFA CHAIR | DESK | TABLE
Region | Sales Sales Region | Sales Sales Sales
EAST $73.870($72.601 EAST $75.855| $73.016| $74.319
WEST | $68,167| $75,987 WEST | $72.425| $75.016| $67.881

8142,037 | 8§148,588 $148,280| §149,232 | $§142,200
Page | of 2 Page 2 of 2

Destination: RTF Style: RTF

One of the really nice features of PROC REPORT when you use the BY statement is that the
pages do not necessarily have to have the same columns. In these two pages, the products within
product type are completely distinct.

When you use the RTF destination, the page numbers usually do not show up until the document
is either printed, viewed through a Print Preview window, or included in another document. This
means that when you view the document in the SAS viewer, the page numbers will probably not
al be visible. Remember that the page number is actually not simple text, but an embedded
command that expresses the page number when the document is finalized. Delaysin the
expression of the page numbers can occur, depending on the size and complexity of the document.

Using {THISPAGE]} and {LASTPAGE}

The {THISPAGE} and {LASTPAGE} formatting functions are similar to { PAGEOF} in their
usage, but because they are separate functions, they give us a bit more flexibility. These two
functions can, in most cases, be used with reports that are to be written to both the PDF and RTF
destinations. The following example repeats the previous example using these two functions. In
addition, it adds them to the title for demonstration purposes and writes to both the PDF and the
RTF destinations.

ods pdf style=printer
file="&path\results\ch8_6_2b. pdf";

ods rtf style=rtf
file="&path\results\ch8 6 2b.rtf"
bodytitle;

ods escapechar="~";
proc sort data=sashel p. prdsal e
out =prdsal e;
by prodtype region;
run;

276 Carpenter’'s Complete Guide to the SAS REPORT Procedure

options nobyli ne;

titlel '#byval 1';

title2 '"In the Title: Page ~{thispage} out of ~{lastpage} ';
f oot not el;

proc report data=prdsale
nowd;
by prodtype;
col um prodtype region product, actual ;
define prodtype / group page;
define region [/ group ;
define product / across;
define actual / analysis sum
f or mat =dol | ar 8.
' Sal es';
conpute after _page_;
line @ 'Page ~{thispage} out of ~{lastpage}"';
endconp;
rbreak after / summri ze;
run;
ods _all _ close;

Here isthe first page of the RTFfile:

FURNITURE
In the Title: Page I out of 2
Product
BED SOFA
Product
type Region Sales Sales
FURNITURE | EAST $73.870 $72,601
WEST $68.167 $75.987
$142,037 $148,588
Page 1 out of 2

Destination: RTF Style: RTF

Chapter 8: Using PROC REPORT with ODS 277

Here isthe first pagein the PDF file:

FURNITURE
In the Title: Page 1 out of 2

Product
BED SOFA

Product
type Region | Sales Sales

FURNITURE | EAST $73.870 | $§72.601
WEST $68,167 | $75,987
$142,037 | $148,588

Pageloutof

Destination: PDF Style: PRINTER

Notice that although both the functions work correctly in the RTF table, in the PDF table the
paging generated with the LINE statement is not only compressed, but the value for
{LASTPAGE} isnot available.

MORE INFORMATION
The#BY VAL option for the TITLE statement is described in Section 6.6.3.

SEE ALSO

Chung and Dunn (2005) and DeAngelis (2005) both discuss how to create a page x of y counter
by counting the pages themselves. Hamilton (2003) and Smoak (2004) both use RTF commands
to generate the pagination in SAS 8.2. FAQ #4010 shows examples of the generation of page x of
y. Pagination is controlled with help from PROC TEMPLATE in FAQ #4473. FAQ #4450 has an
example that uses PAGEOF, THISPAGE, and LASTPAGE.

8.6.3 Generating a Dagger

A symbol commonly called a dagger is often used instead of a numeric superscript (or subscript)
to call attention to afootnote. The dagger symbol can be generated directly through the use of the
in-line{ DAGGER} function. The syntax is similar to that used with { PAGEOF} .

278 Carpenter’'s Complete Guide to the SAS REPORT Procedure

ods pdf style=printer
file="&path\results\ch8 _6_3. pdf";
ods escapechar = '~';

titlel "Ages 11 - 16 ~{dagger}";
proc report data=sashel p.cl ass nowd;
colums sex hei ght wei ght;
define sex [group;
define height / analysis nean
format =5. 2
' Hei ght';
define weight / analysis nean
format =6. 2
" Wi ght';
rbreak after / summari ze;

conpute after;
line @ '~{dagger} Data extracted fromthe ABC study';
endconp;
run;
ods pdf cl ose;

Ages 11 -16 1
Sex Height Weight
F 60.59 90.11
M 63.91 108.95
62.34 100.03

T Data extracted from the ABC study

Destination: PDF Style: PRINTER

The dagger symbol can also be generated equally well in RTF and HTML, although in HTML the
symbol looks more like a cross than a dagger.

Chapter 8: Using PROC REPORT with ODS 279

8.6.4 Using the Escape Character with S={ } and {STYLE} to
Change Style Attributes

In Sections 8.2 and 8.4.2, the STY LE= option was discussed as it pertains to various aspects of
PROC REPORT, and it was shown that this option can modify or change awide variety of style
attributes. Many of these same attributes can be changed using the ~S={ } in-line formatting
strings and the nested ~{ STYLE} formatting sequence.

~S={ } In-Line Formatting Syntax
Here isthe general syntax to set attribute values:

~S={style_attribute=attribute_val ue}

Thetilde (~) isthe designated escape character, and the S= must be in uppercase.

Empty curly brackets are used to turn off or reset attributes that were specified using the previous
in-line sequence:

~s=(}

There are a couple of advantages of this approach over the STY LE= option. First, it can be used
where the STY L E= option does not apply, such as within titles and footnotes. Second, the in-line
formatting string can be stored as part of a character variable and as such can be used in variable
values and formats.

Using ~S={ } in Titles and Footnotes
In the following example, we use in-line formatting to change the attributes of the text in the
TITLE and LINE statements.

ods pdf style=printer
file="&path\results\ch8_6_4a. pdf";
ods escapechar = '~';

titlel "~S={font_face=Arial } Ages "
"~S={font_style=roman}11 - 16"; @
proc report data=sashel p.cl ass nowd;
colums sex hei ght wei ght;
define sex [group;
define height / analysis nean
format=5.2
' Hei ght ' ;
define weight / analysis nean
format =6. 2
"Weight';
rbreak after / summari ze;

conpute after;
line @ '~S={font_weight=bol d}Height(in.)’
' ~S={font_weight=light}Wight(lbs.)'; @
endconp;
run;
ods pdf cl ose;

280 Carpenter’'s Complete Guide to the SAS REPORT Procedure

O By default thetitlelineisin italics; however, here italics have been removed from the
numbersin the title.

® The bolding is removed from the second half of the text generated by the LINE statement. The
in-line string ~S={} also removes previous attributes (reestablishes the defaults). The LINE
statement could also have been specified asfollows:

conpute after;
line @ '~S={font_weight=bol d}Height(in.)’
'~S={}Weight(lbs.)";

endconp;
Ages 11-16
Sex | Height | Weight
F 60.59 90.11
M 6391 | 10895
62.34 | 100.03
Height(in.) Weight(lbs.)

Destination: PDF Style: PRINTER

Using ~S={ } in Formats

Because you can use the in-line formatting ~S={} sequence in most instances that you can specify
text, it stands to reason that you could use it in aformat as well. The following example builds a
format that maps the values of SEX (‘F and ‘M’) into ‘Female’ and ‘Male’, while at the same
time bolding the first letter.

ods pdf style=printer
file="&path\results\ch8_6_4b. pdf";
ods escapechar = '~';

proc format;
val ue $genttl
"f','F =" ~S={font_wei ght =bol d} F~S={f ont _wei ght =l i ght } eral €'
'm,' M =" ~S={font_wei ght =bol d} M\-S={f ont _wei ght =l i ght}al e';
run;

titlel "Ages 11 - 16";
proc report data=sashel p.cl ass nowd;
colums sex hei ght wei ght;
define sex / group format=$genttl.;
define height / analysis nean
Portions of the code are not shown .

Chapter 8: Using PROC REPORT with ODS 281

The generated table shows:
Ages 11 -16
Sex | Height | Weight
Female 60.59 90.11
Male 63.91 108.95
62.34| 100.03
Height(in.) Weight(lbs.)

Destination: PDF Style: PRINTER

Nested In-Line Style Attributes Using ~{STYLE}

Starting in SAS 9.2, the ~S={} technique will be augmented by the more flexible syntax known as
nested in-line formatting. The ~S={} syntax will continue to work as described earlier in this
section; however, the newer syntax will give the user better control.

Here is the general syntax:
~{ style <style_element><[attribute(s)]>formatted text}
The syntax always beginswith ~{ STYLE.

style_element specifies the portion of the report to which the style attributes are to be

applied e.g., headerfixed, systemtitle.

attribute(s) specifies the attributes, enclosed in square brackets. Multiple attributes can

be specified.

formatted text specifies the text to which the style elements and attributes will be applied.

This syntax is most similar to ~S={} when the style element is not specified. For example,
~{style [col or=red] text}

isequivalent to
~S={col or=red} text.

The following TITLE statement uses the HEADERFIXED style element.

title "~{style headerfixed title with style el enent headerfixed}";

In the previous statement, the element following the ~{ st yI e isthe optional style element. In this
case there is no attribute specified in square brackets, so the text to be formatted follows the
style_element. The following TITLE statements include the use of style_elements.

282 Carpenter’'s Complete Guide to the SAS REPORT Procedure

title2 "~{style [color = greenish blue] title in greenish blue color}";
title3 "~{style headerstrong[color = dark red fontstyle=italic]
title in dark red as headerstrong el enent}";
titled "test of ~{super ~{style [color=red] red
~{styl e [col or=green] green} and
~{style [col or=blue] blue } formatting }}
etc.";

MORE INFORMATION

Y ou can use the sample program s8_6TestAll.sas (primarily written by Cynthia Zender) to test in-
line formatting sequences; this program isincluded among the bonus programs on the CD that
accompanies this book.

SEE ALSO
Huntley (2006) discusses these and other text modification techniques. Further examples of the
use of ~S={} can befound in Lund (2005) and Morgan (2006).

8.6.5 Line Breaks and Wrapping

When long text strings do not fit in the space that has been allocated for the text, we often need to
have the text wrap. Although the FLOW option has some utility in the LISTING destination, we
might need to take even more control. One way to achieve this control is through the use of in-line
formatting text sequences. While these sequences should all work in PDF, they do not work
equally well in each of the three primary destinations (RTF, PDF, and HTML). Y ou might need to
experiment a bit with your destination and version of SAS.

The following set of in-line commands tells the destination where to break aline of text and,
optionally, where to establish the indentation location when wrapping.

m specifies the location for indentation of subsequent wrapped lines (without this
marker subsequent lines are | eft-justified).

-2n forces aline break that takes the ~mlocation into consideration.

xn forces x line breaks that do not take the ~mindentation location into consideration.

w specifies the suggested location for an optional line break.

(underscore) creates a nonbreaking space.

You can also insert up to four types of error conditions into the table.

Xz inserts error codes. The z islowercase, and the value of x determines the type of
error code, asfollows:
x=1 ERROR:
X=2 WARNING:
x=3 NOTE:
x=4 FATAL:

Line Breaks and Indentations
Lines of text can be split by using the ~xn sequence. The value of x, except for the specia case of
x = -2 that isdescribed in the next paragraph, determines how many line feeds to include.

Chapter 8: Using PROC REPORT with ODS 283

If you want to mark alocation for indentations for subsequent lines, you can use the ~mcode.
However, if you want to force aline break and you want the next line to be indented at the
location specified by the ~m you need to use the special split sequence ~-2n as the line split
character.

These breaks and indentations are demonstrated in the following example, in which the split
sequences are placed within aformat definition @ aswell aswithin a LINE statement @, “just
because we can.”

ods htm styl e=default
file="&path\results\ch8 6 _5a.htm";

ods pdf style=printer
file="&path\results\ch8_6_5a.pdf";

ods rtf style=rtf
file="&path\results\ch8_6_5a.rtf"
bodytitle;

ods escapechar = '~';

proc format;
val ue $gentt|
"f','F' =' Fe~nmal e~- 2nSt udents' @
‘m,"M =" Ma~m e~- 2nSt udent s' ;
run;

titlel "Ages 11 - 16";
proc report data=sashel p.cl ass nowd;
colums sex hei ght wei ght;
define sex / group format=$genttl.;
define height / analysis nean
format=5.2
' Hei ght ' ;
define weight / analysis nean
format =6. 2
Wi ght';
rbreak after / summari ze;

conpute after;
line @ 'Eng~m®lish Measures~-2n®Hei ght (in.)~n@Wight (I bs.)";
endconp;
run;
ods _all _ close;

© The indentation (margin) marker (~m) and the line feed are specified in aformatted value.
Notice that although the line feed is specified as - 2n, only one line feed isintroduced. The - 2n
isjust acode, and the 2 does not indicate the number of line feedsto introduce. A positive
number, such as 2n, inserts that number of line feeds.

® A margin marker is set to be aligned with the third letter in the text string.
© Thelineis split using ~- 2n. This split sequence recogni zes the ~mas an indentation marker.

O Theline split (~n) successfully splitsthe line, but the margin marker is not recognized and the
lineisleft-justified. Only line feeds induced by the code - 2n recognize the margin marker

(=m.

284 Carpenter’'s Complete Guide to the SAS REPORT Procedure

Ages 11 -16 Theindentation marker ~m® isonly
recognized when thelineis split with a ~- 2n.
N . : Hence“Weight” isleft-justified, whereas
SEi | EEIEI] WE e “Height” isindented.
Female 60.59 90.11
Students
Male 63.91| 108.95
Students
62.34| 100.03
English Measures
Height(in.)
Weight(lbs.)

Destination: PDF Style: PRINTER

Notice that the text for “Weight(lbs.)” is left-justified. The margin marker (~m) is only recognized
in the PDF destination (and then only when the text is either wrapped naturally or split using the
~- 2n sequence). The other line splits are recognized in RTF and HTML.

Placing Nonbreaking Spaces in Your Text

If you have text that is either being allowed to flow or is otherwise wrapping, it is possible to
replace a blank with a nonbreaking space. The ~_ (underscore) designates a nonbreaking space.
Multiple adjacent nonbreaking spaces can be specified by placing a series of marked
underscores—e.g., ~_~_~_.

The following example places nonbreaking spaces before ‘Asia @, between ‘United’ and * States
@®, and in the header text for REGION @. Leading nonbreaking spaces can be used to change the
order of the rows.

ods htm styl e=defaul t
file="&path\results\ch8_6_5b.htm";

ods pdf style=printer
file="&path\results\ch8_6_5b. pdf";

ods rtf style=rtf
file="&path\results\ch8 6 5b.rtf"
bodytitle;

proc format;
val ue $NewReg
"Asia’l = '~ ~ ~ ~ ~ ~ ~ o~ ~ o~~~ Asia’ O

"United States' = 'United~ ~ ~ ~ ~_ States' @;
run;

Chapter 8: Using PROC REPORT with ODS 285

ods escapechar="~";

title 'Total Sales';
proc report data=sashel p. shoes nowd;
colum regi on sal es;
define region / group 'Region~ ~ ~ ~ Nare' ©
f or mat =$NewReg. ;
define sales / sum' Sales';
run;

ods _all_ close;

Inthe HTML table“Asia’ isindented and it is sorted LAST.

Total Sales

Region Name Sales
Africa $2.342 588
Canada $4.255 712

Central AmericafCaribbean $3 657 753

Eastern Europe £2,394 940
Middle East $5631779
Pacific £2 296 794
South America $2.434,783
United States $5,503 986
Western Europe $4,873,000

Asia $460,231

Destination: HTML Style: DEFAULT

286 Carpenter’'s Complete Guide to the SAS REPORT Procedure

In the PDF table, the leading nonbreaking spaces for “Asia’ are not used to form an indentation;
however, they are still used by PROC REPORT to determine the ordering of the rows.

Total Sales
Region Name Sales
Alrica $2.342.588
Canada $4.255.712

Central America/Caribbean | $3.657,753

Eastern Europe $2.394.,940
Middle Easl $5.631.779
Pacific $2.,296,794
South America $2,434,783
United States $5,503,986
Western Europe $1.873.000
Asla $460,231

Destination: PDF Style: PRINTER

Inthe RTF table, asin the PDF table, the leading nonbreaking spaces are not used except when
ordering the rows of the table.

Total Sales

Region Name Sales
Africa $2.342.588
Canada $4,255,712

Central America/Caribbean | $3,657,753

Eastern Europe $2.394.940
Middle East $5.631,779
Pacific $2.296,794
South America $2.434,783
United States $5,503,986
Western Europe $4.873,000
Asia $460,231

Destination: RTF Style: RTF

Chapter 8: Using PROC REPORT with ODS 287

When you are working with a RTF table in most word processors, such as Microsoft Word, itis
possible to adjust the widths of the columns dynamically. During the adjustment, an attempt is
made to split text that does not fit in the allocated width at spaces in the text. Nonbreaking spaces,
however, are treated like other characters and are not used to break the text for wrapping. The
following report redisplays the previous RTF table after the first column has been given a reduced
width. Notice how “South America’ has split on the space, while “United States’ has not.

Total Sales
Region N

ame Sales
Africa £2.342 588
Canada £4,255,712
Central £3.657.,753
AmericalCar
tbbean
Eastern £2.384 240
Europe
MMiddle East £5.631,77%
Facific £2.296,79%4
South £2.434,783
America
Tntted Sta £5,503,986
tes
Western F4,873.000
Europe
Agia F460,231

Destination: RTF Style: RTF (with the first column resized)

Inserting Error and Other Warning Text
The ~xz in-line formatting sequences can be used to insert warning and error text. The type of text
is determined by the value of x, as follows:

x=1 ERROR:
x=2 WARNING:
x=3 NOTE:
x=4 FATAL:

In the following example, the macro variable & RC has been set as areturn code from the process
that builds the data (this process is hot shown as we are just pretending anyway). In this example,
&RC=2. The macro variable s value is used to create the value of x, and the resulting in-line
seguence (~2z) isthen used to create the warning in the LINE statement.

288 Carpenter’'s Complete Guide to the SAS REPORT Procedure

ods htm styl e=default

file="&path\results\ch8 6 _5c.htm";

ods pdf style=printer

file="&path\results\ch8_6_5c. pdf";

ods rtf style=rtf

file="&path\results\ch8 6 _5c.rtf"

bodytitle;
ods escapechar = '~';

titlel "Ages 11 - 16";

proc report data=sashel p.cl ass nowd;

colums sex hei ght wei ght;
define sex [group;

define height / analysis nean

format =5. 2
' Hei ght ' ;

define weight / analysis nean

format =6. 2
"Weight';
rbreak after / sunmari ze;

conpute after;

line @ "~&c.z Return Code Status";

endconp;
run;
ods _all _ close;

Before execution of the LINE statement, the & RC resolvesto 2 (presumably & RC was set in
some previous step). The LINE statement then becomes the following:

line @ "~2z Return Code Status";

The sequence ~2z becomes the word “Warning:”

Instead of “Warning:” escape sequences
could also have been used to produce
“Note:”, “Error:”, and “Fatal:”.

Ages 11 -16
Sex Height | Weight
F 60.59 90.11
M 63.91 108.95
62.34 100.03
Warning: Return Code Status

Destination: PDF Style: PRINTER

Chapter 8: Using PROC REPORT with ODS 289

In both the PDF and RTF destinations, the LINE statement produces the desired text. However,
for the HTML destination, the ~2z isignored.

MORE INFORMATION
Controlling the wrapping of text using the TAGATTR= attribute is discussed in Section 9.3.2, and
using the FLOW option for the LISTING destination in Section 4.5.2.

SEE ALSO
Lund (2005) includes examplesthat split lines of text.

8.6.6 Passing Raw Destination-Specific Codes

When writing to the HTML and RTF destinations, you can use in-line code sequences to pass raw
destination-specific codes directly into the resultant file. This can be useful when you understand
the specifics of theinternal workings of the destination, and you have a heed that cannot
otherwise be addressed using other ODS options or techniques.

Hereisthe syntax used to place raw code directly into the destination file:

~R/ desti nati on"command and text"

The destination can be HTML or RTF, and the command and text is destination-specific. The raw
text is only written to the appropriate destination. If the destination is not specified asin

~R'command and text"

the text is written to each appropriate destination in the PRINTER family (currently HTML, RTF,
PCL, PRINTER, or PS).

Sample text strings that use destination-specific codes include the following, which are taken
from the sample program s8_6TestAll.sas.

Insert RTF tabs:

' Begi n~R/ RTF"\t ab\t ab" Two Tabs Later'
Highlight selected RTF text:

'Before Test ~R/ RTF"\highlight3" After Test'
Turn on RTF underlining and split aline:

"~R/RTF"\ul " 1st Line~R/ RTF"\line" 2nd Line'

Changetext colorsin HTML:

"The color is ~R/ HTM."""||
"BLUE (HTM. ONLY) ~R/ HTML"""

290 Carpenter’'s Complete Guide to the SAS REPORT Procedure

The following example highlights these and some other RTF control words:

ods escapechar = '~';
titlel '~RIRTF"\ul " Title is italic and contains underlined text'; @

data rtfcontrol;
text = 'This is default text.';
run;

ods rtf file = "&path\results\8_6_6a.rtf"
style=rtf;

PROC REPORT data = rtfcontrol nowd
styl e(header colum)=[font_face="arial' font_wei ght=bold];

colum text ny_text;

define text /display 'Default';
define nmy_text/conmputed wi dth=1 'RTF Control Words' flow;

conpute ny_text / char | ength=200;

ny_text = "The text uses RTF control words " ||
"~R'\i italic text \i0O "' || " regular text " || @
'"~R'\ul underlined text \ul0 "' |]
'"~R'\'strike strike text \strikeO "' ||

endconp;

run;
ods rtf close;

© Underlining in the TITLE is accomplished with the~R/ RTF "\ ul " command word. Inthe
TITLE the command “\ul” must be enclosed in quotation marks. In this case, the titleis already
going to be displayed initalics, so only the underline is specified. Because / RTF isincluded,
the underlining only applies to the RTF destination.

@® For the RTF destination, italics are turned on with the "\ i " RTF control word. Theitalics are
also turned off with the "\ i 0". Notice that RTF is not specified in the control commands used
in this assignment statement. Unlike the command in the title @, these commands are applied
to al appropriate destinations (of course, in this case there is only one).

Title is talic and contains underlined text

Default RTF Control Words

This is default text. | The text uses RTF control words italic text
regular text underlined text strike-text-.

Destination: RTF Style: RTF

Chapter 8: Using PROC REPORT with ODS 291

Quotation marks can be an issue when using these control words. Often the control words
themselves need to be enclosed in quotation marks, as well as the text to which they are to be
applied. The text sequences in this section follow this basic pattern:

"text" || '~R'\rtf-control-word rawtext \rtf-control-word0o "'

= Either double or single quotation marks are used around text strings without control
words.

= The concatenation operator (| |) isused to concatenate all strings.

= When nested quotes are needed, double quotation marks are used around the RTF control
word string and affected text, and then single quotation marks are used to surround the
~R sequence.

= Although it is not always needed, you should close each RTF control word string with a
zero (0).

Because macro variables do not resolve inside of single quotation marks, this embedded quoting
can become a problem when you are including macro variables. Let us assume that the two macro
variables & CODE and & TXT have been defined as follows:

% et code = ul
%et txt = underlined text;

The RTF codes specified in the following assignment statement will not work, because the macro
variables are inside of single quotation marks and will not be resolved.

conpute ny_text / char | ength=200;
ny_text = "RTF control word as a macro variable " |
'~R'\ &ode &t xt \&code.O0 "' || ".";
endconp;

Instead, we need to mask the single quotation marks from the macro parser by using a macro
guoting function such as %BQUOTE.

conpute my_text / char | ength=200;
ny_text = "RTF control word as a macro variable " |
%bquot e(') ~R'\ &ode &t xt \ &code. 0 "%bquote(') || ".";
endconp;

Now the macro variables & CODE and & TXT can be resolved (toul and under | i ned text
respectively), and it is asif we had written the compute block as follows:

conpute my_text / char | ength=200;
ny_text = "RTF control word as a macro variable " |
"~R'\ul underlined text \ulO ™" || ".";
endconp;

SEE ALSO

The second example in this section was suggested by Sunil Gupta, author of Quick Results with
the Output Delivery System (Gupta, 2003). More information on the RTF specification can be
found at

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnrtfspec/html/rtf spec.asp

292 Carpenter’'s Complete Guide to the SAS REPORT Procedure

8.7 Using TITLE and FOOTNOTE Statement
Options

For the most part, the destinations that support font and color control also accept attribute control
optionsin the TITLE and FOOTNOTE statements. These options were originally included in
these two statements for use with SAS/GRAPH and are otherwise ignored unless you are writing
to one of the supported ODS destinations.

These TITLE/FOOTNOTE statement options include the following:

Color= designates color.

BColor= specifies the background color.

Height= specifies the height of the text (usually specified in points).
Justify= specifies the text justification (left, center, right).

Font= designates the font (can include hardware and software fonts).

Most of these options can be abbreviated using the uppercase | etters in the option name shown
here.

There are aso afew font modification options. These include:

BOLD creates bolded text.
ITALIC italicizes the text.
UNDERLINE underlines the text.

Colors can include any of the RGB or gray scale colors appropriate for the output destination.
When used, these options precede the text to which they are to apply. The following example
highlights afew of these options.

Portions of the code are not shown .
ods htm styl e=default
file="&path\results\ch8_ 7.htm";

titlel f="tines new roman' h=20pt c=blue bc=yell ow ' Student Sunmary';
title2 f="Arial' h=20pt c=red j=I bold 'English Units';
proc report data=sashel p.class nowd;
colums sex hei ght wei ght;
define sex / group format=%$genttl.;
Portions of the code are not shown .

