
An Insider’s Guide to
SAS/ACCESS to Hadoop

Jeff Bailey, Cloudera
Diane Hatcher, SAS
Lisa Dodson, SAS

2

WE WILL ANSWER THESE QUESTIONS

� What is Hadoop?

� How do you move files into, and out of, HDFS?

� How do you execute MapReduce code from SAS?

� How do you configure SAS/ACCESS to Hadoop?

� How do you analyze data stored in Hadoop using SAS?

3

Why Hadoop?

4

HOW MUCH DOES THIS DRIVE COST?

3 TB

5

HOW MUCH DOES THIS DRIVE COST?

3 TB

Silly, you couldn’t get a
3TB drive in 1980!

1980 $1,312,500,000

6

HOW MUCH DOES THIS DRIVE COST?

3 TB

That’s $0.03 per GB! TODAY $92

2010 $270

2005 $3,720

2000 $33,000

1995 $3,360,000

1990 $33,600,000

1985 $315,000,000

1980 $1,312,500,000

7

That’s $0.03 per GB!

HOW MUCH DOES THIS DRIVE COST?

3 TB

TODAY $92

2010 $270

2005 $3,720

2000 $33,000

1995 $3,360,000

1990 $33,600,000

1985 $315,000,000

1980 $1,312,500,000

Insight: Disk Space is FREE!

8

IT’S NOT JUST ABOUT COST!

3 TB

How long does it
take to read 3 TB

of data?

9

IT’S NOT JUST ABOUT COST!

3 TB
4.17 Hours

How long does it
take to read 3 TB

of data?

10

IT’S NOT JUST ABOUT COST!

3 TB

How long does it
take to read 3 TB?

4.17 HoursWhat happens if you add more disks?

11

HOW LONG DOES IT TAKE TO READ A 3TB FILE?

4.17 hr

2.5 min

15 sec

1 disk

100 disks

1000 disks

12

HOW LONG DOES IT TAKE TO READ A 3TB FILE?

4.17 hr

2.5 min

15 sec

1 disk

100 disks

1000 disks
Insight: More Disks are FASTER!

13

What is Hadoop?

14

HADOOP IS A STORAGE PLATFORM

� Distributed Storage
Performs Great

� Data is Replicated

� Reasonable Cost

� Sits on the OS File
System

C
lo

u
d

e
ra

HDFS

15

HADOOP IS A PROCESSING PLATFORM

� MapReduce/YARN

� Distributed Processing

� Data Locality

� Usually Java

C
lo

u
d

e
ra

YARN / MapReduce

HDFS

16

HADOOP IS A PROCESSING PLATFORM

� Point #1

� Point #2

� Point #3

� Point #4

� Point #5C
lo

u
d

e
ra

YARN / MapReduce

HDFS

Pig

MapReduce has 3 phases:

Map Phase

• Reads Data
• Key/Value Pairs

Shuffle + Sort

• Moves data between nodes to prepare
for the reduce phase

Reduce Phase

• Combines intermediate keys
• Summary/Aggregation

17

Apache Pig

� Scripting Language

� Higher level than
programming Java
MapReduce

� Pig Latin scripts are
converted to
MapReduce jobs

� Great for joining data

� Great for
transforming data

C
lo

u
d

e
ra

YARN / MapReduce

HDFS

Pig

18

Apache Pig: Example Program

� Distributed
Processing

� Data Locality

� Map Phase

� Reduce Phase

C
lo

u
d

e
ra

YARN / MapReduce

HDFS

people = LOAD '/user/training/customers' AS (cust_id, name);

orders = LOAD '/user/training/orders' AS (ord_id, cust_id, cost);

groups = GROUP orders BY cust_id;

totals = FOREACH groups GENERATE group, SUM(orders.cost) AS t;

result = JOIN totals BY group, people BY cust_id;

DUMP result;

