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Abstract 

We discuss a hybrid sampling methodology for building and validating machine learning models for 
classification for which the target event is a small proportion of the total population. This methodology 
may be useful for fraud detection or similar applications for which the response variable is typically 
scarce. We call this variation of cross-validation methodology the HYbrid Rare Event Sampling (HYRES) 
technique because it is meant to detect rare events with high resolution through sampling. 
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Introduction 

We once had a fraud detection problem involving 2,000 observations labelled Fraudulent out of a total 
population of 1,000,000 observations, a 0.2% event rate. Our immediate thought was to stratify the 
sample into equal numbers of fraudulent and non-fraudulent observations, build models on the biased 
sample, and use prior probabilities to correct for sampling bias. But given the typical requirement of 
creating training/validation/test1 datasets (say 70%/20%/10% proportions), will only 1,400 training 
events represent sufficient and consistent behavior containing enough features to represent fraudulent 
behavior when the target population is so small? There is a pronounced imbalance in the class 
frequencies of the events and nonevents, so we must approach the disparities carefully. 

If we use bagging, we have to select fractions of the total population (or even of a sampled population) 
and build unbiased or biased models. If we build cross-validation models, we have the same problem. 
When assembling the training data, we typically select subsets of the fraudulent observations and 
combine them with subsets of the non-fraudulent observations. Regardless of the algorithm, we do not 
use all of the fraudulent observations in each sample of the training data because of the model building 
methodology. There must be a set of validation data against which to test the model’s performance 
during the training process. Thus, we may weaken the model’s power of detection at the outset because 
we withhold a subset of the event data for evaluation of model performance. If we create a test/holdout 
dataset for evaluation, we further deplete the number of observations available for model-building. 

Our primary problem is: how do we use as many of the infrequent examples as possible in the training 
process without resorting to oversampling, SMOTE-based over- and underrepresentation, or inverse 
probability weighting? 

Figure 1 illustrates the cross-validation strategy [1, 2]. Each sample uses a fraction of the potential 
maximum number of observations proportional to the T/V/T ratios. The training, validation, and test 
(holdout) datasets containing 2,000 rare events are labelled  𝑆𝑇 , 𝑆𝑉, and S𝐻 and the nonevents are not 
shown because their frequencies may vary, depending on the sampling proportions of event/nonevent. 

                                                           
1 To be concise, we will refer to “training/validation/test” as “T/V/T” in the sequel. 
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Figure 1 Standard 3-fold Cross Validation 

Aside from the test sample which is not used in model construction2, if we use fewer than all of the 
remaining [fraudulent] cases (e.g., 70% for the training dataset, 20% for the validation dataset) in a 
model, we may be losing important information since we are trying to identify infrequent patterns, and 
each scarce event is valuable because it represents an example of the behavior that we are trying to 
detect. 

So, we devised the following sampling construction methodology: 

 Let us label the set of fraudulent observations as Signal (S) and non-fraudulent observations as 
Noise (N).3 

Then we want to assign labels “S” to observations S in {S, N} in such a way as to optimize some 
appropriate performance metric such as area under the ROC curve (AUROC) or lift or other KPI. 

 Let 𝑆𝑇 be the subset of S observations to be used in the training sample, let 𝑆𝑉 represent the 
subset of cases available for validation, and let 𝑆𝐻 represent the {𝑆−𝑆𝑇−𝑆𝑉} subset of cases 
available for testing model performance (holdout sample). 

 Similarly, let 𝑁𝑇, 𝑁𝑉, and 𝑁𝐻 represent subsets of Noise observations. 

                                                           
2 Training data are used to compute a model’s parameters, and validation data are used to produce error 
estimates which provide feedback in computing model parameters. Since the model uses the validation data in the 
learning process, we cannot consider the validation data per se to be independent of the model building process. 
The test dataset represents the data that will be scored by the model once it is deployed for use. It is independent 
of the model construction effort and is used to evaluate a model’s performance after the model has been built on 
the training and validation datasets. Hence, we must use the test data as a holdout sample to evaluate model 
performance without bias. 
3 We are using the language of statistical signal detection theory when we assign the labels “S” and “N” to event 
observations and nonevent observations because we are trying to recognize patterns in the data that allow us to 
discriminate between a signal (Fraud) and the background noise (Nonfraudulent) in which the signal is embedded. 
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 We compute subsets of 𝑁𝑇  as 𝑁𝑇1, 𝑁𝑇2, ... to contain disjoint samples from 𝑁𝑇. We also sample 
to compute subsets for 𝑁𝑉. We do not use 𝑁𝐻 in the model-building process, only in evaluation. 