Chapter 8: Using PROC REPORT with ODS 293

Student 51111111131"__-‘ Thisexample showsonly afew of the TITLE
English Units and FOOTNOTE statement optionsthat can
be used to modify thetext characteristics.

Sex Height Weight

Female 60.59 90.11
Students

Male 63.91 108.95
Students

62.34 100.03

Destination: HTML Style: DEFAULT

The UNDERLINE option is not expected to be available for the PDF destination until SAS 9.2.

MORE INFORMATION
The LINK=TITLE/FOOTNOTE option is discussed in Section 8.5.1, and the Font= option is
used in the example in Section 10.5.1.

SEE ALSO
Additional information on these TITLE and FOOTNOTE options can be found in the
documentation for SAS/GRAPH.

8.8 Creating Tip or “Flyover” Text for HTML and
PDF

Tip text or “flyover” text pops up into view when the cursor hovers or points over alocation in the
file. You can create this text for both HTML and PDF destinations. Tip text can be very
advantageous if you have limited space on your table, but want to have additional information
available to the reader at the reader’ s discretion.

The attribute that needsto be set is FLY OVER, and the character string assigned to FLY OVER
becomes the tip text.

8.8.1 Using CALL DEFINE

In the following example, the datais summarized for clinic number and the clinic name is not
shown. Instead the clinic name is added as tip text.

294 Carpenter’'s Complete Guide to the SAS REPORT Procedure

Portions of the code are not shown .
titlel "Clinic Sunmaries";
proc report data=rptdata.clinics nowd;
colums clinname clinnumht ht=htmean wt; @

define clinname/ group noprint; @
define clinnum/ group 'Cdinic Nunber';

define ht / analysis n 'N;
define htnean / analysis nean 'Height';
define wt / anal ysis nean 'Wight';

rbreak after /| summari ze;

conpute clinnum ©

attrib = 'style={flyover=""||trin(clinname)||'"}'; ©®
call define(_col ,'style' ,attrib); ©
endconp;
run;
ods _all _ cl ose;

O Theclinic nameis on the column statement to the left of the clinic number.

@® The clinic name is used as a nonprinting group variable. Because it isto the left of CLINNUM
in the column statement, its value is available in the assignment statement that builds the
temporary variable ATTRIB in the CLINNUM compute block ©.

© A compute block is established for the variable whose values are to receive the tip text. This
enables us to use the CALL DEFINE statement.

O The STYLE-= option specifies the clinic name as the tip text. For clinic number 049060, the
value of ATTRIB would be asfollows:

attrib = 'style={flyover="Atl anta General Hospital"}';

Notice the use of the double and single quotation marks. Here we are constructing a temporary
character variable (ATTRIB) that is composed of character constants (enclosed in single quotation
marks) and areport item (CLINNAME) whose value is to be included inside of quotation marks
(double quotation marksin this case).

© CALL DEFINE isused to set the FLY OVER attribute. Notice that the temporary variable's
name, ATTRIB, is not in quotation marks.

A portion of the HTML report is shown here. When the report is viewed in the browser, placing
the cursor over the clinic number reveals the clinic name.

Clinic Summaries

Clinic Number N Height Weight

049060 4 66.5 143
066? 2 70 175
NE4134AE 2 [ay=] 218

Destination: HTML Style: DEFAULT

Chapter 8: Using PROC REPORT with ODS 295

The PDF report shows where tip text is available by including an icon in the cell with tip text.
Again, hovering the cursor over the cell reveals the tip text. In the most recent PDF readers, you
can double-click on the tip text icon to have the tip text expanded.

Clinic Summaries
Clinic
Number | N | Height | Weight
019060 | 4 66.5 113
¥ 066789 | 2 70 175
—[Fosotin Medical Hospial |
7 3 6] 218

Destination: PDF Style: PRINTER

For the HTML destination you can change the cursor by using the HTMLSTY LE= attribute. This
attribute can alter, among other things, the shape of the cursor. To change the HTML cursor from

the default (a character similar to an uppercase |) to a hand, you can use the following compute
block:

conpute clinnum
attrib = 'style={flyover=""|]|trim(clinnane)]| |
" htm styl e="cursor: hand"}";
call define(_col_,"style' ,attrib);

endconp;

MORE INFORMATION

The construction of character variables that contain style attributesis further complicated when
macro variables are involved; see Section 11.1.2.

SEE ALSO

Downing (2004) discusses these techniques and shows an example for the HTML destination
using macro variables and CALL DEFINE.

8.8.2 Placing Tip Text Using STYLE=

The STYLE= option is used to set attributes for cells, rows, and columns. In this example, the
STYLE= option is used on the DEFINE statements. Because the component is not specified, the
DEFINE statement default components (HEADER and COLUMN) are assumed. Consequently
the header and each cell in the specified column will receive the same tip text.

Portions of the code are not shown .
titlel "Ages 11 - 16";
proc report data=sashel p.cl ass nowd;
colums sex hei ght wei ght;

define sex [group;

define height / analysis nean
format=5. 2
' Hei ght'

styl e={fl yover="Measured in Inches'};

296 Carpenter’'s Complete Guide to the SAS REPORT Procedure

define weight / analysis nmean
format=6. 2
" Wei ght'
styl e={flyover="Measured in Pounds'};
rbreak after [/ summari ze;
run;
.Portions of the code are not shown .

We can see thetip text indicatorsin the PDF file.

Ages 11-16

Sex F Heighy ~ Weight

F i|‘,~ 60.59 I‘.-- 90.11

ﬁ|:;:f 62.34 I__" 100.03

Destination: PDF Style: PRINTER

Asageneral rule, when using the STY LE= option, | prefer to specify the component. This gives
me more flexibility and control. In the previous example, the tip text is a constant for the entire
column and really only needs to be associated with the header, not all the cells within the column.
We can see that this happens by specifying the HEADER component.

The previous example has been refined in the following code. The HEADER component causes
the style attributes (in this case the flyover text) to be applied only to the header.

Portions of the code are not shown .
proc report data=sashel p.cl ass nowd;
colums sex hei ght wei ght;
define sex [group;
define height / analysis nean
format=5.2
' Hei ght'
styl e(header) ={fl yover="'Measured in Inches'};
define weight / analysis nean
format =6. 2
" Wi ght'
styl e(header) ={fl yover =" Measured i n Pounds'};
rbreak after / sunmmari ze;
run;
ods _all_ close;

In the PDF report the tip text indicators are now only present on the headers.

Chapter 8: Using PROC REPORT with ODS 297

Ages 11-16
Sex |~ Heigh{ ~Weight
F 60.59 | 90.11
M | 6391 10895
62.34| 100.03

Destination: PDF Style: PRINTER

8.8.3 Placing Tip Text Using ~S={}

In the first example in Section 8.8.2, the tip text was associated with each cell in the column. By
using the ~S={ } in-line formatting sequence, we can associate the tip text with any set of
characters, including only the header text.

Portions of the code are not shown .
ods escapechar =~;

titlel "Ages 11 - 16";
proc report data=sashel p.class nowd;
colums sex hei ght wei ght;

define sex [group;
define height / analysis nmean
format=5.2

' ~S={flyover="Measured in Inches"
ht m styl e="cursor: hand"} Hei ght';
define weight / analysis nean
format =6. 2
' ~S={flyover="Measured in Pounds"
ht m styl e="cursor: hand"} Wi ght';
rbreak after / sunmmarize;
run;
ods _all_ close;

Notice that the ~S={ } sequence appears within the text string that is to become the header for the
individual columns. Other attributes, such as color, font, and character size, could also have been
specified at the sametime.

In SAS 9.2 you could aso use the new ~{ STYLE} nested in-line formatting sequenceto insert tip
text.

MORE INFORMATION

The~S={ } and ~{ STYLE} in-line formatting sequences are discussed in more detail in Section
8.6.4. Tip text iscreated using a CALL DEFINE routinein Section 8.8.1 and using the STYLE=
option in Section 8.8.2.

298 Carpenter’'s Complete Guide to the SAS REPORT Procedure

8.9 Specifying Multiple Columns for RTF and PDF

When writing to the RTF and PDF destinations, you can use the COLUMNS= option on the ODS
statement to specify multiple columns on the output page. This option can be especially useful if
you have long narrow reports. In the following example, we are listing the names of the patients
within each clinic. The COLUMNS= option (@,0) is used to specify the number of columns that
are desired.

ods pdf style=printer
colums=3 ©
file="&path\results\ch8_ 9a. pdf";
ods rtf style=rtf
col ums=3 @
file="&path\results\ch8 9a.rtf"
bodytitle;

titlel "Name Lists by Cinic";
proc report data=rptdata.clinics nowd;
colums clinnanme clinnum ("Narme" | name fnane);

define clinname/ display noprint;
define clinnum/ order 'dinic Nunmber';
define | nane / order 'Last';

define fnanme / order '"First';

conpute clinnum

attrib = "style={flyover=""||trim(clinname)||"'"}";
call define(_col_,"style',attrib);
endconp;
run;
ods _all_ close;

Three columns are specified for the report that goes to the PDF destination @, aswell asfor the
RTF destination @.

A portion of the RTF table is shown here; notice the placement of thetitle.

Name Lists by Clinic arne Naune
Clinic Clinic
Name Mumber | T.ast First MNumber | T.ast First
C'linic Rumor Stacy 107211 |Hermit Oliver
Nuwnber | Lasl First Rymes Carol Holmes Donald
D e D 051345 |Cranberry | David 108531 |James | Debra
Taber Lee Rose Iary IManley Debra
014321 |Lawless | Iewy 054367 |Cranston |Rhonda Reilly Arthur
Merey Ranald Moon Rachel Robertson | Adam
023910 | Atwood | Teddy 057312 | Henderson | Robert
Moo Covanal

Destination: RTF Style: RTF

Chapter 8: Using PROC REPORT with ODS 299

Thefollowing is a portion of the PDF table. Notice that the tip text specified in the CALL
DEFINE statement © is only available in the PDF table.

Name Lists by Clinic
Name Name Name
Clinic Cliniec Clinic

Number Last First Number Last First Number Last First
f]}m 1234 | Nabers Dravid fy(ﬁl%-ﬁ Cranbeny | David E/,ma'm Tames Debra
= Taber Lee = Rose Mary = Manley Debra
;." 014321 | Lawless Hemry 5;,05456 /| Cranston | Rhonda 5 Reilly Arthur
:5, Mercy Ronald =) Moon Rachel =) Robertson | Adam
f 023910 | Atwood Teddy = 057312 | Henderson | Robert

= Macbor Sonaual I Daolioat

Destination: PDF Style: PRINTER

Y ou do have to be abit careful when using this option. In the previous example, three columns fit
on the page rather nicely. However, if we were to increase our request to four columns, which will
not fit, the table degenerates and is no longer usable. The following table is an image of a portion
of the same RTF output as from the previous example, except with COLUMNS=4.

Name Lists by Clinic Name
Clinic Clinic Last First
Number Number Tackson Ted
NCI.in‘l;c 107211 Johnson | Randal
umber
011234 — -
051345 108521 Baron Roger
East Clint
4
ulas2l 0543674 Adams Mary
— Eatell Mary
023910 057312 Fumor Sty
Name
Ewymes Carol
3 Last First
059372 Cranberry | David
Halb Dawid
abers v Rose Mary
024477 = Taher Lee

Destination: RTF Style: RTF

MORE INFORMATION
The PANEL S= option can be used to produce a similar effect in the LISTING destination (see
Section 4.4.4).

SEE ALSO
Burlew (2005, pp. 238-240) creates a multi-panel RTF document using the COLUMNS= option.

300 Carpenter’'s Complete Guide to the SAS REPORT Procedure

8.10 Adding Text through the TEXT= Option

The TITLE and FOOTNOTE statements can add text to tables generated by SAS procedures, and
when using PROC REPORT, you also have the LINE statement to add text to the table. Y ou can
also add text directly by using the TEXT= option on the ODS statement.

ods pdf file="&path\results\ch8_ 10. pdf"
st art page=no
text =" Exanpl e 8.10';

titlel 'Sales Summary';
proc report data=sashel p. prdsal e(wher e=(prodtype=" OFFI CE'))
nowd;
Portions of the code are not shown .

In this example, the text isinserted into the table after any title lines. However, the TEXT= option
will, by default, cause the generation of a page. Since thisis usually not what we want, the
STARTPAGE-= option can be used to control paging. If STARTPAGE= NO is not specified, the
text appears on a page previous to the table.

Sales Summary

Txample 8.10

Product
CHAIR | DESK |TABLE
Region | Country Sales Sales Sales

EAST | CANADA $25,200 | $25,020 | $25.945

GERMANY | $23,277| $25.403| $26.116

US.A. $27,378 | $23,193 | $22.258
$75.855 | §73.616| §74.319
WEST | CANADA $25,039 | $27.167 | $20.755

GERMANY | $23,828 | $23,099| $23.081

U.S.A. $23,558 | $25,350 | $24.045

372,425 | 875,010 | $67,881
§148,280 | $149,232 | 8142,200

Destination: PDF Style: PRINTER

It isanticipated that in SAS 9.2, the ODS TEXT statement will be available to add text to the
report. It isnot yet clear how this statement will interact with the TEXT= option. Whether the text
isinserted before or after thetitle is destination-dependent.

SEE ALSO
Delaney (2003b) includes an example of the use of the TEXT= option.

Chapter 8: Using PROC REPORT with ODS 301

8.11 RIGHTMARGIN: Aligning Numbers When Using
CELLWIDTH

It is not unusua for the PROC REPORT table to seem crowded. Thisis especially a problem
when the numbers are large relative to the header text. There are a number of ways that we can
approach this problem. However, for non-LISTING destinations such as PDF, HTML, and RTF,
one of the more robust techniques isto increase the CELLWIDTH.

The following PROC REPORT step creates a simple PDF table of shoe sales information.
ods pdf style=printer
file="&path\results\ch8_ 1la. pdf"

not oc
st art page=never,

ods pdf text='~nDefault"';

proc report data=sashel p. shoes nowd;
colum region stores sales inventory returns;

define region / ' Region' group;
defi ne stores [/ " Nunber of Stores';
define sal es / 'Total Sales';

define inventory / 'Total I|nventory';
define returns / 'Total Returns';
run;

ods pdf cl ose;

In the resulting table, the columns containing total sales, total inventory, and total returns seem

crowded.
Default
Number
of Total Total Total

Region Stores Sales Inventory | Returns
Africa 532 | $2.342.588 | $7.101.073 | $74.087
Asia 65| $460.231| $1.176.139| $10.895
Canada 442 | $4.255.712 | $13.110,709 | $129.394
Central America/Caribbean 539 | $3.657.753 [$10.173.878 | $126.898
Eastern Europe 379 | $2.394.940 | $7.952.471| $86.701
Middle East 397 | $5.631.779 | $14.208.749 | $206.880
Pacific 356 | $2.296.794 | $7.971.291 | $77.129
South America 632 | $2.434.783 | $5.986.094 | $102.851
United States 617 | $5.503.986 | $16.582.397 | $187.502
Western Europe 642 | $4.873.000 | $14.842.250 | $169.755

Destination: PDF Style: PRINTER

302 Carpenter’'s Complete Guide to the SAS REPORT Procedure

To alleviate the crowding, the CELLWIDTH attribute modifier can be used to specify awidth for
the cells within a column. The previous table has been modified by increasing the cell width
(specified in millimeters).

ods pdf text='~nUsing CELLW DTH, Nunbers are too far to the Right';

proc report data=sashel p. shoes nowd;
colum region stores sales inventory returns;

defi ne region / ' Regi on'

group

styl e(col um)={cel | wi dt h=25mt ;
define stores /' Nunber of Stores'

styl e(col um) ={cel | wi dt h=20m ;
define sal es / 'Total Sales'

styl e(col um) ={cel | wi dt h=35mt ;
define inventory / 'Total Inventory'

styl e(col um) ={cel | wi dt h=35mt ;
define returns [/ ' Total Returns'

styl e(col um) ={cel | wi dt h=35m ;

run;
Using CELLWIDTH, Numbers are too far to the right
Number
Region of Stores Total Sales Total Inventory Total Returns
Africa 532 §2.342 588 $7.101.073 $74.087
Asia 65 5460.231 $1.176.139 $10.895
Canada 442 $4,255.712 $13,110,709 $129.394
Central 539 $3,657.753 $10.173.878 $126.898
America/
Caribbean
Eastern Europe 379 $2.394.940 $7.952.471 $86.701
Middle East 397 $5.631.779 $14.208.749 $206.880
Pacific 356 $2.296.794 $7.971.291 $77.129
South America 632 $2.434.783 $5.986.094 $102.851
United States 617 $3.503.986 $16,582.397 $187.302
Western 642 $4.873.000 $14.842.250 $169.755
Europe

Destination: PDF Style: PRINTER

The table isless crowded; however, because the columns of numbers are right-justified, they now
appear to be too far to the right. Centering the numbers will not help, because we want the
columnsto be aligned. Instead, we can use the RIGHTMARGIN attribute modifier to increase the
space between the units digit and the right border of the cell.

Chapter 8: Using PROC REPORT with ODS 303

ods pdf text='~nUsing CELLWDTH and RI GHTMARG N, Looks Much Better';

proc report data=sashel p. shoes nowd;
colum region stores sales inventory returns;

define region / ' Regi on'

group

styl e(col um) ={cel | wi dt h=25mt ;
define stores /" Nunmber of Stores'

styl e(col um) ={cel | wi dt h=20nm
ri ght mar gi n=7m};
define sal es [' Total Sales'
styl e(col um) ={cel | wi dt h=35nm
ri ght mar gi n=7mt;
define inventory / 'Total I|nventory'
styl e(col um) ={cel | wi dt h=35nm
ri ght mar gi n=7m%;
define returns /[' Total Returns'
styl e(col um) ={cel | wi dt h=35nm
ri ght mar gi n=7mt;
run;

The columns of numbers are now centered under their respective headers.

Using CELLWIDTH and RIGHTMARGIN, Looks Much Better
Number
Region of Stores Total Sales Total Inventory Total Returns
Africa 532 $2,342,588 $7,101,073 $74.087
Asia 65 $460.231 51,176,139 $10,895
Canada 442 $4,255,712 $13,110,709 $129.394
Central 539 $3,657,753 $10,173,878 5126.898
America/
Caribbean
Eastern Europe 379 $2.394.940 $7.952.471 $86,701
Middle East 397 $5.631.779 $14.208,749 $206.880
Pacific 356 $2,296,794 $7,971,291 $77,129
South America 632 $2.434.783 55,986,094 5102.851
United States 617 $5,503,986 $16,582,397 $187.502
Western 642 $4.873.000 $14.842.250 $169,755
Europe

Destination: PDF Style: PRINTER

The selection of the appropriate size for CELLWIDTH and RIGHTMARGIN is somewhat
arbitrary. Nominally, at least for RTF and PDF, these values relate to the paper size. However, in
practiceit ismore likely that you will need to do some trial and error tests to come up with the
sizesthat areright for you. Y ou can use either inches (in) or millimeters (mm). Because they are
smaller, millimeters are often easier to work with.

304 Carpenter’'s Complete Guide to the SAS REPORT Procedure

8.12 Chapter Exercises

Unless a specific ODS destination has been specified for a given exercise, answer each of the
guestions using an ODS destination appropriate for your work. Ideally, you should experiment
with PDF, RTF, and a markup destination such asHTML.

The following exercises build on a basic program first created in Exercise 1 in Chapter 3. Here are
the pertinent portions of that program:

* E8 OBasi c. sas

*

* Chapter 8 Exercise Basic program

*

* Total profit for each year within Product line.;

titlel 'Total profit per year';
title2 'Separated by Product Line';
title3 "Profit Summaries';
proc report data=sashel p.orsales nowd split="*";
colum year product_line profit;
define year [group;
define product _line
[group
' Product *Gr oups' ;
define profit / analysis
sum f or mat =dol | ar 15. 2
" Annual *Profit';
break after year / sunmarize suppress skip;
rbreak after / summari ze;
run;

1. The datatable SASHELP.ORSALES contains sales data from aretail outdoor sports clothing
and equipment store. Using the BREAK and RBREAK statements, summarize across product
lines and years. Y ou can build on the results of Exercise 1 in Chapter 3 or start with program
E8 OBasic.sas.

Using the STY LE= option, change attributes on the following:

= column headers
= row header
= datavalues

= something on a summary row

Experiment with different components on different PROC REPORT step statements.

If the same component / attribute combination appears with different attribute characteristics
on both the DEFINE statement and the PROC REPORT statement, which receives
precedence?

2. Repeat Exercise 1 in this section using the CALL DEFINE statement. Is the order that the
attributes are applied the same? Which portions of the report are not controllable through the
CALL DEFINE statement?

Chapter 8: Using PROC REPORT with ODS 305

. Inthe basic table from Exercise 1 in this section, add trafficlighting to aert the reader to
profits that are less than $1 million. Solve using both the STY LE= option and the CALL
DEFINE statement.

. Inthe basic table, create links for the * Sports’ product line that drill down to a detail table that
shows PRODUCT_CATEGORY within PRODUCT_LINE.

Extra Credit:
Make the links and detail tables year-specific.

. Using the E8_0OBasic.sas program, use three or more title statement options to change text
attributes.

306 Carpenter’'s Complete Guide to the SAS REPORT Procedure

Part 3

Extending PROC REPORT

Chapter 9 Reporting Specifics for ODS Destinations 309
Chapter 10 Solving Other Common Report Problems 325

Chapter 11 Details of the PROC REPORT Process 367

308 Carpenter’'s Complete Guide to the SAS REPORT Procedure

Chapter 9

Reporting Specifics for ODS Destinations

9.1 RTF 310
9.1.1 Using the BODYTITLE Option 311
9.1.2 Adding RTF Control Words 312
9.1.3 Post-processing of RTF Files 313

9.2 PDF 314
9.2.1 Adding PDF File Descriptors 314
9.2.2 Setting the Default Margins 315

9.3 HTML and Other Markup Destinations 316
9.3.1 Exporting a Report to Microsoft Excel 316
9.3.2 Setting Tagset Attributes 322
9.3.3 HTML Tags and Repeat Characters 323

With the ever expanding list of both ODS destinations and capabilities within a destination, the
topic of this chapter isitself a subject worthy of its own book. Unfortunately, afull treatment of
the topic of the Output Delivery System is not possible within the context of PROC REPORT.
Consequently, this chapter will only deal with afew of the ODS options and destinations that
directly affect the user of this procedure. Even in this narrower range, the topics are extensive and
only alimited number will be included.

Because the underlying technologies for information delivery are evolving very quickly, the
Output Delivery System is constantly undergoing modifications and improvements at SAS. It is
reasonable, therefore, to expect that new capabilities and options will have been added during and
after the publication of this book.

310 Carpenter’'s Complete Guide to the SAS REPORT Procedure

A great deal of the content of this chapter deals with report appearance characteristics. Many of
these appearance attributes can also be controlled through the use of ODS styles, which iswell
outside the scope of this book. The reader is encouraged to learn more about PROC TEMPLATE
and stylesin general by examining the extensive offerings on the subject. The books by Haworth
(20018) and Gupta (2003) on ODS, as well as a series of papers on the topic serve as excellent
starting points for this learning process.

MORE INFORMATION
Chapter 8, “Using PROC REPORT with ODS,” deals with ODS-specific issues, including the use
of in-line formatting sequences.

SEE ALSO

Haworth (2001b) provides an overview of ODS relative to PROC REPORT. Del Gobbo (2005)
discusses most of the destinations covered in this chapter, and he includes corrections to a number
of styles associated with reporting. Thefirst of a series of papers on building and modifying styles
is presented by Haworth (2002).

Two books on ODS include the comprehensive Output Delivery System: The Basics by Lauren
Haworth (20014a) and the shorter Quick Results with the Output Delivery System by Sunil Gupta
(2003).

Various techniques that allow the production of reports that are usable by persons with disabilities
are discussed by Harper and Pappas (2005).

9.1 RTF

One of the more commonly used destinations for PROC REPORT isthe Rich Text Format (RTF)
destination. Unfortunately, because of its very nature, this destination presents a number of unique
challenges.

When ODS writes to the RTF destination, control of the final rendering of the table does not
actually take place until the RTF file is incorporated into the final document. This meansthat SAS
cannot control or even fully anticipate basic things such as margins, page counts, or cell widths.
Much of the literature referenced in this section deal s with these issues.

An RTF file contains special embedded formatting instructions. These instructions are then
interpreted by whichever program (Microsoft Word, WordPerfect, or others) ultimately renders
the file. Fortunately, ODS builds the RTF file for us automatically, and consequently we are not
required to know itsinternal structure. The current versions of SAS optimize the file for Microsoft
Word 2002.

SEE ALSO

Hull (2001) and Cochran (2005) introduce the topic of the RTF destination. Although part of an
introductory overview, most of the examples by Shah (2003) relate to RTF issues. Hamilton
(2003) and Sevick (2006) both demonstrate a number of great RTF techniques. Haworth (2004)
creates an ODS style for use with reports generated for the RTF destination. Hester (2006)
discusses the RTF tagset and how it can be modified and enhanced. Collins and Hopkins (2005)

Chapter 9: Reporting Specifics for ODS Destinations 311

contrast RTF with XML. Feder (2004) and Shannon (2002) both discuss RTF characteristics, style
changes, and the use of the STY LE= option. Y eh (2004) shows an ODS RTF bookmark
statement. Zhang and Li (2006) create avertically concatenated RTF table.

9.1.1 Using the BODYTITLE Option

By default, when atable is generated using the RTF destination, the titles and footnotes are placed
in the document's header and footer sections respectively. This allows the titles and footnotes to
be placed on each page when the table spans multiple pages.

Regardless of the size of the table, the footer appears at the bottom of the page, and this can be a
problem when the table is either small (only part of a page) or the table isto be incorporated into
another document.