19

Apache Hive
� SQL on Hadoop

� Similar to traditional
SQL

� Reduces
development time

� Enables BI on
Hadoop

� Schema-on-Read

� You choose
underlying file format

C
lo

u
d

e
ra

YARN / MapReduce

HDFS

Pig Hive2

20

Apache Hive
� SQL on Hadoop

� Similar to traditional
SQL

� Reduces
development time

� Enables BI on
Hadoop

� Schema-on-Read

� You choose
underlying file format

C
lo

u
d

e
ra

YARN / MapReduce

HDFS

Pig Hive2

SELECT zipcode, SUM(cost) AS total

FROM customers

JOIN orders

ON (customers.cust_id = orders.cust_id)

WHERE zipcode LIKE '63%'

GROUP BY zipcode

ORDER BY total DESC;

21

Hive Relational Database

Query language SQL (subset) SQL (full)

Update individual records No Yes

Delete individual records No Yes

Append records Yes Yes

Transactions No Yes

Index support Limited Extensive

Latency High Very low

Data size Petabytes Terabytes

Comparing Hive to an RDBMS

22

Impala
� High-performance

SQL engine

� Handles
concurrency well

� Does not rely on
MapReduce

� Supports a dialect of
SQL very similar to
Hive’s

� 100% open source

� Apache License

C
lo

u
d

e
ra

YARN / MapReduce

HDFS

Pig Hive2 Impala

23

Comparing Impala to Hive and RDBMS

Impala Hive

Relational

Database

Query language SQL (subset) SQL (subset) SQL (full)

Update individual records No No Yes

Delete individual records No No Yes

Append records Yes Yes Yes

Transactions No No Yes

Index support No Limited Extensive

Latency Low High Very low

Data size Petabytes Petabytes Terabytes

24

SAS/ACCESS to Hadoop

Configuration Overview

25

HOW DOES SAS CONNECT TO HADOOP?

SAS

HDFS

HiveACCESS to
Hadoop

JAR
Files

Hadoop Cluster

Config
Files

Environment Variables
• SAS_HADOOP_JAR_PATH=
• SAS_HADOOP_CONFIG_PATH=
• SAS_HADOOP_RESTFUL= Optional – used with webHDFS

26

CFG= Is Required When …

�You are running SAS 9.4m1 or earlier.
�HDFS + Hive are running on different machines
�HDFS failover is running
�Non-HDFS based Hadoop environment
�You need to change an Hadoop property
�You need to specify the version of MapReduce

WHEN SHOULD YOU USE A CONFIG FILE?

CFG= option has been deprecated with 9.4m2 (which uses the environment variable options)

27

SAS/ACCESS TO HADOOP

� Connects via JDBC

� Makes Hive tables look
like SAS data sets

� Converts SAS code to
HiveQL

� Can use webHDFS

� Bulk loads directly to
HDFSC

lo
u

d
e

ra

YARN / MapReduce

HDFS

Pig Hive2 Impala

SAS

28

Configuration Exploration

This demonstration illustrates how to
configure SAS/ACCESS to Hadoop.

Reference:

http://support.sas.com/resources/thirdpartysupport/v94/hadoop/hadoopbacg.pdf

29

SAS/ACCESS to Hadoop

LIBNAME Statement

30

LIBNAME STATEMENT

/* SAS 9.4M2 and Later: SUBPROTOCOL default is hive2 */

/* SAS 9.4M1 and earlier: SUBPROTOCOL default is hive */

LIBNAME mycdh HADOOP SERVER=cdhserver

user=cloudera

PORT=10000

SUBPROTOCOL=hive2;

31

Passing Hadoop Configuration Parameters

LIBNAME mycdh HADOOP SERVER=cdhserver

PROPERTIES="mapreduce.map.memory.mb=2048";

32

Exercises
� Environment includes the following:

� Cloudera 5.3 Quickstart VM, running in vmware VM Player 7
(free edition).