 We build models from training datasets (𝑆𝑇 , 𝑆𝑉, 𝑁𝑇1), (𝑆𝑇 , 𝑆𝑉 , 𝑁𝑇2), …,  (𝑆𝑇 , 𝑆𝑉 , 𝑁𝑇𝑛) with 
corresponding noise datasets for training and validation 𝑁𝑇1, 𝑁𝑉1, et cetera. We use all of the 
𝑆𝑇 , 𝑆𝑉 subsets of observations per model and the several disjoint noise subsets 𝑁𝑇𝑖 , 𝑁𝑉𝑖  per 
model to effectively hold the Signal constant and vary the Noise during the model-building 
process. 

 We use an appropriate ensemble technique to combine the results of the models' predictions. 
 We score the ensemble model using the 𝑆𝐻 and 𝑁𝐻 data, and we evaluate KPIs appropriate to 

our problem’s knowledge domain. 

Figure 2 illustrates this strategy. Each dataset uses the maximum number of rare events. The noise 
subsets  𝑁𝑇𝑖  and 𝑁𝑉𝑖, which are not shown in the figure, are varied for each model. 

 
Figure 2 Hybrid Rare-Event Sampling 

While we may, in theory, assume that all of the data are homogenously distributed over all of the 
samples selected, it is good practice to vary the random number seed(s) used in selecting the training, 
validation, and test datasets and to build several models with the resampled data to ensure that our 
results are replicable and not merely due to serendipitous happenstance. 

This technique is different from n-fold cross-validation or bagging in that it uses all of the target events 
in every model instead of disjoint subsets of the target events. The signal S is maintained fixed over all 
models built and the background noise N is changed. Essentially, we propose that the HYRES 
methodology maximizes the signal/noise ratio by holding the Signal information constant and varying 
the Noise information.  

Methodology 
We applied the SAS® SEMMA (Sample, Explore, Modify, Model, Assess) methodology to evaluating the 

HYRES approach to rare event detection. 
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Modeling Data 
We selected nine classification datasets from the UCI Machine Learning Repository [1, 2, 3, 4, 6, 9], 

Kaggle4 [5, 8], and from Luis Torgo’s “Data Mining with R: Learning with Case Studies” website5 [7]. We 

varied the number of events as a percent of the total number of observations to determine if there 

might be an effect due to population size, assuming that the number of patterns associated with an 

event would be greater in a larger population compared to a smaller one. Hence, if there are more 

patterns associated with an event, a learning algorithm would have more opportunity to discriminate 

between event and nonevent and thus distinguish between signal and noise. 

Table 1 lists the significant characteristics of each dataset. Citations are indicated by numbers in 

brackets. 

Table 1 Significant Characteristics of Datasets 

Dataset # of Obs 
# of 
Vars 

Event Class Label 
Subject 

Area 
Adult Income [1] 37,340 12 Binary indicator of income level US Census 
Bank Direct Marketing [2] 41,188 20 Binary indicator of successful acquisition Marketing 
Covertype [3] 581,012 55 Integer category of forest cover type Forestry 
Credit Card Default [4] 30,000 24 Binary indicator of default Finance 
Credit Card Fraud  [5] 284,807 31 Binary indicator of fraud Finance 
Higgs Boson [6] 5,171,460 29 Binary indicator for signal or background Physics 
PaySim Fraud Detection[7] 6,362,620 7 Binary indicator of fraud Finance 
Sales Fraud Detection [8] 387,010 3 Binary indicator of fraud Finance 
Wilt [9] 4,839 6 Binary indicator for diseased tree Forestry 

Table 2 describes the event class frequencies and target values in more detail. 