Y ou can change this behavior by adding the BODY TITLE option to the ODS RTF statement.
This option places the titles and footnotes as a part of the table itself.

ods rtf file="&path\results\ch9_1 1b.rtf"

bodytitle;

titlel "Ages 11 - 16";

footnotel 'Height in Inches';
footnote2 'Weight in Pounds';

proc report data=sashel p.cl ass nowd;
colums sex hei ght wei ght;

define sex

define height /

define weight /

rbreak after

run;

ods rtf cl ose;

Here is the resulting table:

Ages11-16
Sex | Height | Weight
F 60.59 2011
M 6391 | 10895
62.34| 100.03

Height in Inches
Weight in Pounds

group;

anal ysi s nean
f or mat =5. 2;
anal ysi s nean
f or mat =6. 2;
summari ze;

Without first usingthe BODYTITLE option on the
ODS statement, the titles and footnotes would have
been placed in the header and footer sections of the
RTF table.

Destination: RTF Style: RTF (default)

312 Carpenter’'s Complete Guide to the SAS REPORT Procedure

MORE INFORMATION
The BODYTITLE optionis used extensively in the RTF examplesin Chapter 8.

SEE ALSO
Squire and Tai (2005) show how to control various aspects of the report, including footnote
placement, that depend on line counting and page size when the BODY TITLE option is used.

9.1.2 Adding RTF Control Words

The Rich Text Format file was originally designed to be imported into Microsoft Word. The RTF
file form has evolved somewhat in recent years, and each of the releases of SAS have adjusted to
create optimized code for the current versions of Word. Although SAS 9.x creates RTF code that
is optimized for Word 2002, other applications, including other versions of Word, will still, for
the most part, be able to utilize thefile.

Because an RTF file is rendered by the application that receivesit, at least a basic understanding
of the RTF file command language and structure can be helpful. Asthe ODS RTF destination
matures, SAS has continued to move functionality into ODS options, making this knowledge less
and less important. For now, however, RTF knowledge can be helpful.

RTF control words, which are preceded by a backslash (\), can be used to pass instructions
directly to RTF.

* Create a style that turns off the protection for
* special characters (like the backslash);
proc tenpl ate;
define style styles.test; ©
parent=styles.rtf;
style systentitle fromsystentitle / @
pr ot ect speci al char s=of f;
end;
run;

ods rtf style=styles.test
file="&path\results\ch9_1_2.rtf"
bodytitle;

titlel '\b \highlight3 Product Sunmary'; ©

f oot not el;
Portions of the code are not shown .

O A new style (TEST) is created, based on the RTF style.
® The PROTECTSPECIALCHARS attribute is turned off for the titles only.

© RTF commands are used on the title to bold (\B) and change background color
(\HIGHLIGHT3). These commands are then passed directly to RTF for interpretation.

Chapter 9: Reporting Specifics for ODS Destinations 313

Product Summary
Product
BED | CHAIR | DESK | SOFA | TABLE
Product
ftype Region | Sales Sales Sales Sales Sales
FURNITURE | EAST $73.870 : .| $72.601
WEST $68,167 : .| $75.987
OFFICE EAST .| $75.855| $73.616 | $74.319
WEST | $72425| $75.616 | $67.881
5142,037| 8148280 | £149,232| §148,588| 8142,200

Destination: RTF Style: User-defined

The technique shown here requires the use of PROC TEMPLATE to ater an ODS style, and,
because we use RTF control words directly, it only works for the RTF destination. The techniques
discussed in Section 8.6.6 allow RTF codes to be passed without the modification of the ODS
style. In that same section, specific RTF control words are al so passed with the use of in-line
commands.

SEE ALSO

Gianneschi (2006) and Parsons (2006) both provide several examples and tables of RTF control
words. Haworth (2005a) discusses the use of RTF escape sequence characters and PROC
TEMPLATE to write tablesinto Microsoft Word. Smoak (2004) provides examples of a number
of simple techniques that can be used with RTF tables that are specifically to be moved into
Word.

Osowski and Fritchey (2006) discuss the use of RTF control words in general terms.

FAQ #4007 discusses which versions of Word are supported for RTF files generated by different
versions of SAS. More on RTF control words can be found at

http://support.sas.com/rnd/base/topi cs'templateFA Q/Template_rtf.html#control

9.1.3 Post-processing of RTF Files

Once ODS RTF has created the RTF file, the file itself can be included in Word or whatever fina
application will receive it. However, because the fileis technically just atext file, it can be further
manipulated prior to being imported. Any text editor can be used; however, within SAS, the
DATA step itself can be used to find and replace unwanted codes. These techniques require an
understanding of what RTF codes need to be removed or modified, but are otherwise fairly
straightforward.

Although they are of general programming interest, these techniques are only marginally
associated with PROC REPORT and consequently are not discussed further here. The SEE ALSO

314 Carpenter’'s Complete Guide to the SAS REPORT Procedure

section includes references to papers on the topic. Fortunately, as the capabilities within ODS
RTF continue to improve, techniques such as this will become less necessary.

SEE ALSO
Zhang (2005) and Zhang and Li (2006) use a DATA step to remove unwanted RTF codes
resulting in combined tables.

Qi and Zhang (2003) discuss a macro that enhances an RTF table. Although they do not give
solution details, they do suggest a number of issues that are encountered when writing to RTF.
Parker (2005) discusses the concepts, but not the details, of creating a macro that post-processes
an RTF file after it is produced by ODS. Using some of the same concepts, Hagendoorn, Squire,
and Tai (2006) use SAS DATA stepsto read RTF reports as part of a QC process.

9.2 PDF

Most of the items discussed in this section have more to do with the PDF destination than they do
with PROC REPORT. However, since many users of PROC REPORT generate reports using the
ODS PDF destination, some of these capabilities are briefly introduced in this section.

SEE ALSO
The creation of a customized PDF styleis discussed by Haworth (2005b).

A number of techniques and options geared towards the PDF destination are presented by
Thornton (2006).

Although not directly written about PROC REPORT, the two papers by Kevin Delaney (2003a
and 2003b), both serve as nice introductions to a number of options available on the ODS PDF
statement. A number of PDF destination options are a so demonstrated by Parsons (2005).

Lund (2005) has a number of advanced reporting examples for the PDF destination, and Hamilton
(2004) includes examples of PDF in-line formatting characters.

Okerson (2004) uses ODS LAY OUT with PDF to create a hospital scorecard.

9.2.1 Adding PDF File Descriptors

When a PDF fileis generated, its metadata can include information about the file itself. This
information can be added interactively through Adobe Acrobat, or, when thefile is created with
ODS, through a series of options on the ODS PDF statement. These options include the following:

TITLE= specifies the document title.
AUTHOR= specifies the author of the document or table.
SUBJECT= specifies the topic of the table.

KEYWORDS= specifies searchable keywords for thistable.

Chapter 9: Reporting Specifics for ODS Destinations 315

These options have been included in the following ODS PDF statement:

ods pdf file="&path\results\ch9_2_ 1. pdf"
title='Exanple 9.2.1'
aut hor="Art Carpenter’
subj ect =" PDF Property Itens’
keywords=' PDF s9_2 1.sas properties';

titlel 'Sales Summary';
proc report data=sashel p. prdsal e(wher e=(prodtype=" OFFI CE'))
nowd;
Portions of the code are not shown .

The PDF document’ s properties can be viewed by selecting File » Document Properties
(CTRL+D). Interestingly enough, the properties show that the document was created by SAS and
the date/time of creation is the start of the SAS session rather than the actual date/time of creation.

oed @ e v @ B 5 ~rr |2 @B ein o | Seind v [
H

(S o cument Properties

Description |Security | Fonts | tnitial view | Custom | advanced |

— — Description

File: cho_z_1.pdf

Title: [Example 9.2.1

Author: IArt Carpenter

Subjeck: IPDF Property Items

Keywards: [PDF s9_7_1,sas properties

Created: 12/5/2006 1:56:52 PM Additional Metadata, .. |

Modified:

Application: 9.01.01M3P02162005

r—Advanced
PDF Producer: SAS Institute Inc.
PDF Wersion: 1.3 (Acrobat 4.x)
Location: C:\Primary Authori PROCReport CDYResults),
File Size: 3.80 KE (3,892 Bytes)

Page Size: 8.50x 11.00in Mumber of Pages: 1
Tagged PDF: No Fast Web View: Mo
Help | [s]4 I Cancel
I

Parsons (2005) includes an example that uses these options.

9.2.2 Setting the Default Margins

In the PDF destination, the margins are generally allowed to default to those of the receiving
document. However, SAS system options can be used to override the defaults. In the following
example, the left margin and the top margin have been set to 5 inches and 3 inches respectively
for both the PDF and RTF destinations.

316 Carpenter’'s Complete Guide to the SAS REPORT Procedure

ods listing close;

option leftmargin="5 in" topmargi n="3 in";

ods pdf file="&path\results\ch9_2 2. pdf";

ods rtf file="&path\results\ch9_2 2. rtf"
bodytitle;

Portions of the code are not shown .

Inspection of the PDF file shows that these margin definitions were respected, while an
examination of the RTF output shows that the margin settings were not utilized. As a general rule,
these margins are more successfully applied by the PDF destination as well.

MORE INFORMATION

If you are adjusting the margins so that the table appears at a specific location on the page, the
ODSLAYOUT statement may be an easier, more flexible, way to place the table (see Section
10.5.1).

9.3 HTML and Other Markup Destinations

HTML isone of the original class of ODS destinations that are known collectively as*markup”
destinations. This group of destinations has some unique capabilities, including the ability to use
tagsets and cascading style sheets (CSS). Although the bulk of these topics are clearly outside of
the scope of this book, many of the capabilities of these destinations can be very helpful to
programmers who need to have a report rendered by one of the markup languages, such as
HTML.

This section touches on a very few of those capabilities.

SEE ALSO

A niceintroduction to the MARKUP destination is presented by Gebhart (2006). Lafler (2005)
introduces the use of the HTML destination, and Gebhart (2005) gives a strong overview of
markup destinations with specific examples. Pass and McNeil (2003) give a series of fairly
advanced HTML examples.

Pagé (2004) uses HTML, REPORT and ODS to directly e-mail areport.

9.3.1 Exporting a Report to Microsoft Excel

Although we like to think that we can do just about anything in PROC REPORT, at timesit is
necessary to export areport table to a Microsoft Excel spreadsheet. Fortunately, SAS provides us
with several alternative approaches to the process of creating a spreadsheet.

This section describes three techniques that convert areport to an Excel spreadsheet. These
technigues do not produce the same report, so it is best to consider the strengths and weaknesses
of each technique. None of these techniques create a*“ pure” Excel file. In each case, after you
open thefilein Excel you need to select Save As and change to an Excel worksheet to get a native
or “pure’ Excd file.

Chapter 9: Reporting Specifics for ODS Destinations 317

Using the HTML Destination with the XLS Extension

In SAS 8, HTML was the only ODS destination that could be used to transfer a report to Excel. In
SAS®9it can still be used; however, it is no longer either the only or even necessarily the best
technique. If you have legacy code that uses the HTML destination and you are using SAS®9, you
might want to convert it to one of the other more versatile techniques described in this section.

When using the HTML destination to transfer a report to Excel, you simply usethe HTML
destination and create the resultant HTML file with an extension of .XLS. Although the file will
not be a pure Excel file, it will be opened by Excel aslong as XL Sis aregistered extension of
Excel.

The following table was first created in Section 7.2.4. Here we use ODS HTML to write the
resulting table to afile with the XL S extension.

proc format;
val ue $regnane

'1','2'",'3" = "'"No. East'
"4 = 'So. East'
‘5t - '8 ="'"Md West'
‘9", '10' = 'Western';
val ue $gender
'M = 'Male'
'F' = 'Femal e';
run;

ods htm style=default @
pat h="&pat h\resul t s"
body="ch9 3 la.xls"; @

titlel 'ODS Destination Specifics';
title2 "Witing a Table to Excel";

proc report data=rptdata.clinics
nowd
split="*";
colum region (' Mean Wi ght*in Pounds' sex,w ratio);
define region / group w dth=10 ' Regi on’
f or mat =$r egnane. order=formatted;

define sex / across ' Gender'
f or mat =$gender . order =dat a;
define wt / analysis nean format=6. ' ';

define ratio / conputed format=6.3 'Ratio*F/ M ";
rbreak after [dol skip sumrari ze;
conpute ratio;

ratio = _¢3_/ _c2_;
endconp;
run;
ods _all__ cl ose;

© The DEFAULT style has been selected. When writing to the spreadsheet, background colors
are changed.

® Thefileiscreated with an XL S extension. When opened in Excel, the file appears as follows:

318 Carpenter’'s Complete Guide to the SAS REPORT Procedure

A B | ¢ | D |
| 1 |0OD3 Destination Specifics
| 2 |Writing a Table to Excel
3
| 4 | Mean Weight
5 in Pounds
B Gender
7 Male |[Female
| 5 | Region Ratio
g FiM
10 | Mid West 182 163] 0.895
11 | Mo. East 155 118] 0.759
12 | So. East 166 143 0.864
13 |WWestern 186 170] 0.914
14 172 146| 0.846
115 |
| 16 |Height in Inches
17 [Weight in Pounds
190

Destination: HTML Style: DEFAULT (with an XLS file extension)

Notice that the first column (A) has been widened to accommodate the titles. This can be
controlled somewhat through the use of the COL SPAN= option on an HTML tag such as the table
header tag (/TH) or the table datatag (/TD), both of which can be embedded inthe TITLE
statement, as shown in these examples:

titlel '<th align=left col span=4>0DS Desti nati on Specifics</th>";
title2 "<td align=left col span=4>Witing a Table to Excel </td>";

Here is the resulting Excel table:

& | B] ¢ | b | E
1| QDS Destination Specifics
| 2 | Writing a Table to Excel

3

| 4 Mean Weight

5 in Pounds

B Gender

7 Male [Female

5 Region Ratio
g FIM
10 | Mid VWest 182 163) 0.895
11 Mo, East 155 118] 0.7589
12 S0, East 166 143] 0.864
13 |Viestern 186 170] 0.914
14 172 146] 0.846
| 15 |

|16 |Height in Inches

|17 |WWeight in Pounds

18

Destination: HTML3 Style: DEFAULT (with an XLS file extension)

Chapter 9: Reporting Specifics for ODS Destinations 319

For the previous two spreadsheets, notice that although the blue foreground color of the
DEFAULT style has been transferred to the spreadsheet, none of the background colors
associated with the DEFAULT style have been transferred. Thisis an artifact of how the HTML
destination has been implemented in SAS 9.1. In this version of SAS, the destination definition
includes the use of cascading style sheets (CSS). Although thisis advantageous for ODS users
who want to manipulate the attributes of the destination, Excel does not know how to correctly
interpret all of these attributes, and some characteristics are lost.

In SAS 8.2, the HTML destination writesto the HTML 3.2 standard (SAS 9.1 writes to the
HTML 4.0 standard). Because the earlier HTML destination was constructed differently, it
handled the attributes differently. In SAS 9.1 we can still access the older version (the SAS 8.2
version) of the HTML destination by using the destination name HTML 3.

ods htm 3 styl e=default
pat h="&pat h\resul t s"
body="ch9_3 1c. xl s";

titlel 'ODS Destination Specifics';
title2 "Witing a Table to Excel Using HTM.3";
Portions of the code are not shown .

A [B | © | D]

ODS Destination
2 Specifics
Writing a Table to

5 | Excel Using HTML3

4

| 5 | Mean Weight

5 in Pounds

7 Gender

] Male|FemaIe

| 9 | Ratio
10 Region FIM

11| Mid Wyest 182 163| 0.885
12 |MNo. East 155 118] 0.759
13| 50. East 166 143| 0.864
14 | Western 186 170 0.914
15 17z 146 | 0.646

| 16 |
17| Height in Inches
15| Weightin Pounds

10

Destination: HTML3 Style: DEFAULT (with an XLS file extension)

320 Carpenter’'s Complete Guide to the SAS REPORT Procedure

If you are using aversion of Excel prior to Microsoft Office 2000, then HTML 3 should probably
be your preferred destination for moving reportsinto Excel. For later versions of Excel, and if you
are also running SAS 9.1 and later, you should consider the M SOFFICE2K and EXCELXP
tagsets, which are discussed in the following subsection. Essentially, for SAS 9.1 and later, the
HTML destination is designed to produce output for the browser, and is not properly tuned for
writing to spreadsheets.

SEE ALSO
Feng (2006) uses this technique to generate an Excel table with trafficlighting.

Using the MSOFFICE2K Tagset

The MSOFFICE2K tagset has been designed specifically for transferring information and tables
into the Microsoft Office 2000 environment. To take advantage of this tagset, we replace the
name of the ODS destination in the previous example with this tagset name. Here are the modified
statements:

ods nsoffice2k styl e=default
pat h="&pat h\resul t s"
body="ch9_3_1d. xl s";

titlel ' ODS Destination Specifics';

title2 "Using the MSOFFI CE2k Tagset";
Portions of the code are not shown .

Notice that the HTML tagsin the titles have been removed, and the Excel table changes as

follows:
& | B | © [D | E | F | @
1 ODS Destination Specifics
12
E} Using the MSOFFICE2k Tagset
4
|5 | Mean Weight
B in Pounds
7 Gender
3 Male|Female
| 3 |[Region Ratio
10 FiM
11 [MidWest| 182 163] 0895
12|No.East | 155 118] 0759
13|So.East | 166 143] 0864
14 | Mesterm 186 170] 0914
15 172 146 | 0846
|18
17| Height in Inches
118 |
REl Weight in Pounds

Destination: MSOFFICE2K Style: DEFAULT (with an XLS file extension)

Chapter 9: Reporting Specifics for ODS Destinations 321

The MSOFFICE2K tagset supportsimporting SAS/GRAPH images into Excel, and, like the
HTML destination, produces an HTML file that can be read by Excel.

Using the EXCELXP Tagset

At the same time as this book was being written, agreat deal of effort was also going into the
further development of the EXCEL XP tagset. This tagset is being tailored for users with
Microsoft Office 2002 and higher who specifically need to write to Excel tables. This tagset
emphasizes the data rather than the text, and it does a much better job of placing numbersinto
numeric columns. It also allows you to generate multiple worksheets per workbook. It does all of
this by automatically generating an XML file that is then passed to Excel.

ods mar kup tagset=excel xp styl e=def aul t
pat h="&pat h\resul t s"
body="ch9_3 1le. x|l s";

titlel 'ODS Destination Specifics';
title2 "Using the Excel XP Tagset";
Portions of the code are not shown .

A | B | ¢ | D R
1 Mean Weight in Pout
2 Gender
3 Male Femallr @
4 |Regior Ratio F/M |
& |Mid West 182 163 0895
B |Mo. East 155 118 0759
7 |So. East 166 143 0.864
8 WWestern 186 170 0.914
9 172 146 0 846
10

Destination: markup (with EXCELXP tagset) Style: DEFAULT (with an XLS file extension)

Noticethat, at least in SAS 9.1, there isno alias for this tagset. Consequently we need to either
use the MARKUP destination and the TAGSET= option shown previously, or the following dot
notation:

ods tagsets. excel xp styl e=defaul t
pat h="&pat h\resul t s"
body="ch9_3_1f. x|l s";

The current version of this tagset has the following capabilities and limitations:

= |t supports multiple worksheets within an Excel table. When multiple REPORT tables
are specified within the ODS block, each iswritten to its own worksheet.

= |t does not work for SAS/GRAPH images (future versions may).
= |t automatically generates XML to transfer the table information to Excel.

322 Carpenter’'s Complete Guide to the SAS REPORT Procedure

Other supported ODS statement options for this destination include the following:

DOC= 'help’ or 'quick’ (no default value)
Lists optionsin thelog.
ORIENTATION = ‘portrait’ or ‘landscape’

Specifies either portrait or landscape orientation.
EMBEDDED _TITLES= 'no' or'yes
Specifies whether or not titles should be included.

FROZEN_HEADERS 'no’ or 'yes
Header text can be frozen when scrolling long tables.

To get acurrent list of options for this tagset, add the following option:

ODS tagsets. excel xp options(doc="hel p")...;

Inspection of the SAS log will show the options and their default values.

SEE ALSO
A very detailed and readable paper by DelGobbo (2006) highlights a number of options and
techniques that can be used with the EXCEL X P tagset.

Parker (2003) gives several detailed examples of a number of techniques that ODS can use to
modify the appearance and functionality of reports that are written to Excel tables.

Godard and Williamson (2004) discuss the advantages and disadvantages of a number of different
techniques for writing information from SAS to Excel. Feder (2005) discusses the use of PROC
REPORT to create XL S files and includes examples of passing formulas to Excel aswell asthe
use of DDE libraries. Brown (2005) presents a macro that uses tagsets to create multi-sheet Excel
spreadsheets (although the demonstrated techniques have become somewhat superceded by
EXCELXP). Frey (2005) discusses severa techniques, including the use of ODS, for writing to
Excel spreadsheets.

Updated MARK UP destination tagsets can be downloaded from

http://support.sas.com/rnd/base/topi cs/odsmarkup/#downl oad

9.3.2 Setting Tagset Attributes

One of the advantages of using markup language destinations is the ability to create and modify
tagsets. This gives us another layer of control. You can, of course, create your own tagsets by
using PROC TEMPLATE, or you can dter individual attributes by using the TAGATTR= style
attribute modifier on the STY LE= option.

In the following rather silly example, the default behavior of wrapping long text stringsis altered
for one of the two columns. Asageneral rule, it is an advantage to have long text strings
automatically wrap. However, by changing the wrapping attribute we can, when it is necessary,
force the text to not wrap.

data one;

longtext1="this is a very long text string that will wap if you do
not use the Nowap attribute.”;

| ongt ext 2=l ongt ext 1;

run;

Chapter 9: Reporting Specifics for ODS Destinations 323

titlel 'ODS Destination Specifics';
title2 'Using NOARAP on LONGTEXT1';

ods nsoffice2k file="&path\results\ch9_3_2.htm";

proc report data=one nowd;
colum | ongtextl | ongtext2;
define longtextl / display
styl e(colum)={tagattr="now ap"};
define longtext2 / display;
run;
ods nsof fice2k cl ose;

ODS Destination Specifics
Using NOWRAP on LONGTEXT1

longtext1 longtext2

this is a very long text string that will wrap if you do not use the Nowrap attribute. this is a very long text string that
will wrap if you do not use the
MNowrap attribute.

Destination: HTML Style: DEFAULT

MORE INFORMATION
Controlling the wrapping of text using in-line escape character sequencesis discussed in
Section 8.6.5, and for the LISTING destination using the FLOW option in Section 4.5.2.

9.3.3 HTML Tags and Repeat Characters

In monospace destinations, such as LISTING, repeat characters can be added to text that isto be
used on spanning headers (see Section 4.3.1). In the LISTING destination, the following
COLUMN statement:

colum region sex ('_ w(lb) ' wt,(n nean));

produces an output report with the following spanning header.

In other non-monospaced destinations, such as HTML, these repeat characters areignored (as
repeat characters). The HTML header appears as follows:

_wt(lb) _

It is anticipated that starting in SAS 9.2 these repeat characters will be stripped off altogether.
However, an exception will be made for the repeat character pair < >. These characters could also
be used to specify HTML tags. Consequently PROC REPORT does not strip the leading < and
trailing > in markup destinations. This can cause some “interesting” titles when writing to both

324 Carpenter’'s Complete Guide to the SAS REPORT Procedure

the LISTING and HTML destinations. In the following COLUMN statement, header text is
assigned an attribute of italicsusing an HTML tag.

colum region sex ("<i> Wight <i>" wt,(n nean));

Here are portions of the resulting LISTING and HTML destinations:

<<<<i > Wi ght <i >>>>

Weight

As an aside, notice that the tag is closed with <i > rather than the more traditional </ i >. In markup
destination exampl es throughout this book, either form will work. However, in PROC REPORT
the slash is the default character used to form splits. Using the COLUMN statement

colum region sex ("<i> Wight </i>" wt,(n nmean));

will negate repeated text in the LISTING destination aswell as prevent the tag assignment in the
HTML destination.

If you need to include the slash when closing the tag, you can change the split character in the
PROC REPORT statement. The following will now work as you might anticipate.

proc report data=rptdata.clinics nowd split="]|";

colum region sex ("<i> Wight </i>" wt,(n nmean));
Portions of the code are not shown .

Here are the resulting reports for the LISTING and HTML destinations (in part):

<<<i > Wi ght </i>>>>

Weight

Chapter 1 0

Solving Other Common Report Problems

10.1 Creating Vertically Concatenated Tables 326
10.1.1 A Simple Table 326
10.1.2 Ordering the Generated Classifications 332
10.1.3 Text and Number Alignment in Derived Columns 335
10.1.4 Doing More in the PROC REPORT Step 338
10.2 Automating the PROC REPORT Process 341
10.2.1 Things to Think about When Automating 342
10.2.2 Macro Variable Resolution Issues 343
10.3 Coordinating Graphics with PROC REPORT 345
10.3.1 Using CALL DEFINE to Import Graphics 345
10.3.2 Using GPRINT and GREPLAY 352
10.3.3 Using the Annotate Facility to Generate Lines 355
10.4 Workarounds for Monospace-Only Options 357
10.5 Generating Separate Reports on the Same Page 360
10.5.1 ODS LAYOUT 360
10.5.2 HTML Reports 362
10.5.3 RTF and PDF Reports: Using STARTPAGE=NEVER 363
10.5.4 Aligning Columns across Reports 365

It does not take very long as a PROC REPORT programmer before “ special” reports are
requested. Often these require some “ specia” techniques that are not immediately obvious. This
chapter presents and discusses some of these techniques. Many others have been published in the

326 Carpenter’'s Complete Guide to the SAS REPORT Procedure

SAS user group literature. Although many of these other techniques are just too “specia” to
include in this book, they may still have interest to advanced and specialty users of PROC
REPORT.