� SAS 9.4m2

» SAS Studio – Basic (can also use Single User version, SAS
Display Manager, or SAS Enterprise Guide)

» SAS/ACCESS to Hadoop (configured to point to Hadoop VM)

� Configured desktop “hosts” file to point to Quickstart VM’s IP
address as “quickstart.cloudera”

� SAS Data Loader Free Trial version (separate exercises)

» SAS Data Loader is available from http://www.sas.com/dataloader

33

Exercise 1 – Inventory Hadoop

This exercise reinforces the concepts
discussed previously.

34

Exercise 1
� Create libname statement

� Open a program window in your SAS application.

/*

/* Define libname for SAS HOW class

*/

libname mycdh hadoop server='quickstart.cloudera' schema='default' user=cloudera;

• Libref = mycdh
• Engine = hadoop
• Server = quickstart.cloudera (defined in hosts file)
• Specifying schema is optional. This environment has multiple schemas, so it’s stated here to point to right one.
• User = cloudera (default user in Cloudera Quickstart VM)

35

Exercise 1
� Check inventory of tables in your library

� Add the following code

/*
/* proc datasets = listing of tables

/* proc contents = table details

*/
proc datasets lib=mycdh details;

run;

proc contents data=mycdh._all_;

run;

36

Implicit Pass-Through

37

How Does SAS/ACCESS Talk to Hadoop?

proc sql;
select count(*) from cars

where make=‘BMW';
run;

?

38

SAS/ACCESS Uses SQL to Talk to Hive2

proc sql;
select count(*) from mycdh.cars

where make=‘BMW';
run;

select COUNT(*) from ‘sasschema’.`CARS` TXT_1

WHERE TXT_1.’make’ = ‘BMW'

SAS Generated This SQL

39

Use the SAS OPTIONS Statement to See SQL

proc sql;
select count(*) from mycdh.cars;

where make=‘BMW';
run;

OPTIONS SASTRACE=',,,d' SASTRACELOC=SASLOG NOSTSUFFIX;

select COUNT(*) from ‘sasschema’.`CARS` TXT_1

WHERE TXT_1.`make` = ‘BMW'

SAS Generated This SQL

40

Understanding SASTRACE= Output

HADOOP_53: Prepared: on connection 2

SHOW TABLES ‘CARS'

HADOOP_54: Prepared: on connection 2

DESCRIBE FORMATTED CARS

HADOOP_55: Prepared: on connection 2

SELECT * FROM `CARS`

HADOOP_56: Executed: on connection 3

USE `sasschema`

HADOOP_57: Prepared: on connection 3

select COUNT(*) from `CARS` TXT_1

where TXT_1.`make` = ‘BMW'

HADOOP_58: Executed: on connection 3

select COUNT(*) from `CARS` TXT_1 where

TXT_1.`make` = ‘BMW'

Does the table exist?

Get the extended table attributes

Get the column information

Execute the SQL code

Does nothing. Listed for
consistency with other engines

41

Exercise 2 – SASTRACE

This exercise reinforces the concepts
discussed previously.

42

Exercise 2
� Create libname statement

� Add the SASTRACE option to your code.
/*

/* Add SASTRACE option to see how code is generated and pushed down to Hadoop cluster

*/

options SASTRACE=',,,d' SASTRACELOC=SASLOG NOSTSUFFIX;

• To turn SASTRACE off: options SASTRACE=off;

43

Exercise 2
� Add sashelp.cars

� use SAS data step, or
� use PROC SQL, or
� use SAS interface to drag and drop table from one library to

another.

proc sql; drop table mycdh.cars; quit; /* This is optional */

/* SAS data step example

*/

data mycdh.cars; set sashelp.cars;

run;

/*

/* Proc SQL example

proc sql; create table mycdh.cars as select * from sashelp.cars;

quit;

*/

44

Exercise 2
� Add the following queries

� Compare the SAS logs

/* Compare SASTRACE logs for these 2 queries

*/

proc sql;

select * from mycdh.cars where make='BMW';

quit;