Table 2 Details of Event Class Labels 

Dataset 
# of 

Events 

# of 
Events as 
% of Obs 

Event Value 

Adult Income 185 0.50% 1 if income > $50K 
Bank Direct Marketing 4,640 11.27% 1 if successful acquisition of account 
Covertype 20,510 3.53% 1 if cover type = 7, Krummholz 
Credit Card Default 6,636 22.12% 1 if cardmember defaulted 
Credit Card Fraud 492 0.17% 1 if fraudulent transaction 
Higgs Boson 583 0.01% 1 if signal detected 
PaySim Fraud Detection 8,213 0.13% 1 if simulated fraudulent transaction 
Sales Fraud Detection 1,199 0.31% 1 if inspection report = ‘fraud’ 
Wilt 261 5.39% 1 if diseased tree = ‘w’ 

  

                                                           
4 www.kaggle.com/datasets  
5 http://www.dcc.fc.up.pt/~ltorgo/DataMiningWithR/ 

http://www.kaggle.com/datasets
http://www.dcc.fc.up.pt/~ltorgo/DataMiningWithR/
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Model Construction 
We compared the performances of HYRES models to 3-fold cross-validation models by using SAS 

Enterprise Miner to produce an ensemble model for HYRES data samples and an ensemble model for 3-

fold cross-validation data samples, and then we compared the performance of the ensemble models to 

each other. 

We used the %HYRES macro (described in the Appendix) to produce, for each set of scenario data, an 

initial dataset with a specified ratio of event/nonevent frequency to test the HYRES methodology. 

For the HYRES models, the initial dataset was sampled using the %HYRES macro to produce disjoint 
datasets using specified random number seeds. The data were initially separated into training and test 
(holdout) subsets in 75%/25% proportions. The initial training dataset (75% of observations) was further 
stratified by the target variable into training and validation datasets for model construction according to 
75%/25% proportions. Three sets of disjoint T/V datasets were produced from the initial dataset to be 
consistent with the 3-fold cross-validation approach. Following the HYRES methodology, all of the Signal 
observations from the initial dataset were randomly assigned to T/V datasets in specified 75%/25% 
proportions. The Noise samples for training and validation were randomly sampled per dataset in 
specified 75%/25% proportions. Decision tree, logistic regression, and neural network models were built 
for each of the disjoint HYRES datasets extracted from the initial dataset, and all nine models (one 
decision tree, one regression model, and one neural network model for each of the HYRES datasets) 
were input into one Ensemble node, which averaged the posterior probabilities for class targets. Using 
one Ensemble node ensures the greatest diversity of predicted outcomes generated by the various 
models applied to the separate datasets. 

For the 3-fold cross-validation models, the initial dataset was used to produce three disjoint stratified 
datasets each containing one-third of the event and one-third of the nonevent observations assigned 
randomly. The Data Partition node was used to produce stratified T/V datasets for subsequent 
modeling. Each stratified T/V dataset was used to build decision tree, logistic regression, and neural 
network models, and all of the models were input into one Ensemble node. The Ensemble node was 
used to average the posterior probabilities in the same manner as for the HYRES models. 

The initial holdout dataset for each set of data (25% of the sample’s observations, stratified by the 
target variable to the level of the event in the population) was used to score the HYRES and 3-fold cross-
validation ensemble models, and the Assessment node was used to produce performance metrics for 
comparison. We added a cross-entropy metric, programmed using a Code node, because it is threshold-
free and not influenced by imbalanced class distributions. 
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Figure 3 shows the Enterprise Miner Process Flow Diagram for the Credit Card Default model. 

 
Figure 3 Enterprise Miner Process Flow Diagram for Credit Card Default Model 
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Figure 4 shows an excerpt of the EM PFD for the Credit Card Default HYRES 3-fold cross-validation 
portion of the model. 

 
Figure 4 Nodes for one fold of 3-fold cross-validation 

Figure 5 represents one branch of the nodes that implement the HYRES methodology. 