10.1 Creating Vertically Concatenated Tables

PROC REPORT does an excellent job of concatenating columns horizontally. All we have to do
islist the variable namesin the COLUMN statement. We even have the ACROSS define usage to
make transposing easier. It is not so easy when we want to concatenate variables or groups
vertically. The primary problem with creating vertically concatenated tables with PROC REPORT
isthat it is basically the wrong tool. PROC TABULATE creates these types of tablesfairly easily.
However, because PROC TABULATE lacks the compute block, it does not have the flexibility to
transform variables or to create composite values.

Consider the following table, which displays counts and percentages for patient gender and
various statistics for height and weight for two regions.

Conmmon REPCRT Probl ens
Vertically Concatenated Tabl es

Eastern West ern Overal |
Cender Al 38 (48% 42 (53% 80 (100%
Femal e 15 (19% 17 (21% 32 (40%
Mal e 23 (29% 25 (31% 48 (60%
Hei ght MEAN (STD) 67.9 (3.91) 67.0 (3.04) 67.5 (3.49)
VEDI AN 67.00 68. 00 67. 00
N 38. 00 42.00 80. 00

Vi ght MEAN (STD) 146 (34.96) 176 (30.51) 162 (35.87)
MEDI AN 155. 00 177.00 161. 00
N 38. 00 42.00 80. 00

One of the issues with constructing areport like thisis that we have to do alot of work outside of
PROC REPORT. Fortunately, with the power of SAS at our finger tips, we can easily do the
necessary data manipulations. Still, thisis abook on PROC REPORT, not the other procedures,
so naturaly it is less exciting when we cannot do it all in PROC REPORT.

SEE ALSO
DeAngelis (2005) discusses a number of issues that come up when building this type of table.
Burlew (2005, pp. 152-162) uses the DATA step to build asimilar table.

10.1.1

A Simple Table

Although the code to generate the table shown in the previous section is not too complex (about
100 lines), it does require a number of distinct steps.

Chapter 10: Solving Other Common Report Problems 327

Depending on what actually hasto be done, the order of the steps leading up to the PROC
REPORT step varies. However, these types of reports typically have the primary steps that are
shown here:

O proc format;

® proc summary data=rptdata.clinics;

©® proc transpose data=clinsum out=trani;
(4]

dat a prepl(keep=cl ass subcl ass regnane val ue);
set tranl(Keep=_type_ region sex _name_ col1);

© proc sort data=prepi;
® proc transpose data=prepl out=tran2;

@ proc report data=tran2 nowd;

© Formats that will be used in the report are created.

® The datais summarized. Normally we would let PROC REPORT do the row and column
summaries; however, here we need to do them first so that they will be available in the DATA

step.
© The summarized datais transposed so that it can be more easily handled in the DATA step.

O The classification variables, which form the concatenated values, are formed. The
composite values, such as COUNT (%) and MEAN (STD) are also created in this step.

© Sorting occurs before the transpose.

@ Theregions are transposed to form columns.

@ Finaly, the PROC REPORT step occurs.

In more detail, these steps form the processing steps of the program.

© User-defined formats might not be required, or they might already be available in established
libraries. The process of creating these formats is discussed by Carpenter (2004b). For this
example, the following step creates two formats for later use.

proc format;
val ue $EWReg

'1','2','3,'4" = 'Eastern'
'5'-'9" 10 = 'Western'
ot her = "Overall";
val ue $gender

'F = ' Fenmual €'

'M = ' Mal &'

other = "Al'l ';

run;

® The datais summarized using PROC SUMMARY.. It is here that the statistics of interest are
specified. The fomat $EWREG. has been applied to REGION to collapse regions into these
area designations.

328 Carpenter’'s Complete Guide to the SAS REPORT Procedure

proc summary data=rptdata.clinics;
cl ass region /order=internal;

cl ass sex;

var ht wt;

out put out=clinsum
n= htn wn

mean=ht nrean w nean
nmedi an=ht medi an wt nedi an
std=htstd wtstd;

format region $ew eg.;

run;

The resulting data set (WORK.CLINSUM) has one row for each distinct summarization and a
column for each of the requested statistics. Here are the first three lines of the table:

Obs region sex _TYPE_ _FREQ htn wtn htmean w mean htrmedi an wtnedi an htstd wstd

1 Overall 0 80 80 80 67.4500 161.775 67 161 3.49285 35.8721
2 Overall F 1 32 32 32 65.0000 145.875 64 155 2.63965 32.4154
3 Overall M 1 48 48 48 69.0833 172.375 69 177 3. 01650 34.3948

© The transpose could be accomplished in the DATA step, but the resulting code is a bit more
complex. The following PROC TRANSPOSE step minimizes the number of columns that we
need to deal with in the DATA step. The BY statement takes advantage of the sort order of the
datathat is generated by PROC SUMMARY .

proc transpose data=clinsum
out=tranl;
by _type_ region sex;
var _freq_ ht: wt:;
run;

The table WORK.TRANL (a portion of which is shown here) is now much more narrow, and is
easier to work with in the DATA step.

Obs _TYPE_ region sex _NAME caLl

1 0 Overal | _FREQ_ 80. 000
2 0 Overal | htn 80. 000
3 0 Overal | ht mean 67. 450
4 0 Overal | ht medi an 67. 000
5 0 Overal | htstd 3.493
6 0 Overal | wtn 80. 000
7 0 Overal | wt mean 161. 775
8 0 Overal | wt nedi an 161. 000
9 0 Overal | wt st d 35.872
10 1 Overal | F _FREQ_ 32.000
11 1 Overal | F htn 32. 000
12 1 Overal | F ht mean 65. 00

Chapter 10: Solving Other Common Report Problems

O Thistable has all that we need to construct the various parts of the final table. The special
variable _TYPE_ isconstructed by SUMMARY so that we can differentiate between the
various levels of summarizations. Summaries for REGION and SEX have TYPE =3,
whereas a summary across both REGION and SEX has_TYPE_=0. Hereisthe resulting
DATA step:

data prepl(keep=cl ass subcl ass regnane val ue);
set tranl(Keep=_type_ region sex _nanme_ col1);
I ength class subcl ass val ue $12 regnane $7;

* Retain MEAN and N (denom nator);
retain hol dnean hol dn .;

* Save the regi on nane;
regname = put(region, $eweg.);

* Build the stats for SEX;
if _nane_='_FREQ ' then do;
* Only use observation counts (_FREQ);
class = ' Gender';
subcl ass = put (sex, $gender.);
* Retain the denonmi nator for future use;
if type_ = 0 then holdn = col 1;
* Value is count (9%;
value = trin(left(put(coll,4.)))
[O
|| trim(left(put(col 1/ hol dn, percent.)))
[1)" s
out put ;
end;

* Build the stats for HElI GHT and WEI GHT;
* | gnore observations that contain _FREQ ;
else if _type_ in(0,2) then do;
if name_ =: 'ht' then class='Height';
el se class=" Wi ght';
* Retain the MEAN for future use;
i f index(_nane_,"' mean') then hol dmean=col 1;
el se do;
if index(_name_,'std') then do;
subcl ass=' MEAN (STD) ' ;
* Value is a conbinati on of MEAN and STD;
value = trin(left(put(holdnean,4.1)))
e
||trim(left(put(coll,5.2)))
(1)
end;
el se do;
* ther statistics;
subcl ass = upcase(substr(_nane_, 3));
val ue = put(col 1, 6. 2);
end;
out put ;
end;
end;
run;

329

330 Carpenter’s Complete Guide to the SAS REPORT Procedure

The WORK .PREPL data table is now very close to what we want for the final table. The character
variable VALUE contains the final display value. Here are the first few observations of

WORK.PREP1:
bs class subcl ass val ue regnane
1 Gender Al 38 (48% Eastern
2 Gender Al 80 (100% Overal |
3 Gender Al 42 (53% West ern
4 Gender Femal e 15 (19% Eastern
5 Gender Femal e 32 (40% Overal |
6 Gender Fenmal e 17 (21% West ern
7 Gender Male 23 (29% Eastern
8 Gender Mile 48 (60% Overal |
9 Gender Mile 25 (31% West ern
10 Height MEAN (STD) 67.9 (3.91) Eastern
11 Height MEAN (STD) 67.5 (3.49) Overall
12 Height MEAN (STD) 67.0 (3.04) Western
13 Height MEDI AN 67.00 Eastern
14 Height MED AN 67.00 Overal |

If we could use REGNAME as an ACROSS variablein PROC REPORT, we could now let PROC
REPORT take over for us. Unfortunately, you have to nest a statistic or numeric value under an
ACROSS variable, so a PROC REPORT step such as the following would not work (the report
item VALUE is character and has a define usage of DISPLAY):

proc report ;

colum cl ass subcl ass regnane, val ue;
define class / group;

defi ne subclass / group;

define regnane / across;

define value / display;

O Ol nstead we need to transpose the regions ourselves rather than in the PROC REPORT step.
Here is the resulting transpose step:

proc sort data=prepl;
by cl ass subcl ass regnane;
run;

proc transpose data=prepl out=tran2;
by cl ass subcl ass;
id regnane;
var val ue;
run;

Chapter 10: Solving Other Common Report Problems 331

The ID statement results in a column for each value of REGNAME. Here is a portion of
WORK.TRAN2:

Obs class subcl ass _NAME_ Eastern Overal | West ern
1 Gender Al val ue 38 (48% 80 (100% 42 (53%
2 Gender Fenuale val ue 15 (19% 32 (40% 17 (219
3 Gender Mle val ue 23 (299 48 (60% 25 (31%
4 Hei ght MEAN (STD) val ue 67.9 (3.91) 67.5 (3.49) 67.0 (3.04)
5 Hei ght MEDI AN val ue 67.00 67. 00 68. 00
6 Height N val ue 38. 00 80. 00 42. 00
7 \Weight MEAN (STD) val ue 146 (34.96) 162 (35.87) 176 (30.51)
8 Wi ght MEDI AN val ue 155. 00 161. 00 177.00
9 Wight N val ue 38. 00 80. 00 42.00

@ We can now use PROC REPORT to add the finishing touches. Because all the heavy lifting
has already been done, the PROC REPORT step itself issimple.

titlel ' Common REPORT Probl ens';
title2 "Vertically Concatenated Tables';
proc report data=tran2 nowd;

colum cl ass subcl ass eastern western overall;
define class [/ group ' ';
define subclass / group ' ';
define eastern / display;
define western / display;
define overall / display;
conpute after class;
line " ';
endconp;
run;

Hereisthe final table;

Comon REPORT Probl ens
Vertically Concatenated Tabl es
Eastern West ern Overal |
Cender Al | 38 (48% 42 (53% 80 (100%
Femal e 15 (19% 17 (21% 32 (40%
Mal e 23 (29% 25 (31% 48 (60%
Hei ght MEAN (STD) 67.9 (3.91) 67.0 (3.04) 67.5 (3.49)
VEDI AN 67.00 68. 00 67.00
N 38. 00 42.00 80. 00
Wi ght MEAN (STD) 146 (34.96) 176 (30.51) 162 (35.87)
VEDI AN 155. 00 177. 00 161. 00
N 38. 00 42.00 80. 00

332 Carpenter’'s Complete Guide to the SAS REPORT Procedure

10.1.2 Ordering the Generated Classifications

In the previous table, the order of the values of the grouping variable CLASS is alphabetical, with
GENDER first. If we had wanted the classification value to be SEX, it would have sorted between
HEIGHT and WEIGHT, and this would almost certainly have been unacceptable. The order of the
second column, SUBCLASS, isabit different from the order in which these values are usually
presented. In both cases, we need to have a better way to control the order of these classification
levels.

In the following version of this table, neither of the classification columnsisin aphabetica order.

Conmmon REPCRT Probl ens
Vertically Concatenated Tabl es
Controlling the Order of the G oups

Eastern West ern Overal |
Sex Femal e 15 (19% 17 (21% 32 (40%
Mal e 23 (29% 25 (31% 48 (60%
Al | 38 (48% 42 (53% 80 (100%
Hei ght N 38. 00 42.00 80. 00
Medi an 67.00 68. 00 67.00

Mean (Std) 67.9 (3.91) 67.0 (3.04) 67.5 (3.49)

Wi ght N 38. 00 42.00 80. 00
Medi an 155. 00 177.00 161. 00
Mean (Std) 146 (34.96) 176 (30.51) 162 (35.87)

One way to achieve control of the order is through the use of formats. In this version of the report,
the values of the two grouping variables (CLASS and SUBCLASS) are integers (numeric starting
at 1) rather than characters. Formats are then used to display the appropriate values.

Most of the code from Section 10.1.1 remains the same with the following changes. First, two
additional formats are built.

proc format;
val ue $EVReg

1','2','"3,'4" = "Eastern'
'5'-'9" "10' = 'Western'
ot her = '"Overal l';
val ue $gender
'F = ' Femul €'
'M = "Ml €'
other = "Al";
value class @

1 ' Sex'

2 = ' Hei ght"

3 Wi ght';
val ue subcl ass @

1

2

3

' Femal €'
' Mal e
CAL

Chapter 10: Solving Other Common Report Problems 333

4 ='N

5 = ' Medi an'

6 = 'Mean (Std)';
run;

The variable CLASS now takes on the values of 1to 3 @ and SUBCLASSthevaluesof 1t06 @.
These assignments are made in the DATA step.

data prepl(keep=cl ass subcl ass regnane val ue);
set tranl(Keep=_type_ region sex _nane_ coll);
I ength class subclass 4 © value $12 regnanme $7;

* Retain MEAN and N (denom nator);
retain hol dnean hol dn .;

* Save the regi on nane;
regnane = put(region, $eweg.);

* Build the stats for SEX
if nanme_='"_ FREQ ' then do;
* Only use observation counts (_FREQ);
class = 1; O
subcl ass = 1*(sex="F") + 2*(sex='M) + 3*(sex=' '); ©
* Retain the denom nator for future use;
if _type_ = 0 then holdn = col 1;
* Value is count (%;
value = trin(left(put(coll,4.)))
[¢
| |trim(left(put(col 1/ holdn, percent.)))
)"
out put ;
end;

* Build the stats for HEl GHT and WEI GHT;
* | gnore observations that contain _FREQ ;
else if _type_ in(0,2) then do;
if name_ = 'ht' then class=2; @
el se cl ass=3;
* Retain the MEAN for future use;
i f index(_nane_, ' mean') then hol dnean=col 1,
el se do;
if index(_name_,'std') then do;
subcl ass=6; @
* Value is a conbi nati on of MEAN and STD;
value = trin(left(put(holdnean,4.1)))
e
|Jtrim(left(put(coll,5.2)))
(1)
end;
el se do;
* Other statistics;
subcl ass = 4*(upcase(substr(_name_,3))=N) ©
+5* (upcase(substr(_name_, 3)) =" MEDI AN) ;

334 Carpenter’'s Complete Guide to the SAS REPORT Procedure

val ue = put(col 1, 6. 2);
end;
out put ;
end;
end;
run;

© CLASS and SUBCLASS are designated as numeric variables.
O SEX hasaCLASSvaueof 1.

© For the variable SEX, SUBCLASS takes on the values of 1, 2, or 3. Later these values are
displayed as ‘Female', ‘Male’, and ‘All’ respectively through the use of the SUBCLASS.
format.

@ Vaues are assigned to CLASS for the statistics associated with Height and Weight.
@ The MEAN / STD combination has a SUBCLASS of 6.
© SUBCLASS receives the value of either 4 or 5 for N and MEDIAN.

After sorting, the first few observations of WORK.PREP1 are as follows:

Obs class subclass value regnane
1 1 1 15 (19% Eastern
2 1 1 32 (409 Overal |
3 1 1 17 (21% West ern
4 1 2 23 (29% Eastern
5 1 2 48 (60% Overal |
6 1 2 25 (31% West ern
7 1 3 38 (48% Eastern
8 1 3 80 (100% Overal |
9 1 3 42 (53% West ern
10 2 4 38. 00 Eastern
11 2 4 80. 00 Overal |
12 2 4 42.00 West ern
13 2 5 67.00 Eastern

Notice that the rows are now in a different order than they were at this point in Section 10.1.1.
The PROC REPORT step now can take on slightly more responsibility. Because the CLASS and
SUBCLASS variables need to be formatted, the sort can be based on the unformatted value. This
allows the use of the ORDER=DATA option, while displaying the value with aformat.

titlel ' Conmon REPORT Probl ens';
title2 'Vertically Concatenated Tables';
title3 '"Controlling the Order of the G oups';
proc report data=tran2 nowd;
colum cl ass subcl ass eastern western overal l;
define class [/ group '
format =cl ass. order=dat a;
define subclass / group ' '
f or mat =subcl ass. order=dat a;
define eastern / display;
define western / display;
define overall / display;

Chapter 10: Solving Other Common Report Problems 335

conpute after class;
line '

endconp;

run;

Hereisthe final table;

Conmmon REPORT Probl ens
Vertically Concatenated Tables
Controlling the Order of the G oups

Eastern West ern Overal |
Sex Femal e 15 (19% 17 (21% 32 (40%
Mal e 23 (29% 25 (319 48 (60%
All 38 (48% 42 (53% 80 (100%
Hei ght N 38. 00 42.00 80. 00
Medi an 67. 00 68. 00 67.00

Mean (Std) 67.9 (3.91) 67.0 (3.04) 67.5 (3.49)

Vi ght N 38. 00 42.00 80. 00
Medi an 155. 00 177.00 161. 00
Mean (Std) 146 (34.96) 176 (30.51) 162 (35.87)

This table does what we want and does not look too bad. However, the numbersin the columns do
not line up very well. This problem is addressed in Section 10.1.3.

10.1.3 Text and Number Alignment in Derived Columns

In the previous table, the location of the decimal point (or where it would appear if present) is not
consistent from row to row. This can make the table more difficult to read. Fortunately, this
problem is easily solved by only slight alterations to the code.

Hereis our desired table;

Conmmon REPCRT Probl ens
Vertically Concatenated Tabl es
Nurber Al i gnment

Eastern West ern Overal |
Sex Femal e 15 (18.8% 17 (21.3% 32 (40.0%
Mal e 23 (28.8% 25 (31.3% 48 (60. 0%
Al | 38 (47.5% 42 (52.5% 80 (100.0%
Hei ght N 38 42 80
Medi an 67. 00 68. 00 67. 00

Mean (Std) 67.95 (3.91) 67.00 (3.04) 67.45 (3.49)

Wi ght N 38 42 80
Medi an 155. 00 177.00 161. 00
Mean (std) 145.89 (34.96) 176.14 (30.51) 161.78 (35.87)

336 Carpenter’s Complete Guide to the SAS REPORT Procedure

Inthe DATA step, severa small changes have been made that alter the overall formatting of the
variable VALUE. In the example in Section 10.1.2, we were not consistent about how the leading
numbers were formatted and whether or not they were left-justified. In the following code, the
overall width of the format and the number of decimal points (if any) have been counted with the
objective of lining up the numbers. The same could have been done for the numbersin the
parentheses, but this was felt to be a bit of overkill.

data prepl(keep=cl ass subcl ass regnane val ue);
set tranl(Keep=_type_ region sex _nanme_ col1);
I ength class subclass 4 value $15 @ regnane $7;

* Retain MEAN and N (denom nator);
retain hol dnean hol dn .;

* Save the regi on nane;
regname = put(region, $ew eg.);

* Build the stats for SEX;
if _nane_='_FREQ ' then do;
* Only use observation counts (_FREQ);
class = 1;
subcl ass = 1*(sex="F") + 2*(sex="M) + 3*(sex=" ');
* Retain the denom nator for future use;
if type_ = 0 then holdn = col 1;
* Value is count (9%;
value = trinm(put(col1,3.0)) @
e
||trinm(left(put(col1/holdn, percent8.1))) ©
(1)
out put ;
end;

* Build the stats for HElI GHT and WEI GHT;
* | gnore observations that contain _FREQ ;
else if _type_ in(0,2) then do;
if _nane_ =: 'ht' then class=2;
el se cl ass=3;
* Retain the MEAN for future use;
if index(_name_, ' nean') then hol dmean=col 1;
el se do;
if index(_name_,'std') then do;
subcl ass=6;
* Value is a conbination of MEAN and STD;
value = trin(put(holdnean,6.2)) @
e
|Jtrim(left(put(coll,5.2)))
(1)
end;
el se do;
* Other statistics;
if upcase(substr(_nane_,3))="N then do;
subcl ass=4;
value = put(col1,3.); ©
end;
el se i f upcase(substr(_name_, 3))="MEDI AN then do;
subcl ass=5;
value = put(col1,6.2); @
end;

Chapter 10: Solving Other Common Report Problems 337

end;
out put ;
end;
end;
run;

Because the largest number isin the 100s, we need to allow three spaces to the left of the column
that might or might not be needed for decimal places. Notice that in all of the formats that are
applied to the numbers outside of the parentheses, we consistently leave these three spaces.

O The size of the VALUE variable has been increased to accommodate the increased format
widths.

® The number of patientsis displayed as an integer using the 3. format. Of course, this only
leaves space in our table for at most 999 patients.

© The percentage has been given more space and now includes a decimal point. This makes
things look nicer, but has nothing to do with the alignment issue.

® The mean is written with two decimal places, and the result of the PUT function is no longer
left-justified.

© N has no decimal places.

® The median is displayed with two decimal places. If you wanted only one decimal place,
the format would have been 5.1, which still preserves the three leading spaces.

When the display value contains a decimal point, you can use it to align the numbers directly. The
JUST=DEC attribute option can be used to align valuesin a column. In the following example,
the character variable X takes on four values (the fourth does not have a decimal point).

titlel ' Common REPORT Probl ens';
title2 "Vertically Concatenated Tables';
title3 'Decinal Point Alignnment';

proc report data=test nowd;
col umMm x x=new,
define x [/ display
styl e={cel | wi dt h=1i n j ust =dec}
"Using Just=
define new / display ;
run;

338 Carpenter’s Complete Guide to the SAS REPORT Procedure

Common REPORT Problems The numbersin theleft column are
Vertically Concatenated Tables aligned on the decimal paint, even
. . . though the values come from a
Decimal Point Alignment character variable.
Using Just=| x
51 |51

9.9919.99
100.1 |100.1
1001 1001

Destination: PDF Style: PRINTER

The JUST=DEC does not work for HTML, but can be very useful in PDF and RTF.

SEE ALSO
In adiscussion of some fairly sophisticated RTF techniques, Hamilton (2003) usesthe STYLE=
option along with various RTF commands to produce aligned numbers.

10.1.4

Doing More in the PROC REPORT Step

In the previous examples, most of the work has been done in the steps leading up to the PROC
REPORT step. The DATA step is used as the primary tool for the calculation of the value to be
displayed. Because the PROC REPORT step can have a compute block, we should be able to
move at least some of these calculations out of the DATA step.

The following example takes advantage of the compute block, and it also uses formats for the
ordering of the regions. In this example, the region variable is now an ACROSS variable. This
eliminates the second PROC TRANSPOSE and a PROC SORT.

Rather than transposing the values of REGION, formats are used to control the values so that
REGION can be used as an ACROSS variable. Two new formats are created. The first @ creates
aregion code that can be used to put the regions into the correct order. The second ® translates
the region code into the values that are to be displayed in the report.

proc format;
val ue $Reggrp @
'1','2','3," 4
'5'-'9',"'10'
ot her
val ue $RegNane @
"a' ' Eastern’
'b' 'Western'
‘¢! "Overal l';

TR
L T8

Chapter 10: Solving Other Common Report Problems 339

The PROC SUMMARY and PROC TRANSPOSE steps remain the same, except the SREGGRP.
© format is used to form the three regional groups (‘a, ‘b’, and ‘c’).

Inthe DATA step, which has been simplified, several differences should be noted. Because we
are going to pass more of the work to the PROC REPORT step, we should expect the compute
blocks to become more interesting. Rather than constructing the composite character variable
VALUE inthe DATA step, we pass the needed information (VAL1 and VAL2 ©) to the compute
block, where the composite value is constructed as a computed variable.

dat a prepl(keep=cl ass subclass reggrp vall val2 ©);
set tranl(Keep=_type_ region sex _nane_ coll);
Il ength class subclass 4 vall val2 8 reggrp $1;

* Retain MEAN and N (denom nator);
retain hol dnean hol dn .;

* Assign a region group code;
reggrp = put(region, $reggrp.); @

* Build the stats for SEX

if _nanme_='_FREQ ' then do;
* Only use observation counts (_FREQ);
class = 1;
subcl ass = 1*(sex="F") + 2*(sex='"M) + 3*(sex=" ');
* Retain the denonminator for future use;
if _type_ = 0 then holdn = col1;
* Value is count (9%;
val1l = col 1; val 2=hol dn; ©
out put ;

end;

* Build the stats for HElI GHT and WEI GHT;
* | gnore observations that contain _FREQ ;
else if _type_ in(0,2) then do;
if _name_ =: 'ht' then class=2;
el se cl ass=3;
* Retain the MEAN for future use;
i f index(_name_, ' nean') then hol dmean=col 1;
el se do;
if index(_name_,'std') then do;
subcl ass=6;
* Value is a conbination of MEAN and STD;
val 1 =col 1; val 2 = hol dnean; @
end;
el se do;
* Other statistics;
i f upcase(substr(_nane_,3))="N then subcl ass=4;
el se if upcase(substr(_nane_, 3))="MEDI AN then subcl ass=5;
val 1=col 1; val 2=.;
end;
out put ;
end;
end;
run;

340 Carpenter’'s Complete Guide to the SAS REPORT Procedure

© REGGRP is used to hold the region codes. It will contain the formatted value of REGION
based on the SREGGRP. @ format. In the previous examples, the character variable VALUE
was used to store the composite values of count and percent. In this approach, both numeric
values are passed into REPORT.

O In WORK.TRANL1, the variable REGION contains unformatted values of the original variable.
REGGRP contains the grouping codes that can be used for ordering the regions.

© The denominator is stored in VAL2.
@ For the MEAN(STD), the two values are stored in VAL 1 and VAL2.
@ For other statistics, only VAL1 isused.