/* This one takes a bit longer to run and returns a single number

*/

proc sql;

select count(*) from mycdh.cars where make='BMW';

quit;

Generates HiveQL

Generates MapReduce

45

Passing Joins to Hive

46

�Cross schema joins are NOT supported

�SCHEMA= must be the same for multi-LIBNAME joins

Passing Joins Using Implicit Pass-Through

47

�Cross schema joins are NOT supported

�SCHEMA= must be the same for multi-LIBNAME joins

Passing Joins Using Implicit Pass-Through

LIBNAME mycdh1 HADOOP SERVER=cdhserver USER=myuser;

LIBNAME mycdh2 HADOOP SERVER=cdhserver USER=myuser;

JOIN will Pass-Thru

LIBNAME mycdh1 HADOOP SERVER=cdhserver USER=myuser;

LIBNAME mycdh2 HADOOP SERVER=cdhserver;

What About This One?

48

Was the Join Passed to Hadoop?

ERROR: This SQL statement will not be passed to the DBMS
for processing because it involves a join across librefs with
different connection properties.

JOIN Did Not Pass

ACCESS ENGINE: SQL statement was passed to the DBMS
for fetching data.

JOIN Did Pass

Check the SAS log:

49

Exercise 3 - Join

This exercise reinforces the concepts
discussed previously.

50

Exercise 3
� Open a new program window and add the following

code (next 2 slides). Run.

� Which joins work?

� Copy included SAS datasets (customers, orders) to your
machine.

� Example directory: C:\SASGF\HOWData

51

/* Create some additional libname statements

*/

libname howdata 'C:\SASGF\HOWData';

libname mycdh2 hadoop server='quickstart.cloudera' schema='default';

/* Add tables "customers" and "orders", if they don't exist yet in

mycdh library

*/

proc SQL;

create table mycdh.customers as select * from howdata.customers;

create table mycdh.orders as select * from howdata.orders;

quit;

/* Add tables "customers", if it doesn't exist yet in mycdh3 library

*/

proc SQL;

create table mycdh3.customers as select * from howdata.customers;

quit;

Exercise 3

52

/* Join "customers" table from mycdh library to "orders"

table in mycdh2 library.

/* Does it work?

*/

proc SQL;

CREATE TABLE mycdh.customer_orders2

AS

SELECT table0.customer_id AS customer_id,

table0.customer_name AS customer_name,

table0.customer_state AS customer_state,

SUM(table1.quantity) AS quantity,

SUM(table1.total_price) AS net_revenue,

SUM(table1.total_retail_price) AS gross_revenue,

COUNT(DISTINCT table1.order_id) AS nbr_orders

FROM mycdh.customers table0

INNER JOIN mycdh2.orders table1

ON

(table0.customer_id = table1.customer_id)

GROUP BY table0.customer_id, table0.customer_name,

table0.customer_state

ORDER BY customer_id

;

quit;

/* Clean up after ourselves

*/

proc datasets lib=mycdh; delete customer_orders2; run;

proc datasets lib=mycdh details; run;

Exercise 3 - continued
/* Join "customers" table to "orders" table in mycdh

library.

*/

proc SQL;

CREATE TABLE mycdh.customer_orders

AS

SELECT table0.customer_id AS customer_id,

table0.customer_name AS customer_name,

table0.customer_state AS customer_state,

SUM(table1.quantity) AS quantity,

SUM(table1.total_price) AS net_revenue,

SUM(table1.total_retail_price) AS gross_revenue,

COUNT(DISTINCT table1.order_id) AS nbr_orders

FROM mycdh.customers table0

INNER JOIN mycdh.orders table1

ON

(table0.customer_id = table1.customer_id)