 

Figure 5 One branch of the nodes for the HYRES methodology 
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Model Performance Metrics 
It is important to choose the performance metrics carefully due to the imbalanced distribution of the 

values of the target variable for some datasets. Reporting a result that is strongly influenced by the 

degree of imbalance may lead the researcher to an erroneous conclusion a model’s performance6. 

We chose the following performance metrics since they are computed over the entire set of scored 
observations and are not influenced by the imbalance of the distribution of events. 

 ROC index 

The ROC index is the area under the Receiver Operating Characteristic curve and is a measure of 
the optimality of the trade-off between correct classification of an observation as a true positive 
event compared to its being misclassified as a false positive event. See [3] for detailed 
description and additional references. 

 Brier score 

The Brier score measures the accuracy of probabilistic predictions. It is a cost function that 
computes the mean squared difference between predicted probabilities 𝑝𝑖  and actual 
outcomes 𝑜𝑖  . See [4] for the original definition. 

 Top-decile lift 

Top-decile lift is the ratio of the percent of events in the top 10% of the observations in a 
dataset sorted by decreasing probability of event to the average percent of events computed 
over all observations. See [5] for a good description and an example. 

 Cross-entropy error 

Cross-entropy error is a loss function that is computed by averaging all of the cross-entropies in 
the sample data. See [6] for a concise exposition of the cross-entropy error. 

Results of HYRES and 3-Fold Cross-Validation Model Performance 
We report the results of the HYRES vs 3-fold cross-validation comparison in Table 3. Performance 

indicators for ROC index, Brier score, and top-decile lift were taken from the Model Comparison node 

using the Test dataset results. The cross-entropy error function was computed in a SAS Code node. 

The modeling results for HYRES and 3-fold cross-validation for the first random sample7 are presented in 

Table 3. KPIs in bold font represent the superior performance of either the HYRES approach or of 3-fold 

cross-validation for a particular set of modeling data. 

                                                           
6 An example of a metric that is strongly affected by the imbalance of the distribution of the values of the target 
variable is the misclassification rate. If, in a sample of 1,000,000 observations, there are 1,000 misclassifications 
the misclassification rate is clearly 0.1%, which appears to be an excellent result. However, if all of the nonevents 
are correctly identified as nonevents, then the misclassifications occur among the events only. If there are 2,000 
events in the sample data used in modeling, the actual number of misclassifications is 50%, and our modeling 
ardor is considerably abated. In general, if there are 𝑛𝐸𝑣𝑒𝑛𝑡𝑠 and 𝑛𝑁𝑜𝑛𝐸𝑣𝑒𝑛𝑡𝑠, and if 𝑛𝐸𝑣𝑒𝑛𝑡𝑠<< 𝑛𝑁𝑜𝑛𝐸𝑣𝑒𝑛𝑡𝑠  , then the 
misclassification rate 𝑛𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠 /(𝑛𝐸𝑣𝑒𝑛𝑡𝑠 + 𝑛𝑁𝑜𝑛𝐸𝑣𝑒𝑛𝑡𝑠) → 0 as 𝑛𝑁𝑜𝑛𝐸𝑣𝑒𝑛𝑡𝑠 increases. So, the class imbalance 
distorts the actual significance of the metric, and is perhaps best not reported so as to avoid the appearance of 
excellent performance when in fact the opposite result may be true. 
7 The random number seed used to select initial dataset events for the first random sample was 123456789, and 
the seed for nonevents was 987654321. See Appendix for details of %HYRES invocation. 
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Table 3 Ensemble Average Posterior Probability, First Random Sample 