The second TRANSPOSE step is no longer needed, because the PROC REPORT step now uses a
define usage of ACROSS for REGGRP. Here is the resulting PROC REPORT step:

titlel ' Common REPORT Probl ens';
title2 '"Vertically Concatenated Tables';
title3 'Using ACRCSS' ;
proc report data=prepl nowd;
colum cl ass subcl ass reggrp, (val 1 val 2 value ©);
define class / group '
f ormat =cl ass. order=dat a;
define subclass / group '
f or mat =subcl ass. order =i nternal
define reggrp / across 'Region
f or mat =$r egnane. order =i nternal; (9]
define vall / anal ysis noprint;
define val 2 / anal ysis noprint;
define value / conputed

conpute value / char length=15, ©®
if subclass in(1,2,3) then do;
¢5=trimput(_c3_,3.0))
[C
[|trim(left(put(_c3_/_c4_,percent8.1)))
(1)

c8 =trimput(_c6_,3.0))
[¢
[|trim(left(put(_c6_/_c7_,percent8.1)))
(1)
~cl1l = trimput(_c9_,3.0))
[
[|trim(left(put(_c9_/_cl0_,percent8.1)))
(1)
end;
el se do;
if subclass=4 then do
*N;
¢5 = put(_c3_,3.);
c8 = put(_c6_,3.);
_cl1l = put(_c9_,3.);
end;

el se if subclass=5 then do
* Medi an;

Chapter 10: Solving Other Common Report Problems 341

put(_c3_,6.2);
put (_c6_, 6.2);
= put(_c9_,6.2);

c5
c8
cl1
end;
el se if subclass=6 then do

* Mean (std);

* Value is a conbi nati on of MEAN and STD;

c5=trimput(_c4_,6.2))
[
||trin(left(put(_c3_,5.2)))

)
c8 = trln(put(c7_,6.2))

[C
|n(Ieft(put(c6_,5.2)))

t(c10_,6.2))

n(left(put(c9.,5.2)))

end;
end;
endconp;

conpute after class;
line'

endconp;

run;

O ThevariablesVAL1, VAL2, and VALUE are all nested under the value of REGGRP. This
arrangement forms nine columns with the internal namesof _C3 , C4 , ..., _C11 .

© The region names are assigned using the SREGNAME. @ format. Because coded values (not
the formatted values) hold the desired order, the ORDER=INTERNAL option is specified.

© Because REGGRP is an ACROSS variable, the variable VALUE is never actually created.
Instead, the composite valueis placed in the columns _C5 , C8 , and _C11 . When forming
thevaluefor C5 , thecolumns _C3 and C4 hold the values of VAL1 and VAL2
respectively. Except for the names of the columns, the form of the assignment statement is the
same in the compute block asit wasin the DATA step in Section 10.1.3.

10.2 Automating the PROC REPORT Process

As we develop more and more sophisticated reports and groups of reports, the process of
managing and executing our programs becomes complicated. Manual steps are subject to user
error, and besides, we usually have other things we need to do. Automation of the processis
potentially a solution.

Within SAS, automation generally involves the SAS macro language, and within the context of
this book, we need to be able to use the macro language with PROC REPORT. The macro
language is well covered in Burlew (1995) and Carpenter (2004a), so only limited portions of the
language are covered in this section.

342 Carpenter’'s Complete Guide to the SAS REPORT Procedure

MORE INFORMATION
The automation of the process that establishes links between documentsiis discussed in
Section 8.5.7.

SEE ALSO

Fairfield-Carter, et a. (2005) discuss the use of Jscript and VBScript to build an application that
writes the PROC REPORT step. Taylor (2005) discusses the use of VBA macros to import RTF
documentsinto MS WORD.

Michel (2005) uses the FLOW= option ina CALL EXECUTE example.
Foose (2002) presents a macro that writes a generalized PROC REPORT step.

Carpenter and Smith (2003a) use macro loops to create linked graphs and tables in an automated
process.

10.2.1

Things to Think about When Automating

Planning is essential when you start to automate a reporting process. We are often tempted to start
writing code and then figure out the details later. Doing some up-front planning can save alot of
programming heartache later—especially as you try to solve problems using the macro language.

How you prepare, what steps you take, and what order you take them in will of course depend on
your own particular situation. There are, however, some common practices that you should
consider.

Define the End Products

Usually these will be the reports themselves. Y ou need to know not only the shape and content of
the report, but also things such as the ODS destinations, file names, file locations, and file
replacement policies.

In an existing system, you can determine quite a bit of thisinformation by surveying the current
system, reports, and file structures. Try to avoid the trap of doing everything the same as before.
When automating, you might have the opportunity to clean up areporting process that has
“evolved”.

Determine Commonalities

As a code generator, the macro language is especially good at creating repeated code segments.
Within areporting process, you often need to do things again and again. Repeated code might be a
series of statements within a step or might be a series of steps.

If you can identify themes within your code, it is much easier to isolate them and convert them to
macros or macro statements. When generalizing, you code the differences as macro parameters
and macro variables. Look for the following common elements:

Chapter 10: Solving Other Common Report Problems 343

Data preparation Similar DATA and PROC steps might be needed to prepare the data
for a PROC REPORT step.
PROC REPORT step Every PROC REPORT step has some common elements,
especially the REPORT, COLUMN, and DEFINE statements.
Report computations Compute blocks are often repeated across PROC REPORT steps.
ODS styles If you are standardizing styles across reports, try to move the

definitions, style options and attributes into macro statements, or
better yet into the style definitions themselves.

Use macro parameters and macro variables to allow for variations between reports. This practice
is especialy useful for file names.

Establish Naming Conventions and File Structure

An automated system will be building the names of files, data sets, macros, macro variables, and
data variables. These names might be based on instructions passed into the macro by the user, or
more likely they will be based on the dataiitself. The coding is vastly smplified if thereisa
consistency in the naming. For instance, if we want to create two data tables of patients, one for
each gender, naming them PAT_M and PAT_F would be more logical than MALEPAT and
FEMALES. Thiswould be especialy true if the data contained the variable SEX that took on the
values of Fand M.

SEE ALSO

The process of automating a series of programs is described by Carpenter and Smith (2000 and
2001). Although PROC REPORT is not directly mentioned, McQuown (2004) discusses some of
the issues that come up when preparing to automate a reporting process. Rhodes (2005) discusses
report automation in general terms.

10.2.2

Macro Variable Resolution Issues

Within SAS, it is standard knowledge that macro variables are not resolved when they are placed
inside of single quotation marks. Generally, when macro variables are to be resolved within a
guoted string, the quotation marks must be double. In the following two TITLE statements, the
macro variable & BCOLOR remains unresolved in the first title, whereas it resolvesto Y ELLOW
in the second.

% et bcol or = yell ow

titlel 'background color is &bcolor';
title2 "background color is &bcolor";

Although thisruleis generally true within a REPORT compute block, it is not strictly true, and
the exceptions are worth understanding. Consider the following compute block:

% et bcol or = bl ue;

proc report data=sashel p.cl ass nowd;
PROCC REPORT statenments are not shown .

344 Carpenter’'s Complete Guide to the SAS REPORT Procedure

conput e wei ght;
attrib = "styl e={background=&bcol or}";
call define(_row_,'style',attrib);
endconp;
conpute after;
* Show that &bcol or is resol ved;
line attrib $62.;
endconp;
run;

Aswe would anticipate, the macro variable & BCOLOR, which is enclosed in double quotation
marks, resolves to BLUE, and the background color is successfully reset. Interestingly, the
following, which encloses the macro variable in single quotation marks, will also work.

% et bcolor = red;

proc report data=sashel p.cl ass nowd;
PROC REPORT statenents are not shown .

conput e wei ght;
attrib = 'styl e={background=&bcol or}"';
call define(_row_,'style',attrib);
endconp;
run;

It works, and why it works can be important to us, especially in more complex examples. The
variable ATTRIB contains the unresolved macro variable reference. However, because it isin
single quotation marks, the parser has yet to recognize it as such. When CALL DEFINE is
executed, it must first resolve the variable ATTRIB (this happens at execution, not compilation).
This causes the scanner to parse the resolved value of ATTRIB. This rescanning reveals the
macro variable to the parser, whereit is now recognized and resolved (into RED). This second
passisimportant in the context of the compute block, because this does not happen in the DATA

step.

In the previous examples, the attribute is fairly simple. However, for some attributes, the attribute
information itself needs to be quoted. This was the case for the examplesin Section 8.8.2. The
following compute block creates constant tip text for the CLINNUM column. Notice that the tip
text itself is within double quotation marks and the whole string is within single quotation marks.

conpute clinnum
attrib = 'style={flyover="Bet hesda"}";
call define(_col _,'style',attrib);
endconp;

The previous assignment creates tip text that would be constant for all valuesin the CLINNUM
column. We could use the CLINNAME variable to provide different tip text for each row, and
doing so dightly complicates the assignment statement. Essentially, we are replacing “Bethesda”
with the value of CLINNAME.

conpute clinnum
attrib = "style={flyover=""||trim(clinnane)||"'"}";
call define(_col _,"'style',attrib);

endconp;

Chapter 10: Solving Other Common Report Problems 345

The quoting in the previous compute block becomes a bit complicated. Another approach that
simplifies the quoting uses amacro variable. The following step takes advantage of the way that
macro variables are parsed when they are enclosed within single quotation marks.

conpute clinnum
call symput('clin',clinnane);
attrib = 'style={flyover="&clin"}";
call define(_col _,"style',attrib);
endconp;

If & CLIN had not been enclosed in single quotation marks (here the whole STY LE= optionisin
single quotation marks), this approach would not work. The single quotation marks delay the
resolution of the macro variable until after the macro variable has been created by CALL
SYMPUT. Thistiming isabit tricky, especialy for DATA step programmers who could never
get away with this. Remember, a macro variable is resolved when it is“seen” by the macro parser.
In thiscase, itisnot “seen” until the value of ATTRIB is evaluated.

SEE ALSO
Downing (2004) shows an example of the use of a macro variable in a compute block.

10.3 Coordinating Graphics with PROC REPORT

On first thought, it seems that the only necessary coordination between PROC REPORT and
SAS/GRAPH would be when a graph and report appear on the same page. However, when we
look at the topic with abit more depth, it becomes apparent that there is much more that can be
done. Certainly, in Section 8.2.2 we used the PREIMAGE style attribute to add alogo to the
graph. Of course, instead of alogo, that object (which was a GIF file) could have been any graph
created by SAS/GRAPH.

It turns out, of course, that thisis only one small application of the broader topic.

SEE ALSO
Mitchell (2006) discusses the inclusion of Likert scale plotsin areport.

10.3.1

Using CALL DEFINE to Import Graphics

There is more than one way to import graphs into a table generated by PROC REPORT. Often
these graphs are generated by SAS/GRAPH. However, much of the discussion in this section
applies equally to graphs generated in other ways.

There are two primary methods of identifying the graph to be imported. Unfortunately, although
the code is simple, the processis not as straightforward as it seems it should be.

STYLE= identifies the file containing the graphic.

GRSEG identifies a GRSEG catalog entry that has been generated by SAS/GRAPH.
This attribute only works with markup destinations and is not
appropriate for the PDF and RTF destinations.

346 Carpenter’'s Complete Guide to the SAS REPORT Procedure

The easiest and most flexible method involves the use of the STY LE= option and the PREIMAGE
or POSTIMAGE attribute (PREIMAGE was introduced in Section 8.2.2). Specified inthe CALL
DEFINE statement, the general syntax is as follows:

call define('cell _location',
‘style',
"styl e={posti nage="inage_file_nanme'}");

Assuming you want to place a GIF filein acell for the IMAGE column, the compute block might
be the following:

conpute inmage / char |ength=10;

i mge="'
call define('imge',
"style',
"styl e={posti nage='c:\temp\western.gif'}");
endconp;

Another method that works under more limited conditions is the use of the GRSEG attribute.
Again, the CALL DEFINE statement is used, but this time we point directly to a graphics
(GRSEG) entry in a SAS catalog rather than to afile. Here isthe general syntax

call define('cell _location',
‘grseg’,
‘catal og_entry_nane');

A potential compute block using the GRSEG attribute for the IMAGE2 column might be the
following:

conpute image2 / char |ength=80;
i mge2="'
cal |l define('imge2',
‘grseg’,
"wor k. gseg. west ern. grseg");
endconp;

For both of these methods, the sizing of the graphsistricky at best. This difficulty is an artifact of
how the graphs are rendered by the ODS destination. Unfortunately, the CELLHEIGHT and
CELLWIDTH attributes do not help for resizing cells that contain graphics. The ultimate size of
the graphic asit appears on the table usually needs to be controlled when the graph is generated.
Fortunately, if you are using SAS/GRAPH, there are several waysto do this, and these are
discussed in the following paragraphs. However, you will ailmost certainly need to do some trial
and error work to get things to appear as you would like.

The size of the graph is not the only issue that you have to deal with. Because the graphs are
imported into PROC REPORT, they must first be created in some other form. In addition to
GRSEG entriesin SAS graphics catalogs, there are a number of file types that can be used to hold
graphic images. In SAS/GRAPH, these different file types are built using specialized software
known as devices. The term devices dates to when all the graphs were rendered on physical
devices such as plotters. Now files are often built with virtual rather than physical devices, and
these are designated using the DEVICE (DEV) option. Some of the more popular of the file types
used to store graphsinclude CGM, EMF, GIF, PNG, and JPEG. Just to complicate matters a bit
more, these file forms are not equally well received by the various ODS destinations.

Chapter 10: Solving Other Common Report Problems 347

The following table shows the interactions between ODS destination (SAS 9.1.3), file type, and

method for importing the graphic.

Attribute Type = STYLE
ODS Destinations
File HTML PDF RTF
type
EMF OK; scale sensitive; style Images load, but tend to be | Images are not imported.

background color is
preserved; image GIF files
are created.

ugly.

GIF OK; scale sensitive. Large images overlap and Images are not imported.
are outside of the cell
boundaries;
smaller images can fit OK.
JPEG OK; scale sensitive; image Images are imported Images are imported
GIF files are created. correctly. correctly.
PNG OK scale sensitive; image Images are imported Images are imported
GIF files are created. correctly. correctly.
Attribute type = GRSEG
ODS Destinations
File HTML PDF RTF
type
EMF OK; scale sensitive.
GIF OK; scale sensitive.
JPEG OK; scale sensitive; image Images are distorted and outside of the cell boundaries.
GIF files are created.
PNG OK; scale sensitive; image

GIF files are created.

It is anticipated that these relationships will change under SAS 9.2. PNG will become the default

filetypefor HTML in SAS9.2.

Using Device Drivers to Control Size
Devicedrivers are used by SAS/GRAPH to construct the graphic filein away that is appropriate
to the final destination. When afileis built, the destination is designated through the extension or
filetype, e.g., GIF or JPEG. Each device driver (and SAS/GRAPH is shipped with hundreds of
drivers) contains sizing information as part of the driver definition. Although it is possible to build
customized drivers (see Carpenter (1995, p.124) and Carpenter and Smith (2003b)), the topic is
outside the scope of this book. Fortunately, options are available that can override the size
specifications that are contained in the driver’s definition.

When you want to create and import a GIF file, severa drivers are available that have already
been defined to produce images of various sizes (Carpenter and Smith 2003b). The smallest
might be small enough for some tables.

348 Carpenter’'s Complete Guide to the SAS REPORT Procedure

The following example is used with variations throughout this section. Thetable is rather smple;
however, for illustration purposes two columns of graphics have been added (in this case asimple
pie chart). The graphic in the first column (IMAGE) is added using the STY LE= option, and the
second (IMAGE?2) is added using the GRSEG option.

ods listing; @
* Addi ng graphics;
proc format; @

val ue $regfile
'1','2",'3 = 'NoEast'
"4 = ' SoEast'
'5to- g = 'MdWest'
‘9", "10' = '"Western';
run;

patternl v=psolid c=gray22 r=1; ©
pattern2 v=psolid c=gray66 r=1;
pattern3 v=psolid c=grayaa r=1;
pattern4 v=psolid c=grayee r=1;

titlel;

* Clear the graphics catal og;

proc datasets |ibrary=work nt=cat nolist;
del ete gseg;
quit;

* Dummy records force proper pattern statenent usage;
data dummy(keep=regi on proced wt ht edu);
do region="5"',"1","4",'9";

do proced=" ',"1','2"','3";
w=.; ht=.; edu=.;
out put ;
end;
end;
run;

* Dummy records are appended to force each region to
* have all procedures. This causes patterns to match
* across regions;
data clinics(keep=reggrp proced wt ht edu cnt);

set rptdata.clinics(keep=region proced wt ht edu)

dunmy (i n=i ndun) ;

reggrp = put(region, $regfile.); @

* CNT=1 for valid records;

cnt = 1-i ndum

run;

%racr o bl di mage;
proc sqgl noprint; ©
sel ect distinct(reggrp)
into :regl-:reg99
fromclinics;
% et regcnt = &sql obs;
quit;

Chapter 10: Solving Other Common Report Problems 349

%o i = 1 %o & egcnt;
filename propie "&uath\results\®& ...gif"; O
gopti ons dev=gi f160 @
gsf nane=pr opi e;
proc gchart data=clinics(where=(reggrp="&~®& "));
pi e proced / noheadi ng m ssing
type=sum
sunvar =cnt
sl i ce=none
name="8&®& "; ©
run;
quit;
%end;
%rend bl di mage;
%l di mage

ods listing close;

ods htm path="&path\results"
body="ch10_3_1b. htm "
styl e=def aul t;
ods pdf file="&path\results\chl0_3_1b. pdf"
styl e=ni ni mal ;
ods rtf file="&path\results\chl10_3 1b.rtf"
style=rtf;

titlel "Interfacing with REPORT ;
title2 ' Addi ng G aphics';
title3 'Reduced Size G F Files';

proc report data=clinics nowd split="*";
colum reggrp i mage i mage2 edu ht w;
define reggrp / group w dth=10 ' Regi on' order=formatted;
define image / conputed 'style';
define image2 / conputed 'grseg';
define edu / analysis nean 'Years of*Education’
format=9.2 ;
define ht / analysis nean format=6.2 ' Height';
define wt / analysis nean format=6.2 ' Wight';

conpute i mage / char |ength=10; @®
i mge='"';
i magel oc = "styl e={posti nage=' &at h\resul ts\"
[Itrim(reggrp)|]| ".gif"}";
* Specify the i nage using the STYLE=s
call define('inmge',
"style',
i magel oc) ;
endconp;

conpute image2 / char |ength=10;

i mage2=""';
i mgel oc = "work.gseg."||trim(reggrp)||"'.grseg";

350 Carpenter’s Complete Guide to the SAS REPORT Procedure

* Specify the inmage using the GRSEG attri bute;
call define('imge2',

‘grseg’,
i magel oc) ;
endconp;
run;
ods _all_ cl ose;

© The ODS LISTING destination must be open to create graphs.
® The format SREGFILE. is defined to group values of regions.

© PATTERN statements define four gray scale colors for the four levels of the procedure variable
PROCED.

O The user-defined format SREGFILE. is used to consolidate and name regions.

© A PROC SQL step is used to count the number of distinct regions (& REGCNT), and to store
each region name in amacro variable of the form & REG1, & REG2,

O Thefileto be created is named in a FILENAME statement. The macro variable & & REG& ..
resolves to the region name. The fileref, PROPIE, istied to the graph with the GSFNAME
option.

@ The device driver GIF160 creates the smallest image of any of the predefined GIF drivers.

O A pie chart is created for procedure type. Missing values (no procedure) are included in the
diagram.

© Each GRSEG entry receives the unique name of that region.

® The images are loaded into a cell through the use of the CALL DEFINE statement. Both
methods are demonstrated here.

The HTML file created by using the GIF160 device driver resultsin atable that includes the PIE

diagrams associated with the types of medical procedures. Notice that both methods work equally
well.

Interfacing with REPORT
Adding Graphics
Reduced Size GIF Files

Region style grseq Years of Height Weight
Education

Midvest . . 14.31 BEAS 17254
MoEast I I 13.25 67.33 13817

Destination: HTML Style: Default

Chapter 10: Solving Other Common Report Problems 351

The PDF file imports successfully only the images using the STY LE= option.

Interfacing with REPORT

Adding Graphics

Reduced Size GIF Files

Years of
Region style grseg|Education |Height |Weight
MidWest 14.31| 66.85|172.54
NoEast 13.25| 67.33(138.17
A

Destination: PDF Style: Minimal

Using GOPTIONS to Control Size

If we want the images to be even smaller, we need to either create a customized device driver,
which is not particularly difficult, or override the size specifications by using GOPTIONS. The
|atter is easier to discuss in the context of this book.

The graphics options XPIXELS and Y PIXELS are two of several options that can be used to
control the size of the graphicsimage. In the following example, the size of the graph has been
reduced from the previous example, which used the device GIF160, by afourth.

* G F160 is the smallest gif driver pre-defined in SAS/ GRAPH
* |t has XPlI XELS=160 and YPI XELS=120;
gopti ons dev=gqi f

xpi xel s=40 ypi xel s=30

gsf nane=pr opi e;

The HTML file shows;

Interfacing with REPORT

Adding Graphics

Reducing size with XPIXELS and YPIXELS

Region style grseg Years of Height Weight
Education

MidWest M M 1431 66.85 17254

NoEast h h 1325 67.33 138.17

SoEast . . 15.00 69.00 159.14

Western 4 4 1263 67.25 182.00

Destination: HTML Style: Default

352 Carpenter’'s Complete Guide to the SAS REPORT Procedure

In the examples in this section, all of the text on the reduced graphicsis eliminated by using the
SLICE=NONE option on the PIE statement. Another technique that has limited effectiveness on
most devices isto use the GOPTION statement to set the default text height to very small (say
HSIZE=.001). Another technique for eliminating text is to make the text the same color asthe
background. Most graphics procedures have options that can be used to eliminate text altogether.
Text elimination isfairly easy for procedures that use the AXIS statement.

SEE ALSO
Poppe (2005) uses the CALL DEFINE routine to bring GRSEG entries into the report.

10.3.2

Using GPRINT and GREPLAY

In Section 10.3.1, graphs have been inserted into the report. Y ou might also want to combine the
report and graph onto a single page. Although the ODS LAY OUT statement holds a great deal of
promise for thistype of task, it is currently only experimentally available (SAS 9.1.3). Often this
task can also be accomplished manually at the word-processing stage.

An aternative methodology that can be used under limited circumstancesis to render the table as
agraphics object and then use SAS/GRAPH to redisplay the graph and the table together. This
technique utilizes the GPRINT procedure, which can capture atext file and convert it to agraphic
object (GRSEG entry). Notice that the table itself must be atext file, which means that you are
limited to either the LISTING destination or to atext file created using the PRINTER destination.

Once the table has been brought into SAS/GRAPH, it can be redisplayed by using the GREPLAY
procedure. This procedure can display multiple graphics at one time and is therefore handy for
combining text with graphics.

ods listing;
goptions reset=all;

filename textrpt "&path/results/chl0_3 2.txt";

proc printto print=textrpt new, @
run;

titlel;

proc report data=sashel p.cl ass nowd;
colum sex age hei ght wei ght;
define sex [/ group 'Gender' fornat=3$6.;
define age [/ group "Age" wi dth=3;
define height / nean 'Height' format=6.1;
define weight / nean 'Wight' format=6.2;
break after sex / skip summarize suppress;
run;

proc printto;
run;

* Clear the GSEG catalog fromthe work library;
proc datasets library=work nmt=cat nolist; @
del ete gseg;
quit;

Chapter 10: Solving Other Common Report Problems 353

goptions ftext=sinplexu htext=1.8;

* |mport the table into SAS/ GRAPH, ©

proc gprint fileref=textrpt name='classrpt';
run;

goptions ftext=sw ss htext=2;

* create an overall TITLE, @

proc gslide name='Slide';
titlel "Interfacing with REPORT ;
title2 h=1.5 'Rendering a Report with SAS/ GRAPH ;
run;

synbol 1 c=red val ue=dot i=stdn®j |=33;
synbol 2 c=bl ue val ue=square i=stdnRj |=1;

dat a cl ass;
set sashel p. cl ass;
* Separate (dither) gender in the plots; ©
age = age + (sex='"F')*.05 + (sex='"M)*-.05;
run;

* Create a scatter plot;

proc gplot data=cl ass; @
pl ot hei ght *age=sex/ name=" hei ght " ;
titlel 'Height';
run;

pl ot wei ght *age=sex/ nane=' wei ght ' ;
titlel 'Weight';

run;

synbol 1 c=red val ue=dot i =none;

synbol 2 c=bl ue val ue=square i =none;
pl ot wei ght *hei ght =sex/ name='w_h" ;
titlel 'Weight vs Height';

run;

quit;

* Build a tenplate and replay the graphs and tabl e;
proc greplay igout=gseg nofs tc=gtenpl 8;
tdef three t @
1/ ul x=0 ul y=100 urx=100 ury=100
I1x=0 Ily=0 Irx=100 Iry= 0
2/ ul x=0 ul y=90 urx=50 ury=90
I1x=0 | 1y=45 | rx=50 |ry=45
3/ ul x=50 ul y=90 urx=100 ury=90
1 x=50 Ily=45 [rx=100 | ry=45
4/ ul x=0 ul y=40 urx=50 ury=40
I1x=0 Ily=0 lrx=50 lry=0
5/ ul x=50 ul y=40 urx=100 ury=40
1 x=50 I'ly= 0 Irx=100 Iry= O;
tenplate three_t;

354 Carpenter’'s Complete Guide to the SAS REPORT Procedure

treplay 1:Slide ©

2: hei ght
3:w_h
4: wei ght
5:cl assrpt;
run;
quit;

© PROC PRINTTO is used to route the report to atext file.
® The GSEG catalog is cleared as a preparation for the new graphs that are to be created.

© PROC GPRINT converts the text table to a graphicsimage, which is then stored in the GSEG
cataog.

® An overal title for the combined plotsis created.
© Ages are dlightly dithered so that they will not overlap in the graphs.
@ The three scatter plots are generated in a GPLOT step.