GROUP BY table0.customer_id, table0.customer_name,

table0.customer_state

ORDER BY customer_id

;

quit; 1

2

53

SAS Streaming Reads

SAS

HDFS

Hive
ACCESS
to Hadoop

JAR Files

Hadoop Cluster

Table

• SAS generates HiveQL
• Subsets the data

54

SAS Streaming Reads

SAS

HDFS

Hive
ACCESS
to Hadoop

JAR Files

Hadoop Cluster

Table

• SAS generates HiveQL
• Subsets the data

55

SAS Streaming Reads

SAS

HDFS

Hive
ACCESS
to Hadoop

JAR Files

Hadoop Cluster

FileFile
Table

HDFS
Streaming Read

• SAS bypasses JDBC
• Reads the file directly from HDFS

56

SAS

HDFS

Hive
ACCESS
to Hadoop

JAR Files

Hadoop Cluster

FileFile
Table

HDFS
Streaming Read

3 to 5 times FASTER than JDBC

57

Explicit Pass-Through

PROC SQL;
CONNECT TO HADOOP(SERVER=cdhsrv

PORT=10000);
EXECUTE(create table testtab

(col1 string));
DISCONNECT FROM HADOOP;

QUIT;

• CONNECT Statement
• EXECUTE Statement
• DISCONNECT

Statement

You write the HiveQL

58

Explicit Pass-Through

PROC SQL;
CONNECT TO HADOOP(SERVER=cdhsrv

PORT=10000);
EXECUTE(create table testtab

(col1 string));
DISCONNECT FROM HADOOP;

QUIT;

SAS sends this to Hive

You write the HiveQL

59

Explicit Pass-Through
proc sql;

connect to hadoop (server=quickstart
user=cloudera);

execute (create table store_cnt
row format delimited
fields terminated by '\001‘
stored as parquet

as
select customer_rk, count(*) as tot

from order_fact
group by customer_rk) by hadoop;

quit;
You write the HiveQL

60

Exercise 4 – Explicit Passthru

This exercise reinforces the concepts
discussed previously.

61

Exercise 4
� Open a new program window. Add the following code. Run. Review

log.
/* CTAS Explicit Pass-thru - all work is handled in Hadoop - execute statement

/* This builds on Exercise 3 - Join

*/

options dbidirectexec;

options nodbidirectexec;

proc sql;

connect to hadoop (server='quickstart.cloudera' user=cloudera

subprotocol=hive2);

execute (create table order_cnt

row format delimited fields terminated by '\001'

stored as textfile

as

select customer_id, count(*) as total_orders

from customer_orders

group by customer_id) by hadoop;

disconnect from hadoop;

quit;

62

Exercise 4 - continued
� Add the following code. Run just this portion (highlight code then run).

/* CTAS Implicit Pass-thru */

/* Run it once with NODBIDIRECTEXEC (default) */

/* Run it againg with DBIDIRECTEXEC */

/* Run it with the defaults */

options nodbidirectexec;

proc sql;

create table mycdh.order_cnt_copy2

as select *

from mycdh.customer_orders

group by customer_id;

quit;

/* optimize it */

options dbidirectexec;

proc sql;

create table mycdh.order_cnt_copy3

as select *

from mycdh.customer_orders

group by customer_id;

quit;

63

Exercise 4 - continued
� Add the code on the left. Run just this portion (highlight code then run).

� Run the code on the right.
/* Create a SAS data set from Hadoop data */

/* Does the order of the join tables matter? */

proc sql;

create table work.join_test as (

select c.customer_id, o.product_id

from mycdh.customers c

, mycdh.orders o

where c.customer_id = o.customer_id);

quit;

/* PROC FREQ example */

data mycdh.cloudera_class;

set sashelp.class;

run;

proc freq data=mycdh.cloudera_class;

tables sex * age;

where age > 9;

title 'Catchy Title Goes Here';

run;

/* Clean up */

proc sql;

connect to hadoop (server='quickstart.cloudera'

user=cloudera subprotocol=hive2);

execute (drop table order_cnt) by hadoop;

execute (drop table order_cnt_copy2) by hadoop;

execute (drop table order_cnt_copy3) by hadoop;

execute (drop table cloudera_class) by hadoop;

drop table work.join_test;

disconnect from hadoop;

quit;

64

The 32K String Thing

65

Reading Java Strings from Hive

SAS

HDFS

Hive
ACCESS
to Hadoop

JAR Files

Hadoop Cluster

MyName=“Bob”
3 Character String

• Java String in Hive

MyName=“Bob”
3 Character String

66

Reading Java Strings from Hive

SAS

HDFS

Hive
ACCESS
to Hadoop

JAR Files

Hadoop Cluster

MyName=“Bob”
3 Character String

• Java String in Hive

MyName=“Bob”
3 Character String

67

Reading Java Strings from Hive

SAS

HDFS

Hive
ACCESS
to Hadoop

JAR Files

Hadoop Cluster

MyName=“Bob”
3 Character String

• 32k character string in SAS

MyName=“BobV”

32,767 Character

String in SAS

68

What is a Table Attribute?

proc sql;
connect to hadoop (server=cloudera44

subprotocol=hive2);
select * from connection to hadoop

(DESCRIBE FORMATTED letters);
quit;

The attribute can “fix” the 32K problem

69

How Can You Set a Table Attribute?

CREATE TABLE Using SAS Implicit Pass-Thru

data mycdh.letters;
set work.letters; /* one column; one character */

quit;

ALTER TABLE

/* Assume table created outside of SAS */
proc sql;

connect to hadoop (…connect info here…);
execute (alter table letters set tblproperties

('SASFMT:single_character'='CHAR(1)')) by hadoop;
quit;

70

When Will SAS Use a Table Attribute?

When IMPLICIT PASS-THRU is used

data work.letters;
set mycdh.letters;

quit;

And table attributes are defined on the table

71

Exercise 5 – Strings

This exercise reinforces the concepts
discussed previously.

72

Exercise 5
� Copy file “single_string_column.txt” to your desktop.

� Open a new program window and add the following
code. Run. /* setup the environment */

filename cfg 'C:\Program Files\hadoop\conf\combined-site.xml';

/* Copy single_string_column.txt to HDFS. */

proc hadoop options=cfg username="cloudera" verbose;

HDFS COPYFROMLOCAL="C:\Users\<userid>\Desktop\single_string_column.txt"
OUT='/user/cloudera/letters/single_string_column.txt';

run;

proc sql;

connect to hadoop (server='quickstart.cloudera' user=cloudera subprotocol=hive2

schema='default');

execute (create external table letters (single_character string)

row format delimited fields terminated by ','

location '/user/cloudera/letters';) by hadoop;

disconnect from hadoop;

quit;

Change this to

your local userid

73

Exercise 5 - continued
� Add the following code. Run.

� Check the table properties. What is the size of the column?

/* Create a SAS data set from letters */

data work.letters;

set mycdh.letters;

run;

74

Exercise 5 - continued
� Add the following code and run just this portion.

/* Let's fix it */

proc sql;

connect to hadoop (server='quickstart.cloudera'

user=cloudera subprotocol=hive2 schema='default');

execute (alter table letters set tblproperties

('SASFMT:single_character'='CHAR(1)')) by hadoop;

disconnect from hadoop;

quit;

/* Did the ALTER TABLE fix it? */

data work.letters_fixed;

set mycdh.letters;

run;z

/* What about explicit pass-thru? */

proc sql;

connect to hadoop (server='quickstart.cloudera'

user=cloudera subprotocol=hive2 schema='default');

create table work.letters_ep as

select * from connection to hadoop

(select single_character from letters);

disconnect from hadoop;

quit;

/* How can you deal with explicit pass-thru */

proc sql;

connect to hadoop (server='quickstart.cloudera'

user=cloudera subprotocol=hive2 schema='default');

create table work.letters_ep_fixed as

select single_character format $1.

from connection to hadoop

(select single_character from letters);

disconnect from hadoop;

quit;

1

2

75

Exercise 5 - continued
� Add the following code and run just this portion.