@ Each template pandl is defined with the coordinates of each of the four corners. The coordinate
pairs are in percentages from the lower left corner.

© Specific graphs are assigned to specific template panels.
The resulting graphic contains all three plots and the overall titles, as well asthe PROC REPORT

table.
. '
Interfacing with REPORT
gt Rendering a Report with SAS/GRAPH .0 g
Height
B
i
s n
g e ° .
» o
50 -
LY il 4 4] 2] 70 B
HAga Haight
S e wemy Sax erp ommy
W gender Age Melgny weisad
wekgnt IE Tt S LR ¥
© - N
Ho P ? B0.E 80,11
b A g AT u ERR S B LB
- '“m_a#f/i 13 67,9 Bi.0U
20 M- 13 86.3 107,54
15 g6.8 122 54
L) 16 FI.0 15%0.04
o " 3.9 108.495
h 1 e 2 14 13 £
Age
Say teep wemy

MORE INFORMATION
Section 10.5 discusses alternative methods of placing multiple reports on a page, including the use
of the ODS LAY OUT statement in Section 10.5.1.

Chapter 10: Solving Other Common Report Problems 355

SEE ALSO

Leprince and Li (2003) discuss methods for improving this technique. They also show how to
automate the process using the macro language. Carpenter and Shipp (1995) discuss the use of
templates, GREPLAY , and the redisplay of graphics. The automated generation of GREPLAY
templatesis discussed in detail by Perry Watts (2002).

Pete Lund (2005) shows an example that displays both reports and graphics through the use of the
ODSLAYOUT statement.

10.3.3

Using the Annotate Facility to Generate Lines

In the example in Section 8.2.4, blank lines and columns were filled using cell attributes assigned
with the STY LE= option. Y ou can also use the annotate facility in SAS/GRAPH to add content to
your report. In the following example, the annotate facility has been used to generate lines that
can be used to separate portions of the report.

ods pdf style=printer
file="&path\results\chl0_3_ 3. pdf"
startpage=never; @

titlel;
proc report data=sashel p. prdsal e(wher e=(prodtype="OFFI CE'))
nowd;
Portions of this step are not shown .

* Add the annotate nacros to the autocall library;
%nnonmac @

* Build the annotate data set;
data Annolines; ©
I ength function color $8; ®
retain xsys ysys '5'; ©

* Syntax for the LINE nacro;

% LINE (x1, yl1l, x2, y2, color, line_type, size);
% ine(.5,69.6,50.5,69.6,blue, 1,30) @

% ine(.5,80.5,50.5,80.5,red, 1, 30)
%ine(42.2,67,42.2,94, green, 1, 30)

run;

* Use the annotate data set;
proc gslide anno=annolines; @
run;
quit;

ods _all _ close;

356 Carpenter’s Complete Guide to the SAS REPORT Procedure

© Because we are overlaying the results of two different procedures, we do not want the results to
be presented on separate pages. STARTPAGE=NEVER prevents the generation of a new page
at the procedure step boundary.

® A number of predefined annotate macros (%L INE @ is one of these) can be used to generate
annotate instructions. These macros are not normally available until they are loaded into the
autocall library by the %ANNOMAC macro.

© The annotate data set is named ANNOLINES. Each observation in this data set contains
an instruction that will be used by PROC GSLIDE @.

O The variables FUNCTION and COLOR are generated by the %LINE macro. These two
variables should always be explicitly specified as $8.

© XSYSand YSYS specify the coordinate system that is used by the annotate facility. With this
specification, all (x,y) coordinate pairs measure percentages from the lower left corner of
the graphic area (exclusive of titles and footnotes).

® The %LINE annotate macro is used to generate the annotate observations. Y ou could also
build these observations directly through the use of a series of assignment statements. The
%L INE macro is defined with the following series of positional parameters:

X1,Y1 coordinate of the start of theline

X2,Y2 coordinate of the end of the line

COLOR color of the line (do not quote the value)

LINE_TYPE typeof line, designated by a number (1=solid, 2=dashed, etc.)
SIZE thickness of the line

@ PROC GSLIDE is used to render the annotation instructions held in the annotate data set.
Because the STARTPAGE= option has been set to NEVER @, the results of this procedure
overlay the table produced by PROC REPORT.

Product

CHAIR | DESK | TABLE
Total
Region | Country Sales Sales Sales Sales
EAST | CANADA $25,200 | $25.020| $25.945 $76.165
GERMANY | $23277| $25403| $26,116 $74.796
USA. $27.378 | $23)193 | $22.258 $72,829
875,855 | 873,616 | $74,319 W 223,790

WEST | CANADA $25,039 | $27.167| $20,755 $72.961
GERMANY | $23,828 | $23.009 | $23,081 $70,008

US.A. $23.558 | $25.350| $24,045 $72.953

875,616 | 567,881 §215,922

3148280

§140,232

$142,200

§439,712

Destination: PDF Style: PRINTER

Chapter 10: Solving Other Common Report Problems 357

Because the annotate elements (in this case lines) must be placed manually through trial and error,
this technique has a limited utility in an environment where report tables are constantly
undergoing change or where the numbers of rows or columns are not fixed.

Sometimes the annotate lines have a better visual impact if the report does not aready have alot
of lines. The previous example has been repeated below using the JOURNAL style.

Product
CHAIR DESK TABLE
Total
Region Country Sales Sales Sales Sales

EAST CANADA $25,200 $25,020 $25,945 576,165
GERMANY $23,277 $25403 $26,116 574,796

U.S.A. $27,378 $23,193 $22,258 572,829
$75,855 $73,616 $74,319 | $223,790

WEST CANADA $25039 $27,187 $20,755 | $72,961
GERMANY $23,828 $23,099 $23,081 | $70,008

U.SA. $23,558 $25350 $24,045 | $72,953

$72,425 $75616 $67,881 | $215922

$148,280 $149,232 $142,200 | $439,712

Destination: PDF Style: JOURNAL

Although this example adds lines to the report, the annotate facility could also be used to add a
multitude of symbols (including arrows), additional text, and even other graphics. Y ou can even
add boxes or irregularly shaped polygons to highlight groups of cells.

MORE INFORMATION
Section 8.2.4 uses the STY LE= option to add lines to the report.

SEE ALSO
Lund (2005) has an example of atable that has lines added using the annotate facility. Carpenter
(1999 and 2006a) introduces the annotate facility.

10.4 Workarounds for Monospace-Only Options

Asdiscussed in Chapter 4, “Only in the LISTING Destination,” anumber of PROC REPORT
options work only in the LISTING destination. For many of these options, thisisfine, asthey are
no longer needed for other destinations. However, occasionally you need to be able to mimic the
functionality of these options for non-LISTING destinations.

358 Carpenter’s Complete Guide to the SAS REPORT Procedure

A number of examples that are spread throughout this book discuss a number of these work
arounds. A FAQ page that addresses these issuesis currently available at

http://support.sas.com/rnd/base/topi cs/'templ ateFA Q/repoption.html

Column Width

For the LISTING destination, the width of acolumn is by default determined by the length and
type of the variable. Further control can be gained through the specification of aformat (Section
2.4.2). However, more robust methods for controlling column width are available. For the
LISTING destination, the COLWIDTH option (Section 4.4.3) and the WIDTH= option (Section
4.5.1) can aso be used to control column width independently from the formatted width.

These options have little or no effect on column width for other destinations. For non-monospace
destinations, the CELLWIDTH attribute modifier can be used (Section 8.2.4).

Text Wrapping

Inthe LISTING destination, text that does not fit in the designated width of the cell istruncated.
However, the FLOW= option (Section 4.5.2) can be used to wrap the text within the cell. For
other destinations, the cell width is generaly expanded to accommodate the text. When you want
to force text to wrap, you can use the escape character sequences shown in Section 8.6.5.

For markup language destinations, you can force text not to wrap by setting the tagset attribute
modifier TAGATTR to NOWRAP on the STY LE= option (Section 9.3.2).

styl e(col um) ={tagattr="now ap"}

Column Spacing

The SPACING= option (Section 4.5.3) can be used to increase or decrease (Section 6.4.1
concatenates columns) the space between columnsin the LISTING destination. A combination of
LINE statements and the STY LE= option (Section 8.2.4) can be used to accomplish similar
resultsin other destinations. The physical concatenation of values can be accomplished in the
compute block, and the results can be displayed in any destination (Section 7.6.2).

Page Control

Page numbering is automatic in the LISTING destination and becomes more complex in other
destinations. The very definition of a page is quite destination-specific (Section 6.8). Horizontal
page breaks can be controlled with the _ PAGE_ option (Section 5.4) through the use of the
PAGESIZE/LINESIZE options (Section 4.4.6), vertical page breaks (Section 6.1.7), and the BY
statement (Section 6.6).

Compute blocks are used to detect and count page breaks in Section 7.7.3. Escape character
seguences are used in Section 8.6.1 to produce page numbers in the PDF and RTF destinations.

Column Justification

Justification options can appear as system options, PROC statement options (Section 4.4.2),
DEFINE statement options (Section 6.1.2), and COMPUTE statement options (Section 8.2.2).
The effect of these options depends on the destination and, probably in the future, the rel ease of
SAS.

For non-LISTING destinations, the JUST= attribute modifier, which can be used on the STYLE=
option and on the CALL DEFINE statement (Section 8.2 and 8.3), is preferred.

Chapter 10: Solving Other Common Report Problems 359

Generation of Panels

The LISTING destination can create panels through the use of the PANEL S= option (Section
4.4.4). The ODS COLUMNS= option can be used to create multicolumn reports for other
destinations (Section 8.9). ODS LAY OUT (Section 10.5.1) can be used to combine multiple
reports on a page.

HEADLINE and Other Horizontal Lines

The HEADLINE option (Section 4.1) places a solid line between the header text and the body of
the report. This option is generally not needed for non-LISTING destinations; however, it can be
simulated in anumber of ways when it is needed. Other LISTING destination options that create
horizontal linesinclude OL, UL, DOL, and DUL on the BREAK and RBREAK statements.

All of these options can easily be replaced using the LINE statement. This statement can be used
to create a series of repeated characters (Section 7.8.2). It can also create a blank line that can be
made to appear solid through the use of style attributes (Section 8.2.4).

Repeated characters used as spanning headers are not recognized outside of the LISTING
destination. Actualy, in some circumstances they can even cause problems (Section 9.3.3).

HEADSKIP and Other Vertical Spaces

Inthe LISTING destination, a blank space is placed between the header text and the body of the
report with the HEADSKIP option, and between summary groups in the body of the report with
the SKIP option (Section 3.2.1). These spaces can also be supplied through the use of the LINE

statement, which is actually more flexible (Sections 2.6.1 and 8.2.4).

Instead of inserting a space, you can increase the size of a given cell to simulate a space. In the
following example, the height of the summary row isincreased (to 60 pixels). This adds blank
space following the summary line.

ods htm path="&path\results"
body="ch10_4. htm ";

titlel '"Inserting blank spaces';
title2 ' Addi ng Summary Row Hei ght';
proc report data=sashel p.class nowd;
colum sex age hei ght weight;
define sex [/ group;
define age [/ group;
define height / nean;
define weight / nean;

break after sex / summarize suppress;
conpute after sex;

call define(_row_, 'style','style={htn styl e="height:60px"}"');
endconp;

run;

ods html cl ose;

360 Carpenter’'s Complete Guide to the SAS REPORT Procedure

Hereis aportion of the HTML table:

Inserting blank spaces
Adding Summary Row Height

Sex Age Height Weight

F 11 51.3 50.5
12 58.05 80.75
13 60.9 91
14 63.55 96.25
15 64.5 112.25

60.588889 90.111111

M 11 57.5 85

19 A0 ARRERAT 1N2 B

Destination: HTML Style: DEFAULT

10.5 Generating Separate Reports on the Same

When you need to put multiple reports on a page, you can take several approaches. The manual
approach isto generate the reports separately and then manually cut or copy them and paste them
onto the page the way you want them. Because this approach is not nearly enough fun to discuss
in this book, it is fortunate that we do have some aternative approaches.

There have already been a couple of examplesin this chapter that combine the results of multiple
procedures on the same report.

Section 10.3.1 Graphics objects are imported into a table created by a REPORT step.
Section 10.3.2 GREPLAY isused to add one or more reports to a graphic.
Section 10.3.3 The output from a PROC REPORT step is augmented with lines built by the

annotate facility in SAS/GRAPH.

10.5.1

ODS LAYOUT

The ODSLAYOUT statement allows us to effectively design how afina pageis configured. It
does this by using the ODS REGION statement to define one or more regions on the page. These
regions are then filled by the output of procedures such as PROC REPORT.

Chapter 10: Solving Other Common Report Problems 361

ODSLAYOUT isturned on and off by using the ODSLAYOUT START and ODSLAYOUT
STOP statements. Before each step that generates output for the page, thereis an ODS REGION
statement, which has as a minimum the following options:

X= horizontal position to start the region
Y= vertical position to start the region
WIDTH= width of the region

HEIGHT= height of the region

Each of these options can be measured in the standard scales such asinches (IN), millimeters
(MM), or points (PTS). The regions have to be at |east large enough to hold your table. If the
region size istoo small, the table is truncated.

The following program writes a PROC GSLIDE graphic and two PROC REPORT tablesto a
single PDF page.

ods pdf style=printer
file="&path\results\chl0_5_ 1. pdf";

ods layout start; @

QDS region x=.5in y=.1in width=7in height=10in; @
titlel ' Common REPORT Probl ens';

title2 f=swissb "Multiple Reports on a Page';
title3 f="Arial bold 'Using ODS Layout';

titled f=swiss ' Ofice Furniture';
proc gslide; ©
run;

ods region x=1in y=1.5in width=3in height=4in; @
titlel;
proc report data=sashel p. prdsal e(wher e=(prodtype="OFFI CE'))
nowd;

colum country product, actual ;

define country / group;

define product / across;

define actual / analysis sum

f or mat =dol | ar 8.
' Sal es';
run;

ods region x=5in y=1.5in width=3in height=4in;, ©
proc report data=sashel p. prdsal e(wher e=(prodtype="FURN TURE))
nowd;

colum country product, actual ;

define country / group;

define product / across;

define actual / analysis sum

f or mat =dol | ar 8.
' Sal es' ;
run;

ods | ayout end; @
ods _all_ close;

362 Carpenter’s Complete Guide to the SAS REPORT Procedure

© ODSLAYOUT isturned on.
@® The first region is defined. It contains the across report titles generated by PROC GSLIDE.

© The GSLIDE procedure is very useful for displaying just titles. This step places the three titles
into the first region.

® The second region (Office sales report) is defined. This region actually overlaps the first
region. This could cause a problem if the titlesin the first region were larger.

© The third region (Furniture sales report) is defined. Using the same value for Y asin @ causes
both regionsto be aligned horizontally.

® ODSLAYOUT must be closed when al the assignments have been made.

Common REPORT Problems

Multiple Reports on a Page
Using ODS Layout

Office Furniture

Product Product
CHAIR | DESK | TABLE BED | SOFA
Country Sales | Sales | Sales Country | Sales | Sales
CANADA $50,239 | $32,187 | 546,700 CANADA | $47,729 | 550,135
GERMANY | $47.105 | $48.502 | $49.197 GERMANY | $46.134 | $55.060
US.A $50.936 | $48.543 | $46,303 US.A $48,174 | 43,393

Destination: PDF Style: PRINTER

Currently (SAS9.1.3) ODS LAY OUT has not yet matured enough to be fully useful to the PROC
REPORT programmer. However, it is anticipated that substantial improvements, including awide
range of options, will be availablein SAS9.2.

MORE INFORMATION
The use of graphics optionsin the TITLE statement is discussed in Section 8.7.

10.5.2

HTML Reports

The definition of apagein HTML isvery different from the definition in other destinations.
(HTML pages are virtual and have no real relationship to sheets of paper). However, placing
multiple reports within an HTML fileis as easy as the specification of the steps themselves. Any
number of PROC steps can be placed between the ODSHTML and ODSHTML CLOSE
statements. The results of these steps will all appear on the samefile.

Chapter 10: Solving Other Common Report Problems 363

ods htm styl e=journal
file="&path\results\chl0 5 2. htm";

proc report data=;
proc report data=;
ods htm cl ose;

The NEWFILE= option can be used to force new physical files with each PROC step.

10.5.3 RTF and PDF Reports: Using STARTPAGE=NEVER

For both the RTF and PDF destinations, a new page is generated for each PROC step. This means
that by default, any time anew procedure is executed, a new page is created in the output
document. The STARTPAGE= option can be used to control page generation. The
STARTPAGE=NEVER option tells ODS that a new page should not be generated between
procedures.

ods rtf style=rtf
file="&path\results\chl0 5 3.rtf"
bodytitle
st art page=never;

ods pdf style=printer
file="&path\results\chl0_5 3. pdf"
st art page=never;

titlel ' Common REPORT Probl ens';
title2 "Multiple Reports on a Page';
title3 'Product Sales';

proc report data=sashel p. prdsal e
nowd;
colum country product, actual ;
Portions of the code are not shown .
run;

title3 ' Shoe Sal es';
proc report data=sashel p. shoes
(where=(region in:('Cana', 'West', 'United) &
product in:('Men', 'Boot', 'Sport')))
nowd;
colum regi on product, sal es;
Portions of the code are not shown .

The PDF document shows the titles once per page.

364 Carpenter’'s Complete Guide to the SAS REPORT Procedure

Common REPORT Problems
Multiple Reports on a Page
Product Sales

Product
BED | CHAIR | DESK | SOFA | TABLE

Country

CANADA | $47,729 | $50.239 | $52,187 | $50,135 | $46,700

GERMANY | $46,134 [$47.105 | $48,502 | $55,060 | $49,197

USA $48.174 | $50.936 | $48,543 | $43.393 | $46.303

Product

Men's | Men's | Sport
Boot Casual | Dress Shoe

Region

Canada $385.613 | $441.903 | $920,101 | 5140389

United States $448.296 | S1372527 | $969.271 | $104.403

Westem Europe | $296,031 | $946,248 | $747,918 | $201,030

Destination: PDF Style: PRINTER

Notice that for the PDF
destination, only thefirst of
thetwo TITLE3 definitions
actually shows up in the
report.

Thereport for the RTF destination shows all three titles for each report:

Common REPORT Problenis
Maitiple Reports on a Page
Prodict Sales

Product
EBED |CHAIR| DESK| SOFA | TABLE

Country
CANADA $47,729| $50,239 [$52,187| $50,135| $46,700
GERMANY | $46,134| $47,105 | $42,502| $55,080| $49,197
UaA. $45,174| $50,936 | $48,543| $43,393| $46,303

Common REPORT Problens
Multiple Reporis on a Page
Shoe Sales

Product

Men's | Men's | Sport
Boot | Casual | Dress Shoe

Region
Canada $325613) $441,903| $920,101| $140,329
United States $442,206 | $1372527| $969,271 | $104,403
Western Europe | $296,031| $946,248| $747,918| $201,030

Destination: RTF Style: RTF

In the RTF destination, the
BODYTITLE option placesthetitle
within the body of the report.

All threetitlesaredisplayed (TITLE3
correctlv chanaes) for each table.

Chapter 10: Solving Other Common Report Problems 365

10.5.4 Aligning Columns across Reports

In the combined reports of the previous example, the left column of the two reports (COUNTRY
and REGION) contains similar values, but because of different character lengths the cells
themselves are not aligned. We can correct this through the use of the CELLWIDTH attribute

modifier.

titlel ' Conmon REPORT Problens';
title2 "Multiple Reports on a Page';

title3 'Aligned Col ums';

proc report data=sashel p. prdsal e

nowd;

colum country product, actual ;
define country /
define product /

defi ne act

run;

proc report

ual /

group style(colum)={cel | wi dt h=25m4};

across

1

anal ysi s sum
styl e(col um) ={cel | wi dt h=20mt}
format =dol I ar 8.

1 [
1

dat a=sashel p. shoes
(where=(region in:('Cana', 'Wst', 'United) &

pr oduct

nowd;

in:('Men', '"Boot', 'Sport')))

colum regi on product, sal es;

defi ne region / group style(colum)={cel |lw dt h=25m};
define product / across;
define sal es / anal ysis sum
styl e(col um) ={cel | wi dt h=20mm}
f or mat =dol | ar 8.
run;
Common REPORT Problems
Multiple Reports on a Page Becausethe call
Aligned Columns widths have been
Product controlled, the
BED CHAIR DESK SOFA TABLE columns are now
Country al i gned .
CANADA 47 729 £50 239 £52,187 £30,135 £46,700
GERMANY S46.134 £47.10% £45 502 £55.060 £49197
USA 545,174 350,936 348,543 343,393 340,303
Product
Men's Men's Sport
Boot Casual Dress Shoe
Region
Canada £385 613 £441 903 920,101 £140 3589
United States 5448 296 $1372527 5969271 S104 403
Western $296,031 3940,248 3747918 3201,030
Europe

Destination: PDF

Style: PRINTER

366 Carpenter’s Complete Guide to the SAS REPORT Procedure

Chapter 1 1
Details of the PROC REPORT Process

11.1 Step Sequence Review 368
11.2 Building a Simple Table with Summary Lines 371
11.3 Compute Block Processing 372

11.3.1 Creating a Computed Variable 372

11.3.2 Multiple Compute Blocks 373

11.3.3 Summary Lines and Compute Blocks in the Same Report 374

11.3.4 Using COMPUTE BEFORE and COMPUTE AFTER with Summary
Lines 375

11.4 Using the ACROSS Define Usage 378

An overview of the primary steps that take place during the generation of the report is presented
in Section 1.4.2. The events and process-timing issues that take place during the processing of the
compute block are discussed in Section 7.1. Although these steps and processing events are

discussed in more detail in this chapter, it is assumed that you have read and at least mostly
understood the previous sections.

The examplesin this chapter utilize a portion of the data table SASHELP.CLASS.

titlel 'Student Weight and Hei ght';
proc print data=sashel p.cl ass
(where=(age in(12,13))
keep=age sex wei ght height);
var age sex wei ght height;
run;

368 Carpenter’s Complete Guide to the SAS REPORT Procedure

Student Wei ght and Hei ght
bs Age Sex Wight Height
2 13 F 84.0 56.5 This data set contains age, height,
3 13 F 98.0 65.3 and weight infor mation on a set of
6 12 M 83.0 57.3 middle school students. This chapter
12 F 84.5 59.8 only uses 12 and 13 year olds.
9 13 M 84.0 62.5
10 12 M 99.5 59.0
13 12 F 77.0 56. 3
16 12 M 128.0 64.8
SEE ALSO

Although SAS Technical Report P-258 (1993, Chapter 10), SAS Guide to the REPORT
Procedure, Reference, Release 6.11 (1995, Chapter 5) and Lavery (2003) each discuss the
sequencing of eventsin detail, the concepts and terminology have not been updated to the reflect
the current versions of PROC REPORT. Russ Lavery’s“An Animated Guideto the SAS
REPORT Procedure,” which isincluded on the CD that accompanies this book, discusses the
REPORT processes in detail.

11.1 Step Sequence Review

Understanding the PROC REPORT process requires that we look at the sequence of processing
events. For simple tables, this understanding does not need to be terribly detailed. Asthe PROC
REPORT step becomes more complex, however, the details are critical if we are to successfully
code complicated compute blocks.

The following PROC REPORT step has two variables with a usage of GROUP, but does not
include any compute blocks or summary lines.

proc report data=sashel p.cl ass(where=(age in(12,13)))
out =out 11 1 nowd;
colum age sex n wei ght height;
define age [group;
define sex / group 'Gender' format=$%$6.;
define n [/ "N format=2.;
define weight / analysis mean ' Mean Wi ght' format=6.1;
define height / analysis mean ' Mean Hei ght' format=6.2;
run;

When this code is submitted, a series of internal steps (or phases) occurs, resulting in the final
report. The following diagram provides an overview of this process that takes place in memory.

Chapter 11: Details of the PROC REPORT Process 369

Submitted

Phases
Code
proc report;
column; Evaluation Phase
define; —»{ REPORT step code is
n o ol evaluated.
run; l

Sotun Phaca
~8IUp Fnase

Incoming data is read Incoming
and summarized as Data

required.

L

Computed Summary Information

Summary information is calculated
by the MEANS/SUMMARY engine
for the entire report and stored in

memory.
v ¥ !
Report Row Phase | |
The report is created ! |
one row at a time using : |
summarized data. I |
I
___________ |
v L 2
Compute The rows of the rgport are builll one at a
blocks. if time. If summary information is needed
any. a‘re #| for a report row, information is retrieved
] from the Computed Summary Information
memory location.
v

Report rows are written
to any open ODS
destinations including

LISTING.

Evaluation Phase

PROC REPORT begins by evaluating all of the PROC REPORT step statements. If any compute
blocks are present (there are none in this example), the SAS language elements and LINE
statements are set aside for later.

Setup Phase

Next, after the statements have been evaluated, the setup phase uses the MEANS/SUMMARY
engine to sort the input datafor ORDER and GROUPS (AGE and SEX) and computes any
summarizations (the MEAN statistic for HEIGHT and WEIGHT). When summarizations or
statistics are calculated, the results are held in the computed summary information areain
memory.

370 Carpenter’s Complete Guide to the SAS REPORT Procedure

Report Row Phase

After PROC REPORT is done with these preliminary setup phase tasks, the report can be built
row by row in the report row phase. In this phase, PROC REPORT builds each report row using
data from the input data set or, when needed, the computed summary information. If any compute
blocks are present, they are executed during this phase. It is during this phase that REPORT sends
each completed row to all the ODS destinations (LISTING, PDF, etc.) that are currently open.

The OUT= option can be used to generate an output data set that gives us a glimpse of how the
report rows are generated.