� Add the following code to clean up. Run just this portion.

/* Is there a better way? */

proc sql;

connect to hadoop (server='quickstart.cloudera'

user=cloudera subprotocol=hive2 schema='default');

select * from connection to hadoop

(describe formatted letters);

disconnect from hadoop;

quit;

/* How can you see the table properties defined on a

table? */

proc sql;

connect to hadoop (server='quickstart.cloudera'

user=cloudera subprotocol=hive2 schema='default');

select * from connection to hadoop

(describe extended letters);

disconnect from hadoop;

quit;

/* This will drop the outBook directory and all the contents */

/* Useful for cleaning up after running the MapReduce */

proc hadoop options=cfg username="cloudera" verbose;

HDFS delete='/user/cloudera/letters/single_string_column.txt';

run;

proc sql;

connect to hadoop (server='quickstart.cloudera' user=cloudera

subprotocol=hive2 schema='default');

execute (drop table letters;) by hadoop;

disconnect from hadoop;

quit;

1
2

76

SAS® Data Loader for Hadoop
Solution Overview

C o p yr ig h t © 2 0 1 5 , S A S In s t i t u te In c . A l l r ig h ts reserved .

SAS Data Loader for Hadoop

C o p yr ig h t © 2 0 1 5 , S A S In s t i t u te In c . A l l r ig h ts reserved .

SAS Data Loader for Hadoop…

“Purpose-built” easy to use data management solution
to specifically address: acquiring, structuring, cleaning
and transforming data inside Hadoop

SAS Data Loader for Hadoop is a smart approach,
turning the Hadoop environment into a productive
environment; where barriers are removed, and data is
accessible and usable

C o p yr ig h t © 2 0 1 5 , S A S In s t i t u te In c . A l l r ig h ts reserved .

Manage
data inside

Hadoop

Reduce
Complexity
of Hadoop

Accelerate
Business

user
adoption

SAS Data Loader enables organizations to…

80

Use Cases
SAS Data Loader for Hadoop

81

SAS® Data Loader for Hadoop

I need my Customer

data in Hadoop

I can see, but I can also

fix, the data quality issue

I need to subset and

summarize the data

I need to Load the data to

LASR for visualization

82

Hands-On Exercises
SAS® Data Loader - Trial

83

Copy Data to Hadoop
1. First, we must import the source datasets that were downloaded, and placed in the virtual machine shared

directory. To do this, use your web browser to open SAS Data Loader as described in the SAS Data Loader for
Hadoop installation and configuration instructions.

2. Select, the Copy Data to Hadoop icon from the main menu.

3. For the Source Table, select SAS Server, then select Sample Data. This will use the local SAS session on the VM
to locate the SAS datasets that you placed in your shared virtual machine directory.

4. There you will see the several datasets that were copied to your shared virtual machine directory’ Select the first
‘CUSTOMERS’ dataset, and select Next.

5. We will be pulling the entire table in, so you may click Next on the default selections on the next two steps in order
to include All Rows and All Columns.

6. For the Target Table, select the default schema, and select the New TableK option. Name your new table,
“customers,” and select Next.

7. Review the code section provided, then select Next.

8. Select, Start copying data. Once the copy is finished as indicated by the message, “Successfully copied data,”
and you may View the Results.

9. Repeat steps 2-8 for the ‘ORDERS’ table by selecting the Back to Directives option.

84

Profile Data In Hadoop
1. Now we must profile the data to determine the quality. To do this, go to the main page by selecting “Back to

Directives” and select Profile Data.