St udent Wei ght and Hei ght

Gbs Age Sex n \Wight Hei ght _BREAK_

1 12 F 2 80.75 58.0500
2 12 M 3 103.50 60.3667
3 13 F 2 91.00 60.9000
4 13 M 1 84.00 62.5000

Here isthe final report:

Student Wei ght and Hei ght

Mean Mean
Age Gender N Weight Height Thissimplereport containsno summary
12 F 2 80.8 58.05 lines and no computed variables.
M 3 103. 5 60. 37
13 F 2 91.0 60. 90
M 1 84.0 62.50

When there are no summary lines and no compute blocks, the movement of values from the input
data set to the final report is very straightforward, with al of the summarization taking place
during the setup phase, which is prior to the creation of even the first report row.

MORE INFORMATION
Section 7.1 discusses timing issues when compute blocks are included in the step.

Chapter 11: Details of the PROC REPORT Process 371

11.2 Building a Simple Table with Summary Lines

When summary lines are added to a ssimple (ho compute block) model, the processis only dightly

modified.

proc report data=sashel p.cl ass(where=(age in(12,13)))

out =out 11 2 nowd;
age sex n wei ght height;
define age [/ group;
define sex [/ group 'Gender'
define n / 'N format=2.;
define
define

col umm

wei ght / anal ysis nean ' Mean Wi ght'
hei ght / anal ysis nean ' Mean Hei ght'

f or mat =$6. ;

f ormat =6. 1;
f or mat =6. 2;

break after age / summarize suppress skip;

rbreak after / summari ze;
run;

The summary rows for this report are created in the setup phase of the PROC REPORT step, and
the resulting values are stored in memory in the computed summary information area. The
computed summary information includes summary rows that will be needed by the BREAK
statement (BREAK_='Age’) and the RBREAK statement (BREAK_=‘_RBREAK). These
summary rows can be seen in the data set created by the OUT= option (Obs 3, 6, and 7).

Sinple Table with Sunmary Lines

Cut put Data Set

bs Age Sex n Wi ght Hei ght
1 12 F 2 80. 750 58. 0500
2 12 M 3 103. 500 60. 3667
3 12 5 94. 400 59. 4400
4 13 F 2 91. 000 60.9000
5 13 M 1 84.000 62.5000
6 13 3 88. 667 61.4333
7 8 92.250 60.1875

_BREAK

Age

Age
RBREAK

All the summary information needed by a BREAK or RBREAK statement is generated in the
setup phase and is held in the computed summary information area of memory. The computed
summary information can also contain rows or values that exist because of COMPUTE BEFORE
or COMPUTE AFTER logic. However, this summary information is not written to the report
unlessitisaso tied to aBREAK or RBREAK statement with a SUMMARIZE option.

372 Carpenter’s Complete Guide to the SAS REPORT Procedure

Here isthe final report:

Sinple Table with Sunmary Lines

Mean Mean

Age Cender N Veight Height Thisreport containsa
12 F 2 80.8 58.05 summary linefor each
M 3 103.5 60. 37 ageaswd| asareport-
5 944 59.44 wide summary acr oss
all ages at the bottom of
13 F 2 91.0 60. 90 thereport.
M 1 84.0 62.50

3 88.7 61. 43

8 92.3 60. 19

11.3 Compute Block Processing

When compute blocks are added to the PROC REPORT step, the required processing steps
become more complex, but the fundamental process of creating one report row at atime during
the report row phase is the same.

11.3.1

Creating a Computed Variable

In this PROC REPORT step, the Body Mass Index (BMI) is calculated as a computed variable
from the values of the report items HEIGHT and WEIGHT (see Section 7.2.1).

proc report data=sashel p.cl ass(where=(age in(12,13)))
out=out 11_3_1 nowd;
colum age sex n wei ght height bm;

define age [/ group;

define sex [/ group 'Gender' fornat=%6.;

define n / "N format=2.;

define weight / analysis nean ' Mean Wi ght' format=6.1;
define height / analysis nmean ' Mean Hei ght' format=6.2;
define bmi / conputed format=4.1 'BM";

conpute bni;

bm = wei ght.nean / (hei ght.nmean*hei ght. nean) * 703;
endconp;
run;

During the setup phase, the MEAN statistics for HEIGHT and WEIGHT are calculated and stored
in the computed summary information. Then, during the report row phase, each report row is
processed one row at atime. First the report items, including the computed variable BMI, are
initialized to missing values. After row initialization, the report items are processed one at atime
from left to right (the order is taken from the COLUMN statement). It is during this process that

Chapter 11: Details of the PROC REPORT Process 373

the report items are written to the report, again from left to right one item at atime. If areport
item has an associated compute block, the compute block is executed when that report item is
processed.

At the point where the compute block for BMI is processed, the mean information for HEIGHT
and WEIGHT is available in the computed summary information. Thisinformation isretrieved
and used in the calculation of BMI.

conpute bm ;
bm = wei ght.nean / (hei ght.nean*hei ght. nmean) * 703;
endconp;

The processis repeated for each report row, and as each report row is completed the report items
are written to the final report (and to the output data set if an OUT= option has been specified).

All of the variablesin this PROC REPORT step appear on the COLUMN statement, and the only
variable defined in the compute block (BMI) is a computed variable. Consequently, this report
step does not define any temporary variables.

11.3.2

Multiple Compute Blocks

In this REPORT step, the measures for HEIGHT and WEIGHT are converted to centimeters and
kilograms respectively, and then the value of BMI is cal culated based on the converted val ues.
Each of these three compute blocks is associated with areport item, and each is executed (from
left to right) when that report item is encountered during the report row phase.

proc report data=sashel p.cl ass(where=(age in(12,13)))
out =out 11_3_2 nowd;
col um age sex n wei ght height bm;

DEFI NE statenents are not shown

conput e wei ght;
wei ght. nean = wei ght. nean/ 2. 2;
endconp;
conput e hei ght;
hei ght. nean = hei ght. nean*2. 54;
endconp
conpute bni;
bm = weight.nean / (height.nean*hei ght.nmean) * le4,
endconp;
run;

At the end of the setup phase, the computed summary information contains the untransformed
mean values for WEIGHT and HEIGHT. Since each of these report items also has a compute
block associated with it, the compute block is executed during the report row phase asiits
associated report item is encountered. As the report row is built, each of the compute blocksis
processed, and the results are written to the computed information summary as well asto the
report row that is being created. Because the value for BMI depends on the results of the first two
compute blocks, it is very important that the variables HEIGHT.MEAN and WEIGHT.MEAN
reflect the result of the preceding compute blocks' calculations.

374 Carpenter’s Complete Guide to the SAS REPORT Procedure

In this example, if BMI were to the left of either HEIGHT or WEIGHT on the COLUMN
statement, the calculation of BMI would fail. The following COLUMN statement would not
work:

colum age sex n wei ght bm height;

The value of HEIGHT (converted or otherwise) would not yet be available for usein the BMI
compute block. In fact, it would be missing altogether, and the user would receive an
“uninitialized variable” error.

11.3.3

Summary Lines and Compute Blocks in the Same
Report

When summary lines are requested in the PROC REPORT step, the summarization itself takes
place in the setup phase. During processing of the BREAK or RBREAK statementsin the report
row phase, this summary information is retrieved in the same manner asin the previous examples.

When a compute block for a computed variable also appearsin a PROC REPORT step, the report
row creation is handled in the same manner asin the examplein Section 11.3.2. The following
example combines both a computed variable and summary (BREAK and RBREAK) statements.

proc report data=sashel p.cl ass(where=(age in(12,13)))
out =out 11_3_3 nowd;
colum age sex n wei ght height bm;
DEFI NE st atenments are not shown .

break after age / summarize suppress skip;
rbreak after [/ summari ze;

conpute bni;

bm = wei ght.nean / (hei ght.nmean*hei ght.nean) * 703;
endconp;
run;

A review of the output data set (WORK.OUT11 3 3) shows that the automatic temporary
variable_ BREAK _issetto ‘Age on those report rows where the BREAK AFTER AGE
statement was executed (Obs 3 and 6) and the value of *_ RBREAK " where the RBREAK
statement was executed (Obs 7).

BM a Conmputed Vari abl e
Wth Summary Lines

bs Age Sex n Wei ght Hei ght bm _BREAK _

1 12 F 2 80.750 58.0500 16.8459

2 12 M 3 103.500 60.3667 19.9665

3 12 5 94.400 59.4400 18.7832 Age

4 13 F 2 91. 000 60.9000 17.2489

5 13 M 1 84.000 62.5000 15.1173

6 13 3 88.667 61.4333 16.5161 Age

7 8

92.250 60.1875 17.9023 _RBREAK_

Chapter 11: Details of the PROC REPORT Process 375

The report contains the correctly calculated value for BMI on the rows resulting from the BREAK
and RBREAK statements.

BM a Conputed Vari abl e
Wth Summary Lines

Mean Mean

Age Gender N Weight Height BM
12 F 2 80.8 58.05 16.8 The compute block for
M 3 103.5 60.37 20.0 BMI has been executed on
5 94.4 59.44 18.8 the summary rows
generated by the BREAK
13 F 2 91.0 60.90 17.2 and RBREAK statements.
M 1 84.0 62.50 15.1

3 88.7 61.43 16.5

8 92.3 60.19 17.9

11.3.4 Using COMPUTE BEFORE and COMPUTE AFTER with
Summary Lines

The processing steps become a bit more interesting when there are both COMPUTE BEFORE or
COMPUTE AFTER statements along with BREAK and RBREAK statements. Remember that
although the COMPUTE BEFORE or COMPUTE AFTER statement generates a summary row in
the computed summary information, that row is not written to the table unless thereis a
corresponding BREAK or RBREAK statement with a SUMMARIZE option.

Asyou read through this example, keep in mind that a compute block associated with a summary
row, e.g., COMPUTE BEFORE or COMPUTE AFTER, isonly executed when its corresponding
row in the computed summary information is being processed. Compute blocks associated with
report items, including computed variables, are executed for all report rows, including summary
rows. When two or more compute blocks are to be executed for any given report row, the report
item compute blocks are always executed first (left to right). For a summary row, any compute
blocks associated with that summary row are executed only after all the report items (and their
associated compute blocks) have been processed.

The following somewhat contrived example demonstrates both the timing and the relationships
between compute blocks and report items. In this report, percentages are calculated for a grouping
variable and, athough it isabit silly here, percentages are also cal culated across the entire report
aswell. In order to do this, two compute blocks are used to create two temporary variables that
hold the denominator for the percentage calculation. TOTN @ holds the overall number of
students while TOTAGE @ holds the total number of studentsin each age group.

proc report data=sashel p.cl ass(where=(age in(12,13)))
out =out 11 3 4a nowd;
col um age sex n percent;

define age [/ group;

define sex [/ group 'Gender' fornmat=%$6.;

define n / 'N format=2.;

define percent/ conputed format=percent8. 'Percent’;

376 Carpenter’s Complete Guide to the SAS REPORT Procedure

break after age / summarize suppress skip;
rbreak after / summari ze;

conput e before;
totn = n; O
endconp;

conput e before age;
totage = n; @
endconp;

conpute percent; ©
if _BREAK ='_RBREAK ' then percent=n/totn;
el se percent = n/ totage;

endconp;

run;

© The overall number of studentsis stored in the temporary variable TOTN. This compute block
is executed only once.

@® The temporary variable TOTAGE is assigned the value of the number of studentsin this age
group. This compute block is executed at the start of each age group.

© This compute block is used to calculate the computed variable PERCENT. Because PERCENT
isareport item, this compute block is executed for every report row.

The incoming datais summarized and stored in the computed summary information during the
setup phase. Therefore, at the beginning of the report row phase, the summary values are aready
available to be retrieved from memory when each of the compute blocks execute.

Summary Lines with a Percentage

bs Age Sex n per cent _BREAK_
During the setup phasethe
1 : 8 _RBREAK_ © incoming dataisread,
2 12 5 . Age O summarized, and stored in
3 12 F 2 0.40000 the computed summary
4 12 M 3 0.60000 information area of
5 12 5 1.00000 Age memory. Thisinformation
6 13 3 0.60000 Age ® is processed during the
7 13 F 2 0.66667 report row phase.
8 13 M 1 0. 33333
9 13 3 1. 00000 Age
10 8 1.00000 _RBREAK_

By reviewing the output data set, we can see that the presence of the COMPUTE BEFORE block
caused the _ RBREAK _information to be captured at the top of the report @ during the setup
phase. During report row phase, this compute block is executed, and the previously summarized
value of N isretrieved from memory (the computed summary information area) and then used to
create the temporary variable TOTN. It is at thistime that this row is also written to the output
data set.

Chapter 11: Details of the PROC REPORT Process 377

In the same fashion, the COMPUTE BEFORE AGE block ® caused the setup phase to
summarize age-group data into the computed summary information area. During the report row
phase, this compute block is executed when the second and sixth report rows are processed. It is at
thistimethat N is retrieved from memory and used in the calculation of the temporary variable
TOTAGE.

During the report row phase, the COMPUTE PERCENT block © is executed for each report row,
and the value of PERCENT is computed based on the values of the two temporary variables
TOTN and TOTAGE. This of course means that the value for PERCENT will be missing if either
of these two temporary variables are missing. When the first report row is processed, two compute
blocks will execute (@ and ©).

When more than one compute block is executed for a given report row, it can sometimes be
important to understand their order of execution. For compute blocks associated with report items,
the compute blocks are always executed from left to right—in the same order as the variables on
the COLUMN statement. It is aso important to keep in mind that COMPUTE BEFORE and
COMPUTE AFTER blocks aways execute after any compute blocks associated with report
items. This means that the results of all report item compute blocks are available for usein
COMPUTE BEFORE and COMPUTE AFTER blocks. This also means that these same report
item values can be altered and overwritten in these compute blocks.

When the first report row (Obs 3 in the previous output data set) is written, the count of 2 for the
12-year-old femalesis divided by 5, which isthe value for the TOTAGE temporary variable.
Then the format of PERCENTS. is applied to the result of the calculation and the first report row
is completed and sent to all open ODS destinations (in this case the LISTING destination is the
only open destination).

Here isthe final report as shown in the LISTING destination:

Summary Lines with a Percentage

Age Gender N Percent

12 F 2 40%

M 3 60%

5 100%

13 F 2 67%

M 1 33%

3 100%

8 100%

Processing and division happen the same way for the next report row (males' summary
information). Their count of 3 isdivided by the TOTAGE (5), and the results are formatted with
the PERCENTS. format and written to the report row. Finally, the BREAK AFTER AGE
statement executes and the total count of 5 is divided by TOTAGE (also 5). After theformat is
applied, the calculated value of 100% is written to the report row.

This same processing is repeated for the 13-year-old section. Then on the last report row of the
report, when it is time to process the report row generated by the RBREAK statement, the
summarized value for TOTN is retrieved from memory and used in the division for PERCENT.

378 Carpenter’s Complete Guide to the SAS REPORT Procedure

It istempting to want to assign sequential processing like takes placein the DATA step to the
report row phase. However, PROC REPORT holds all the needed summary information in
memory, so it isavailable for both COMPUTE BEFORE and COMPUTE AFTER processing
during the construction of each report row. The processis different enough from the DATA step
that we can confuse what is actually happening if we depend too much on our DATA step
processing knowledge. This becomes even more apparent as we add a report item with a define
usage of ACROSS.

11.4 Using the ACROSS Define Usage

Although adding a variable with a define usage of ACROSS changes how we address the columns
of the report, the addition of an ACROSS variable causes only a minor change in the timing of
compute block execution. Because PROC REPORT assigns absolute column numbers at the end
of the setup phase, they are always available to be used in a compute block. Most people do not
use these absol ute column names for simple reports. However, when a PROC REPORT step has a
compute block that is meant to be used on the ACROSS variable, absolute column names must be
used. The absolute column names ensure that there is no ambiguity about how report items or
summarized information should be used in the creation of the final report.

The following example is only slightly modified from the one discussed in Section 11.3.4. The
variable SEX now has a define usage of ACROSS, and the BREAK statement has been removed.

Here isthe REPORT step:

proc format ;
val ue $gender

F' = 'Fenal e
"M = "'"Mle';
run;

proc report data=sashel p.cl ass(where=(age in(12,13)))
out =out 11_4 nowd;
colum age sex, (n percent);

define age [/ group;

define sex [/ across 'Gender' fornat=%$gender.;
define n / "N format=2.;

define percent/ conputed format=percent8. 'Percent';

rbreak after / summarize dol;

conpute before; @
toth = _c2_ + _c4_;
endconp;

conpute before age; @
totage = _c2_ + _c4_;
endconp;

Chapter 11: Details of the PROC REPORT Process 379

conpute percent; ©
if BREAK = RBREAK ' then do; @
* Percentage for a given age;

c3 = _c2_ /totn;
¢c5 = _c4d4_ /totn;

end;

el se do; ©

* Percentages for a given age;
c3 = _c2_/totage;
c5 = _c4_/totage;

end;

endconp;

run;

This generates the following report:

Summary Lines with a Percentage
Report with an ACRGCSS Vari abl e

Gender Thenumber of studentsfor each age group
Fenul e Mal e ispresented, and the per centages within age
Age N Percent N Percent group and across all ages are calculated.
12 2 40% 3 60%
13 2 67% 1 33% Absolute column numbersare added for
== == reference.

4 50% 4 50%

. _c. @B 4. _C

© The overall total number of studentsis determined.

® Thetotal number of students within this age is determined.
© Percentages in this report item compute block are calcul ated.
® The percentages across all ages are calculated.

© The percentages within each age are calcul ated.

In the previous example (see Section 11.3.4), we were able to use simple assignment statements to
create TOTN and TOTAGE. With theintroduction of the ACROSS variable, PROC REPORT
must now retrieve the N for genders individually on the same report row (@ and @) in order to
acquire the correct total for the division. The absol ute column names prevent any ambiguity about
exactly which value(s) of the summarized N is being used in the compute block.

380 Carpenter’s Complete Guide to the SAS REPORT Procedure

Thevaluesfor N (_ C2_and _C4) were determined during the data summarization process and
have aready been stored in the computed summary information. The values for PERCENT (_C3__
and _C5) are determined in acompute block ©. Here is aview of the output data set:

Summary Lines with a Percentage

Report with an ACRCSS Vari abl e

Obs Age _C2_ 3. A _C5_ _BREAK_
1) 4 4 _ RBREAK
2 12 2 . 3 . Age
3 12 2 0. 40000 3 0. 60000
4 13 2 0. 40000 1 0. 20000 Age
5 13 2 0. 66667 1 0. 33333
6 4 0. 50000 4 0. 50000 _RBREAK_

Notice that columns _C3 and _C5 have missing values for Obs 2 and not for Obs 4, even though
both are summary rows that were generated as a result of the COMPUTE BEFORE AGE block

@ . nitialy this may seem confusing; however, the COMPUTE BEFORE AGE block executes
after the compute block for the report item PERCENT. Consequently, for Obs 2 the value for the
temporary variable TOTAGE has not yet been assigned. Since Obs 1, 2 and 4 are not report rows
(they will not appear in the final report), the only relevant columns on these rows are_C3_and
C5(the 2 columns that represent the N for every gender).

The PERCENT values (C3_and _C5) are only of importance on report rows that are actually
written to the final report. The final report results would be the same if the code for PERCENT
were changed to the following:

conpute percent; ©
if _BREAK ='_RBREAK ' then do;

~€c3_ = c2 /totn;
~c5_ = cd4 /totn;
end;
else if _BREAK =' ' then do;
c3 = _c2_/totage;
c5 = _c4_/totage;
end;
endconp;

Theresulting SAS data set shows that the calculation for PERCENT was not done on the BREAK
BEFORE AGE observations created from the report rows.

Summary Lines with a Percentage
Report with an ACRCSS Vari abl e

Obs Age _Cc2_ _C3_ e _C5_ _BREAK
1 . 4 4 _RBREAK
2 12 2 . 3 . Age
3 12 2 0. 40000 3 0. 60000
4 13 2 . 1 . Age
5 13 2 0. 66667 1 0. 33333
6 4 0. 50000 4 0. 50000 _RBREAK

Chapter 11: Details of the PROC REPORT Process 381

Before each report row is processed, the report row items are initialized to missing. Then during
the processing of the report row, the calculation for PERCENT is performed. Both _C3_and
_C5_represent PERCENT, so when either of these report items is encountered, the PERCENT
compute block is executed.

MORE INFORMATION
The SAS program S11_4c.sas demonstrates that the PERCENT compute block is executed
multiple times for each report row.

382 Carpenter’s Complete Guide to the SAS REPORT Procedure

Appendix 1

Exercise Solutions

Al.1 Solutions to Chapter 1 Exercises 383
Al1.2 Solutions to Chapter 2 Exercises 384
Al.3 Solutions to Chapter 3 Exercises 389
Al.4 Solutions to Chapter 4 Exercises 391
Al1.5 Solutions to Chapter 5 Exercises 394
Al.6 Solutions to Chapter 6 Exercises 397
Al1.7 Solutions to Chapter 7 Exercises 402
A1.8 Solutions to Chapter 8 Exercises 408

A1.1

Solutions to Chapter 1 Exercises

1. What arethethree processing phases of a PROC REPORT step?

Evauation Determine what needs to be done.

Setup Process and summarize incoming data as required. Create the computed
summary information table.

Report row Build the report table one row at atime.

384 Carpenter’s Complete Guide to the SAS REPORT Procedure

2. What isthe difference between temporary variables and report variables?

Report variables (report items) are noted on the COLUMN statement and may or may not
appear on the report itself.

Temporary variables never appear on the COLUMN statement and never appear in the report.

3. What two PROC REPORT statement optionswill you use on virtually every PROC
REPORT statement?

DATA= declares the name of the incoming datatable.
NOWD closes the interactive report system. Alternates include NOFS and
NOWINDOWS.

A1.2 Solutions to Chapter 2 Exercises

1. Thedatatable SASHEL P.ORSALES contains sales data from a retail outdoor sports
clothing and equipment store. Generate areport that liststotal PROFIT for each YEAR.
Apply the DOLLAR. format to the total PROFIT.

titlel 'Total profit per year';
proc report data=sashel p.orsal es nowd;
colum year profit;
define year [/ group
define profit / analysis sumfornmat=dollarl5.2;
run;

Total profit per year

Year Profit in USD
1999 $13, 272, 490. 82
2000 $16, 159, 587. 28
2001 $13, 754, 040. 02
2002 $15, 898, 930. 35

2. Building on the solution for Exercise 1.

a. Listtheprofit for each PRODUCT_LINE asa subgroup of YEAR.

titlel 'Total profit per year';
title2 'Separated by Product Line';
proc report data=sashel p. orsal es nowd;
colum year product_line profit;
define year / group;
define product_line / group ;
define profit / analysis sumformat=dollarl5.2
run;

Appendix 1. Exercise Solutions 385

Total profit per year
Separ at ed by Product Line

Year Product Line Profit in USD
1999 Children $541, 552. 09
Cl ot hes & Shoes $4, 189, 628. 63
Qut door s $2, 887, 433. 36
Sports $5, 653, 876. 74
2000 Chil dren $618, 803. 21
d ot hes & Shoes $5, 009, 983. 42
Qut door s $3, 585, 371. 04

Portions of the table are not shown .

b. Repeat with PRODUCT_LINE asan ACROSS variable.

titlel 'Total profit per year';
title2 'Separated by Product Line';
proc report data=sashel p. orsal es nowd;
colum year product_line,profit;
define year / group;
define product_line / across ;
define profit / analysis sum format=dollar15. 2,
run;

Total profit per year
Separ at ed by Product Line

Product Line
Chil dren d ot hes & Shoes Qut door s Sports
Year Profit in USD Profit in USD Profit in USD Profit in USD
1999 $541, 552. 09 $4, 189, 628. 63 $2, 887, 433. 36 $5, 653, 876. 74
2000 $618, 803. 21 $5, 009, 983. 42 $3, 585, 371. 04 $6, 945, 429. 61
2001 $538, 462. 06 $4, 158, 502. 80 $3, 222, 898. 41 $5, 834, 176. 75
2002 $718, 302. 42 $4, 739, 806. 53 $3, 704, 810. 34 $6, 736, 011. 06

3. Building on the solution for Exercise 2a, add the following to thereport:

= Specify text for at least one column.
= Usethe SPLIT=option.
= UsetheLINE statement to create a break after each year.

= Createauser-defined format that redisplaysthe product line“ Sports’ to
“Sports Equipment”.

= Addalineof text after thereport using the LINE statement.

386 Carpenter’s Complete Guide to the SAS REPORT Procedure

proc format;

titlel 'Total

val ue $sequip

'Sports' = 'Sports Equi pnent';

run;

profit per year';

title2 'Separated by Product Line';

proc report data=sashel p.orsales nowd split="*";

colum year product_line profit;

define year /

group,

define product_line

/

define profit /

group
f =$sequi p.

' Product *Groups' ;
anal ysi s

sum f or mat =dol | ar 15. 2

" Annual *Profit';

conmpute after year;

line " ';
endconp;
conpute after;

line @5 'Profits in US dollars';

endconp;
run;

Tot al

Year

1999

2000

2001

profit per year

Pr oduct

G oups

Chi l dren

C ot hes & Shoes
Qut door s

Sports Equi prent

Chi | dren
C ot hes & Shoes
Qut door s
Sports Equi prent

Chi | dren
C ot hes & Shoes
Qut door s
Sports Equi prent

Separ at ed by Product Line

Annual

Profit

$541, 552. 09
$4, 189, 628. 63
$2, 887, 433. 36
$5, 653, 876. 74

$618, 803. 21
$5, 009, 983. 42
$3, 585, 371. 04
$6, 945, 429. 61

$538, 462. 06
$4, 158, 502. 80
$3, 222, 898. 41
$5, 834, 176. 75

(continued)

Appendix 1. Exercise Solutions 387

2002 Children $718, 302. 42
d ot hes & Shoes $4, 739, 806. 53
Qut door s $3, 704, 810. 34

Sports Equi pnent $6, 736, 011. 06

Profits in US dollars

4. Thefollowing step contains no typos and all the variables exist; why will it fail?

proc report data=sashel p.class nowd;

colum age sex, hei ght;
define age / group;
defi ne sex /across
defi ne hei ght/di spl ay;

run;

HEIGHT is nested within SEX; consequently PROC REPORT needs a statistic to
display. None are available because HEIGHT has a usage of DISPLAY . Changing the
usage of HEIGHT to ANALY SIS alows the default statistic, SUM, to be used.