2. Select a base table by navigating to default schema, and select customers.

3. Here you can select all or a subset of columns. We’ll run the profile on all columns by selecting Next.

4. Give a Report Name by typing in Customer Profile Report PreCleanse and select Next.

5. Run the report by selecting Create Profile Report.

6. Once the report completes, select View Profile. Note on the report that there are no nulls or blank values. This is
important when joining additional tables as null values on a join column could cause a Cartesian product.

7. At the top of the page select Show Outline and click on the column for customer_address. Note that the address
data under Frequency Distribution has differing case which calls for the need to standardize the field values.

8. Next, click on customer_city from the list of columns. Note that the address data under Frequency Distribution
has differing case which calls for the need to standardize the field values.

a. Do we have multiple occurrences of the same city?

9. Finally, click on customer_state from the list of columns.

a. How many states are there?

b. Do states appear in both full name and abbreviation?

10.Frequency Distribution has differing case which calls for the need to standardize the field values.

85

Cleanse Data In Hadoop
1. Now that we understand which values in our customers table require cleansing, let’s initiate a transformation. To do

this, go to the main page by selecting “Back to Directives” and select Cleanse Data in Hadoop.

2. Select a base table by navigating to the default schema and select the customers table. Once the table is
selected click Next.

3. On the Cleanse Data in Hadoop, select the Standardize Data directive.

4. Under Column, select the customer_address column.

5. Under Definition, select the Address definition. Note that Data Loader provides a default New Column Name and
Character limit which the user can edit if required.

6. Select Add Column.

7. Under Column, select the customer_city column.

8. Under Definition, select the City definition.

9. Under Column, select the customer_state column.

10.Under Definition, note that Data Loader provides a both State/Province (Abbreviation) and (Full Name). Select the
State/Province (Full Name) definition. .

86

Cleanse Data In Hadoop - continued
11.Select Next.

12.Choose the default schema and select New Table. Provide the table name customers_standardize and select
Next.

13.Finally, select Start transforming data once the process complete select View the Results. Here we can view the
differences between the columns by selecting customer_address, customer_address_standardized,
customer_city, customer_city_standardized, customer_state and customer_state_standardized.

87

Join Data From Multiple Tables
1. In this section we will join the tables we just imported together using a common column name. This is done by

selecting the Query or Join Data in Hadoop icon.

2. Select a base table by navigating to the default schema, and select orders table. Once loaded, select Add Join.

3. On the join selection under Choose a table, locate the customers_standardize table, and make sure the two
tables are using the customer_id column on which to join.

4. Select Next.

5. We create an aggregation on this table by selecting the product_id under Group rows by.

6. Next, select Add column and choose the customer_state_standardized.

7. Under Summarize columns choose total_retail_price and then select Sum under Aggregation. Accept the
default name under New column name. Select Next.

8. Select Next to accept All rows.

9. Select Next on the Columns specified in “Summarize Rows”

10. Select Next on the sort step to accept the default.

88

Join Data From Multiple Tables - continued
11. For the Target Table, select the default schema, and select the New TableK option. Name your new table,

“orders_joined,” and select Next.

12. Review the code section provided, then select Next.

13. Select, Start joining data. Once the join is finished as indicated by the message, “Successfully copied data,”
and you may View the Results.

89

Transpose Data in Hadoop
1. Transposing data allows us to pivot rows to columns or columns to rows for further analytical processing. Under

the main page, select Transpose Data in Hadoop.

2. On the right side of the screen are descriptions and visuals of the various roles under the transpose function.

3. Select the total_retail_price_sum column from Columns, highlight Transpose columns by selecting it and
finally click to add the column value under roles.

4. Select the customer_state_standardized column from Columns, highlight Columns to group by by selecting it
and finally click to add the column value under roles.

5. Select the product_id column from Columns, highlight ID columns by selecting it and finally click to add the
column value under roles.

6. Choose Next.

7. Select default schema and choose New Table. Provide the name orders_analytic_base_table and select OK.

8. Choose Next.

9. Select Start transposing data. When the process is complete you may View the Results.