5. Wewould liketo create a numeric counter (CNT) for each age group, and then we
want to display the counter along with the age group. We ar e expecting the
following codeto result in atable with one row per age group. What goes wrong and
how can it be fixed?

proc sort data=sashel p. cl ass out =cl 1;

by age;
run;

data cl ass;

set cl1;
by age;

if first.

run;

age then cnt+1

title 'Count the Age G oups';
proc report data=class nowd;

col umm
define
define
defi ne
defi ne
run;

cnt age sex, height;
cnt / order;

age / group

sex /across;

hei ght/ anal ysi s nean;

388 Carpenter’s Complete Guide to the SAS REPORT Procedure

Count the Age G oups

Sex
F M
cnt Age Hei ght Hei ght
1 11 51.3
57.5
2 12 59.8
56.3 .
57.3
59
64.8
3 13 56.5
65. 3 .
62.5

Portions of the table are not shown .

The counter, CNT, is built successfully in the DATA step (an example in Section 7.2.1 builds
this counter in a compute block, therefore avoiding the DATA step). However, because the
ORDER usage implies adetail report, the GROUP usage cannot be applied. Groups can be
nested, so changing the define usage for CNT to GROUP solves the problem.

proc sort data=sashel p. cl ass out=cl 1;
by age;
run;

dat a cl ass;

set cl1;

by age;

if first.age then cnt+1;
run;

title 'Count the Age G oups';
proc report data=class nowd;
colum cnt age sex, hei ght;
define cnt / group;

define age / group;

defi ne sex /across;

defi ne hei ght/anal ysis nean;

run;

Appendix 1. Exercise Solutions 389

Count the Age G oups
Sex
F M
cnt Age Hei ght Hei ght
1 11 51.3 57.5
2 12 58. 05 60. 366667
3 13 60. 9 62.5
4 14 63. 55 66. 25
5 15 64.5 66. 75
6 16 . 72

A1.3 Solutions to Chapter 3 Exercises

1. Thedatatable SASHEL P.ORSALES contains salesdata from aretail outdoor
sportsclothing and equipment store. Create areport that showstotal PROFIT for
each PRODUCT _LINE within each year. You can build on theresults of Exercise 3
in Chapter 2.

Using the BREAK and RBREAK statements:

= Additionally summarize across product linesand across years.
= Experiment with the SUPPRESS, SUMMARIZE, and SKIP options.

titlel 'Total profit per year';
title2 'Separated by Product Line';
title3 '"Profit Summaries';
proc report data=sashel p.orsales nowd split="*";
colum year product_line profit;
define year [/ group;
define product_line
/ group
' Product *G oups' ;
define profit/ analysis
sum f or mat =dol | ar 15. 2
"Annual *Profit';

break after year / sunmarize suppress ol skip;
rbreak after / summari ze dol skip;

conpute after;

line @5 'Profits in US doll ars';
endconp;
run;

390 Carpenter’s Complete Guide to the SAS REPORT Procedure

Although the SKIP statement isincluded on the RBREAK statement, it does nothing.
Both the SKIP and SUPPRESS options are ignored on the RBREAK statement. Hereis

the table:
Total profit per year
Separated by Product Line The PDF destination, using the
T JOURNAL style here, doesnot utilize
Progict Anmoal the OL or t_he DOL optionsthat have
Year Groups Profit been specified in the BREAK and
1999 Children €541 552.09 RBREAK Statementsrespectively. Nor
Clothes & Shoes 54:189:528_53 doesthe PDF. desination make use of
i $2.887.433.36 the SKIP option in the BREAK
Sparts 55,653 B76.74 U
RO L All of the destinationsignore the SKI1P
L e LG LR =l option on the RBREAK statement.
Clothes & Shoes §5,000,933.42
QOutdoors 53,585 371.04
Sports $6,945,420 61
$16,159,587.28
2001 Children 5538 462.06
Clothes & Shoes 54158 502.80
QOutdoors $3,222 898.4
Sports $5,834 176.75
§13,754,040.02
2002 Children 5718,302.42
Clothes & Shoes 54,739, 806.53
Ouidoors $3,704,810.34
Sports 56,736,011.06
$15,898,930.35
$59,085,048.46
Profits in US deollars

2. Thedatatable SASHELP.RETAIL contains quarterly salesinformation. For each
YEAR usethe quarterly salesto calculate the following sales statistics:

= number of quarters (why might we need this statistic, when there are always
four quartersin ayear?)

" mean quarterly sales
= standard deviation of the quarterly sales

titlel "Quarterly Retail Sales';
title2 "Quarterly Sales Statistics';
proc report data=sashelp.retail nowd;
colum year sales,(n nmean std);
define year / group w dt h=4;
define sal es/ anal ysis;
format sal es;
run;

Appendix 1. Exercise Solutions 391

The format for SALES has been turned off. Otherwise all three statistics would receive
the same format. Notice the N size for 1994. The data only contains the first two quarters
for that year.

YEAR
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994

Ret ai

Quarterly Retail Sales
Quarterly Sales Statistics

sales in nmllions of $

=)

mean

NDADMBMAMAMAEAEDAMDMDDMDMDALDN

257.5 30.
287 31.
313 24.

348.25 35.
382 29.
399 46.

480.5 50.
541 45.
603 40.
648 36.

683.5 60.

736.75 48
801 82.

894.5 97.

937 86.

std
621343
208973
508502
71531
473152
238512
348784
350487
963398
147845
135957
030372
190835
988095
267027

A1.4 Solutions to Chapter 4 Exercises

1. Thedatatable SASHEL P.ORSALES contains sales data from aretail outdoor
sports clothing and equipment store. Generate areport that liststotal PROFIT for
each PRODUCT _LINE within each YEAR. List the products ACROSS thereport.
You might want to build on theresults of Exercise 2b in Chapter 2.

Include the following:

titlel 'Tota

HEADLINE and HEADSKIP options

repeated charactersin the spanning header for product line

profit per year';

title2 'Separated by Product Line';

proc report data=sashel p.orsal es
headl i ne headski p nowd;

year product _line,profit;

col um
define
define

defi ne
run;

year / group;

product _line / across

'- Products -

profit / analysis sum format=dollarl5.2

392 Carpenter’s Complete Guide to the SAS REPORT Procedure

Thefollowing LISTING table uses the SAS Monospace font so that the horizontal lines
are correctly rendered.

Total profit per year

Year

Separated by Product Line

Children Clothes & Shoes

Profit in USD

Profit in USD

Products

Outdoors
Profit in USD

Sports
Profit in USD

1999 $541,552.09 $4,189,628.63 $2,887,433.36 $5,653,876.74
2000 $618,803.21 $5,009,983.42 $3,585,371.04 $6,945,429.61
2001 $538,462.06 $4,158,502.80 $3,222,898.41 $5,834,176.75
2002 $718,302.42 $4,739,806.53 $3,704,810.34 $6,736,011.06

2. Thedatatable SASHELP.RETAIL containsquarterly salesinformation. List the
columns YEAR, DATE, and SALES. Do the following:

= UseYEAR asagrouping variable.
= Usethe PANEL S=, BOX, and PSPACE= options.

titlel '"Quarterly Retail Sales';
title2 'Creating Miultiple Panels';
proc report data=sashel p.retai
nowd panel s=99 box pspace=10;
year date sal es;
year [/ group;
date / display;
sal es/ anal ysis;

col um
define
define
define
run;

Because the usage of DATE isDISPLAY, adetail-level report is created, and groups are
not formed. Even though groups are not formed, GROUP still causes the rowsto be ordered
on YEAR and dictatesthat YEAR is displayed only on thefirst row of each year.

Appendix 1. Exercise Solutions 393

Quarterly Retail Sales
Creating Multiple Panels
Retail Retail
zales in zales in
millions millions
YEAR DATE of $ YEAR DATE of §
1980 8001 $220 8504 $448
8002 $257 1986| 86Q1 $419
80a3 $258 86Q2 b472
8004 5295 8603 $490
1981| 8101 5247 8604 $541
8102 $292 1987| &va1 $484
8103 $286 a7a2 $543
2104 i 3] o709 HRCAD

.. . Portions of the table are not shown . . .

3. Building on Exercise 2 in this section, usethe WIDTH= and SPACING= options.

titlel '"Quarterly Retail Sales';
title2 '"Creating Multiple Panels';
title3 'Using DEFINE Statenent Options';
proc report data=sashelp.retail
nowd panel s=99 box pspace=10;
colum year date sal es;
define year / group w dt h=4;
define date / display spacing=7;
define sal es/ anal ysis wi dth=8;
run;

Quarterly Retail Sales
Creating Multiple Panels
Using DEFINE Statement Options
Retail Retail
sales sales
in in
millions millions
YEAR DATE of & YEAR DATE of §
1980 aoq1 $220 85a3 $412
gon2 $257 8504 5448
aon3 $258 1986 86a1 5419
go04 $295 8602 H472
1981 a1a1 5247 8603 5490
g1Q2 $292 8604 $541
81Q3 5286 1987 aroi 5484
2104 %992 azne $ca9

... Portions of the table are not shown . . .

394 Carpenter’s Complete Guide to the SAS REPORT Procedure

A1.5 Solutions to Chapter 5 Exercises

1. Thedatatable SASHELP.ORSALES contains salesdata from aretail outdoor
sportsclothing and equipment store. Createareport that showstotal PROFIT for
each PRODUCT _LINE within each YEAR. Y ou might wish to build on theresults
of Exercise 3in Chapter 2

Compute the percentage of annual salesthat can be attributed to each product line.

proc format;
val ue $sequip
'Sports' = 'Sports Equi pnent';
run;

titlel 'Total profit per year';
title2 'Separated by Product Line';
proc report data=sashel p.orsales nowd split="*";
colum year product_line profit percent;
define year / group;
define product_line
/ group
f =$sequi p.
' Product *G oups' ;
define profit / analysis
sum f or mat =dol | ar 15. 2
" Annual *Profit';
define percent/ conputed ' Product*Percent age'
f or mat =per cent 10. 2;

conput e before year;
total = profit.sum @

endconp;

conpute after year;
line' '; @

endconp;

conput e percent;

percent = profit.sumtotal; ©
endconp;
conpute after;

line " ';

line @5 'Profits in US doll ars';
endconp;
run;

O Thetotal profits for the year are saved in the temporary variable TOTAL. Thisvaueis not
displayed on the table.
® A blank lineis written after each year.

© The percentage is calculated using the annual total @ as the denominator.

Appendix 1. Exercise Solutions 395

Total profit per year
Separ at ed by Product Line

Pr oduct Annual Pr oduct
Year G oups Profit Percentage
1999 Children $541, 552. 09 4.08%
C othes & Shoes $4, 189, 628. 63 31.57%
Qut door s $2, 887, 433. 36 21. 76%
Sports Equi pment $5, 653, 876. 74 42.60%
2000 Children $618, 803. 21 3.83%
Cl ot hes & Shoes $5, 009, 983. 42 31. 00%
Qut door s $3, 585, 371. 04 22.19%
Sports Equi pnent $6, 945, 429. 61 42.98%
2001 Children $538, 462. 06 3.91%

Portions of the table are not shown .

2. Building on the solution to Exercise 1 in this section, add a summary linefor each
year usinga BREAK statement.

= Do you need to do anything ‘extra’ for the per centage on thissummary line?
= What if you also used an RBREAK statement?

The following BREAK statement can be used.

break after year/ sunmarize suppress skip;

Total profit per year
Separ at ed by Product Line

Pr oduct Annual Pr oduct

Year G oups Profit Per cent age
1999 Children $541, 552. 09 4.08%
Cl ot hes & Shoes $4, 189, 628. 63 31.57%
CQut door s $2, 887, 433. 36 21. 76%
Sports Equi pnent $5, 653, 876. 74 42. 60%
$13, 272, 490. 82 100. 00%
2000 Children $618, 803. 21 3.83%
Cl ot hes & Shoes $5, 009, 983. 42 31. 00%
Qut door s $3, 585, 371. 04 22.19%
Sports Equi prent $6, 945, 429. 61 42.98%
$16, 159, 587. 28 100. 00%
2001 Children $538, 462. 06 3.91%

Portions of the table are not shown .

396 Carpenter’s Complete Guide to the SAS REPORT Procedure

The percentage on the report-wide summary line will be calculated incorrectly if an
RBREAK statement is added.

break after year/ sunmarize suppress skip;
rbreak after / summmari ze;

Portions of the table are not shown .

2002 Children $718, 302. 42 4.52%
Cl ot hes & Shoes $4, 739, 806. 53 29. 81%
Qut door s $3, 704, 810. 34 23. 30%

Sports Equi pnent $6, 736, 011. 06 42. 37%
$15, 898, 930. 35 100. 00%

$59, 085, 048. 46 371. 63%

Profits in US dollars

The overall summary line shows asilly percentage. Thisis because the overall total profit
isbeing divided by TOTAL, which in this case is the total from 2002.

3. Building on the solution to Exercise 2 in this section, use the OUT= option to seethe
final output datatable.

proc report data=sashel p.orsal es
out= yrdat nowd split="*";
colum year product_Iline profit percent;
define year [/ group;
define product_line

Portions of the code are not shown .
run;
title3 "dinpse of the Qutput Data Table';

proc print data=yrdat;
run;

Appendix 1. Exercise Solutions 397

Here isthe result of the PROC PRINT:

Total profit per year

Separ at ed by Product Line

G inpse of the Qutput Data Table

bs Year Product_Line Profit percent _BREAK_
1 1999 13272490. 82 . Year
2 1999 Children 541552. 09 0.04080
3 1999 dothes & Shoes 4189628. 63 0.31566
4 1999 CQutdoors 2887433.36 0.21755
5 1999 Sports 5653876. 74 0.42598
6 1999 13272490.82 1.00000 Year
7 2000 16159587.28 1.21752 Year
8 2000 Children 618803.21 0.03829
9 2000 Cothes & Shoes 5009983. 42 0.31003

10 2000 OQutdoors 3585371. 04 0.22187

Portions of the table are not shown .

A1.6 Solutions to Chapter 6 Exercises

1. Usingthe SASHELP.RETAIL quarterly salesdata, for each year calculatethe
following sales statistics: N, MEAN, SUM, and STDERR. Use aliases and a DEFINE
statement for each statistic. You might want to build on theresults of Exercise2in
Chapter 3.

titlel 'Yearly Statistics';
title2 'Based on Quarterly Sal es';
proc report data=sashelp.retail nowd split="*";
colum year sal es sal es=s_nean sal es=s_n sal es=s_se;
define year / group;
define sales / sum 'Total *Sal es';
define s_nean / nean 'Average*Sales';
define s_.n [/ n "Quarters' f=8.;
define s_se [/ stderr 'Standard*Error';
run;

398 Carpenter’s Complete Guide to the SAS REPORT Procedure

Yearly Statistics
Based on Quarterly Sal es
Total Average St andard
YEAR Sal es Sal es Quarters Error
1980 $1, 030 $258 4 $15
1981 $1, 148 $287 4 $16
1982 $1, 252 $313 4 $12
1983 $1, 393 $348 4 $18
1984 $1, 528 $382 4 $15
1985 $1, 596 $399 4 $23
1986 $1, 922 $481 4 $25
1987 $2, 164 $541 4 $23
1988 $2, 412 $603 4 $20
1989 $2,592 $648 4 $18
1990 $2,734 $684 4 $30
1991 $2, 947 $737 4 $24
1992 $3, 204 $801 4 $41
1993 $3,578 $895 4 $49
1994 $1, 874 $937 2 $61

A very similar report could have been generated without the use of aliases.

titlel '"Yearly Statistics'
title2 'Based on Quarterly Sales';
proc report data=sashelp.retail nowd split="*";
colum year sales, (sumnean n stderr);
define year [/ group
define sum [/ 'Total *Sal es'
define mean / 'Average*Sal es';
define n / 'Quarters' f=8.;
define stderr / 'Standard*Error';
run;

Appendix 1. Exercise Solutions 399

Yearly Statistics
Based on Quarterly Sal es

Retail sales in nmllions of $

Tot al Aver age
YEAR Sal es Sales Quarters
1980 $1, 030 $258 4
1981 $1, 148 $287 4
1982 $1, 252 $313 4
1983 $1, 393 $348 4
1984 $1, 528 $382 4
1985 $1, 596 $399 4
1986 $1, 922 $481 4
1987 $2, 164 $541 4
1988 $2,412 $603 4
1989 $2, 592 $648 4
1990 $2,734 $684 4
1991 $2, 947 $737 4
1992 $3, 204 $801 4
1993 $3, 578 $895 4
1994 $1, 874 $937 2

St andar d
Error
$15
$16
$12
$18
$15
$23
$25
$23
$20
$18
$30
$24
$41
$49
$61

2. Usingthe SASHELP.RETAIL quarterly salesdata, for each year display the
SALES amount for each quarter (DATE) in a separate column (ACROSS). Why isa

format such as QTR. needed on DATE?

titlel 'Quarterly Sal es'

proc report data=sashel p.retail nowd;
colum year date, sal es;
define year [/ group
define date [/ across f=qtr.
define sales / sum
run;

400 Carpenter’s Complete Guide to the SAS REPORT Procedure

Quarterly Sal es
DATE

1 2 3 4
Ret ai | Ret ai | Ret ai | Ret ai |
sales in sales in sales in sales in
mllions mllions mllions mllions
YEAR of $ of $ of $ of $
1980 $220 $257 $258 $295
1981 $247 $292 $286 $323
1982 $284 $307 $318 $343
1983 $299 $351 $359 $384
1984 $342 $388 $385 $413
1985 $337 $399 $412 $448
1986 $419 $472 $490 $541
1987 $484 $543 $542 $595
1988 $546 $607 $616 $643
1989 $594 $666 $662 $670
1990 $606 $674 $705 $749
1991 $703 $709 $728 $807
1992 $692 $797 $826 $889
1993 $758 $909 $920 $991

1994 $876 $998

Because DATE does not repeat across years, dates tend not to work well as ACROSS
variables. We get around this by assigning a format that resultsin avalue that does
repeat. In this case the QTR. format maps datesinto avalue of 1, 2, 3, or 4.

3. Building on theresults of Exercise 2 in this section, add a spanning header for
DATE and modify the column labels. Isit necessary to nest SALES within DATE?

titlel 'Quarterly Sal es'
proc report data=sashel p.retail nowd;
colum year date, sal es;
define year [/ group
define date / across f=qtr. '- Quarter -
define sales / sum' Sal es';
run;

Appendix 1:

Exercise Solutions 401

Quarterly Sal es

YEAR
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994

Quarter

1 2
Sal es Sal es
$220 $257
$247 $292
$284 $307
$299 $351
$342 $388
$337 $399
$419 $472
$484 $543
$546 $607
$594 $666
$606 $674
$703 $709
$692 $797
$758 $909
$876 $998

3 4
Sal es Sal es
$258 $295
$286 $323
$318 $343
$359 $384
$385 $413
$412 $448
$490 $541
$542 $595
$616 $643
$662 $670
$705 $749
$728 $807
$826 $889
$920 $991

SALESarenested
within DATE so that
the sales values will
appear in the columns
under each quarter
number. This nesting
would not be
necessary if we had
not assigned a usage of
ACROSSto DATE.

4. Thedatatable SASHELP.ORSALES contains sales data from aretail outdoor
sportsclothing and equipment store. Create a separatereport BY YEAR that shows
total PROFIT for each PRODUCT_LINE and PRODUCT_CATEGORY.

Turn off the BY LINE option and placetheyear in thetitleusing the #BYVAL title

option.

opti ons nobyli ne;

titlel
title2

(1]
'Total Profit';
"#byval1'; @

proc report data=sashel p.orsales nowd split="*";
by year; ©
colum product _|ine product_category profit;

define product_line

run;

© The BYLINE is suppressed.

/ group

' Product *Groups' ;
define product _category

/ group

' Product *Cat egory' ;
define profit / analysis

sum f or mat =dol | ar 15. 2

"Profit';

® The#BYVALL1 optionisreplaced by the value of thefirst BY variable (TITLE).
Notice that the TITLE statement does not have to appear within the step that defines
the BY variable.

© For the LISTING destination the BY statement generates a page for each value of

YEAR.

402 Carpenter’s Complete Guide to the SAS REPORT Procedure

Here is the report for Y EAR=2000:

Total Profit
2000 © ©
Pr oduct Pr oduct
G oups Cat egory Profit
Chil dren Chil dren Sports $618, 803. 21
Cl ot hes & Shoes Cl ot hes $2, 582, 318. 17
Shoes $2, 427, 665. 25
Cut door s Qut door s $3, 585, 371. 04
Sports Assorted Sports Articles $2, 799, 503. 47
Gol f $1, 022, 274. 78
I ndoor Sports $414, 078. 13
Racket Sports $540, 104. 52
Runni ng - Joggi ng $626, 185. 56
Swi m Sports $185, 326. 66
Team Sports $262, 704. 77
W nter Sports $1, 095, 251. 73

A1.7 Solutions to Chapter 7 Exercises

1. Thedatatable SASHELP.ORSALES contains salesdata from aretail outdoor
sportsclothing and equipment store. Create areport that showstotal PROFIT and
per centage of annual salesfor each PRODUCT _L INE within each year. Y ou might
want to build on the results of Exercise 1in Chapter 5.

Include a summary line (BREAK) for each product line and atotal summary line
(RBREAK). Use a compute block to change the percentage on the report summary to
missing.

proc format;
val ue $sequip
' Sports' = 'Sports Equi pnent’;
run;

titlel 'Total profit per year';
title2 'Separated by Product Line';
proc report data=sashel p.orsales nowd split="*";
colum year product_line profit percent;
define year [group;
define product _line
/ group
f =$sequi p.
' Product *G oups' ;
define profit / analysis
sum f or mat =dol | ar 15. 2
" Annual *Profit';
define percent/ conputed ' Product*Percent age'
f or mat =per cent 10. 2;

Appendix 1:

break after year/ summarize suppress skip;
rbreak after / summmri ze;

conput e before year;

total = profit.sum
endconp;
conmput e percent;

percent = profit.sumtotal;
endconp;
conpute after;

percent = .; @O

line " ';

line @5 'Profits in US doll ars';
endconp;
run;

Exercise Solutions 403

© For thereport summary line (RBREAK), PERCENT is set to missing in the
COMPUTE AFTER block to eliminate the bogus cal culation for PERCENT that took
place in the COMPUTE PERCENT block (overall profits divided by the total for the

|ast year—2002).

Total profit per year
Separ at ed by Product Line

Pr oduct Annual Pr oduct
Year G oups Profit Percentage
1999 Children $541, 552. 09 4, 08%
Cl ot hes & Shoes $4, 189, 628. 63 31.57%
Qut door s $2, 887, 433. 36 21.76%
Sports Equi pment $5, 653, 876. 74 42. 60%

$13, 272, 490. 82 100. 00%

2000 Children $618, 803. 21 3.83%
Cl ot hes & Shoes $5, 009, 983. 42 31. 00%

Qut door s $3, 585, 371. 04 22.19%
Sports Equi pment $6, 945, 429. 61 42.98%

$16, 159, 587. 28 100. 00%

2001 Children $538, 462. 06 3.91%
C ot hes & Shoes $4, 158, 502. 80 30. 23%

Qut door s $3, 222, 898. 41 23. 43%
Sports Equi pnent $5, 834, 176. 75 42. 42%

$13, 754, 040. 02 100. 00%

(continued)

404 Carpenter’s Complete Guide to the SASREPORT Procedure

2002 Children $718, 302. 42 4.52%
C ot hes & Shoes $4, 739, 806. 53 29.81%
Qut door s $3, 704, 810. 34 23.30%
Sports Equi pnent $6, 736, 011. 06 42. 37%

$15, 898, 930. 35 100. 00%
$59, 085, 048. 46

Profits in US dollars

2. Building on theresults of Exercise 1in Chapter 7, add ‘Total’ astext in the YEAR
column for each of the annual summary lines, and ‘Overall’ on the report summary
line.

Use the OUT = option to examine the output data set, and note the values taken on
by the_BREAK _variable.

proc report data=sashel p.orsal es nowd
out=rptdat split="*";
colum year yeartxt product _line profit percent; ©
define year / group noprint; @
define yeartxt/ f=$5. 'Year';
define product_line
[group
f =$sequi p.
' Product *Gr oups' ;
define profit / analysis
sum f or mat =dol | ar 15. 2
" Annual *Profit';
define percent/ conputed ' Product*Percent age'
f or mat =per cent 10. 2;

break after year/ summarize suppress skip;
rbreak after / summmri ze;

conpute before year;

total = profit.sum
endconp;
conput e percent;

percent = profit.sumtotal;

endconp;

conpute yeartxt / char length=7; ©
if _break_ ="' ' and year ne . then yeartxt = put(year,4.);
else if _break_ ="' ' and year = . then yeartxt ="' ';
else if _break_='_RBREAK ' then yeartxt = 'Overall';
el se yeartxt = 'Total';

endconp;

conpute after;

percent = .;
line " ';

Appendix 1. Exercise Solutions 405

line @5 'Profits in US doll ars';

endconp;
run;

© The computed variable YEARTXT is added to the COLUMN statement. Thisvariableis

used to hold the year and the summary line text.

® Thevariable YEAR is used to form groups, but is not printed.

© Text isassigned to YEARTXT through the use of the . BREAK _ temporary variable.

Total profit per year
Separ at ed by Product Line

Pr oduct
Year G oups
1999 Chil dren
Cl ot hes & Shoes
Cut door s
Sports Equi prent
Tot al

2000 Chi | dren
C ot hes & Shoes
Qut door s
Sports Equi prent
Tot al

2001 Chi | dren
C ot hes & Shoes
Qut door s
Sports Equi prent
Tot al

2002 Chi | dren
d ot hes & Shoes
Qut door s
Spor