Performance Metrics 

  3-Fold Cross-Validation  HYRES 

Model 
Events 
as % of 
Sample 

ROC 
Index 

Brier 
Score 

Top 
Decile 
Lift 

Cross 
Entropy 
Error 

ROC 
Index 

Brier 
Score 

Top 
Decile 
Lift 

Cross 
Entropy 
Error 

Higgs Boson 0.0113 0.730 0.000112 3.403 0.001111 0.741 0.000112 3.542 0.001096 
PaySim Fraud 0.1291 0.994 0.000544 9.957 0.002863 0.995 0.000540 9.962 0.002785 
Credit Card Fraud 0.1727 0.975 0.000526 9.394 0.003171 0.977 0.000538 9.167 0.003167 
Sales Fraud 0.3098 0.892 0.002667 7.785 0.014877 0.864 0.002690 6.817 0.015377 
Adult Income 0.4954 0.878 0.005005 6.411 0.026847 0.891 0.000495 6.600 0.026509 
Covertype 3.5300 0.992 0.010393 9.668 0.039196 0.991 0.010409 9.635 0.039540 
Wilt 5.3937 0.998 0.008255 9.976 0.032897 0.998 0.008208 9.976 0.034348 
Bank Direct Mktg 11.2654 0.806 0.079261 4.451 0.277790 0.802 0.079257 4.509 0.278370 
Cred Card Default 22.1200 0.774 0.135739 3.234 0.434150 0.772 0.136036 3.204 0.434670 

We observe that the HYRES methodology does not produce consistently superior results compared to 3-
fold cross-validation. For many KPI’s, there is very little difference between the HYRES results and 3-fold 
cross-validation results. 

Equivalence of Information Contents of Noise Samples 

To ensure the uniformity of the Noise samples being created, the modeler must verify that the 
information content of each of the Noise samples is consistent with the others. One possible approach 
to verifying the uniformity of the Noise samples would be to create different random samples of the 
Noise data and build several models, holding the Signal data constant and varying the Noise data. If the 
results of the several models were similar within reasonable variability, we would be justified to 
conclude that the Noise samples had consistent information content. 
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The experiment was repeated with a second random sample8 to verify the consistency of the 
information content of the Noise samples, as described supra. The modeling results for HYRES and 3-fold 
cross-validation for the second random sample are presented in Table 4.  

Table 4 Ensemble Average Posterior Probability, Second Random Sample 

Performance Metrics 

  3-Fold Cross-Validation  HYRES 

Model 
Events as 

% of 
Sample 

ROC 
Index 

Brier 
Score 

Top 
Decile 
Lift 

Cross 
Entropy 
Error 

ROC 
Index 

Brier 
Score 

Top 
Decile 
Lift 

Cross 
Entropy 
Error 

Higgs Boson 0.0113 0.693 0.000102 2.977 0.001021 0.717 0.000102 3.817 0.001009 

PaySim Fraud 0.1291 0.996 0.000527 9.972 0.002731 0.992 0.000553 9.881 0.003072 

Credit Card Fraud 0.1727 0.976 0.00061 9.138 0.003659 0.978 0.00057 9.309 0.00355 

Sales Fraud 0.3098 0.861 0.00291 7.275 0.016087 0.845 0.002937 6.731 0.016484 

Adult Income 0.4954 0.878 0.004899 6.04 0.02554 0.876 0.00499 6.249 0.02681 

Covertype 3.5300 0.991 0.010374 9.689 0.039995 0.991 0.010715 9.646 0.039416 

Wilt 5.3937 0.984 0.014846 9.733 0.055858 0.986 0.013734 9.733 0.053238 

Bank Direct Mktg 11.2654 0.805 0.076735 4.357 0.27022 0.81 0.076225 4.48 0.26847 

Cred Card Default 22.1200 0.782 0.13384 3.245 0.42892 0.783 0.133422 3.263 0.42778 

We see that, while there are reasonable differences in the results, the ranges of values of the 
performance metrics are essentially unchanged, so we may conclude that the information content of 
the Noise samples is consistent. 

We observe the same pattern of performance as for the first random sample, i.e., the HYRES 
methodology does not produce consistently superior results compared to 3-fold cross-validation. 

Conclusion 
We investigated the hypothesis that, for selected populations containing rare events, a hybrid sampling 
approach designed to improve the signal-to-noise ratio of the event population (S) to the nonevent 
population (N) would produce superior classification performance compared to standard cross-
validation techniques. 

We developed a SAS macro, %HYRES, to perform stratified sampling of a dataset prior to applying the 
HYRES and 3-fold cross-validation methodologies to model-building in the context of SAS Enterprise 
Miner. 

We built classification models for nine datasets characterized by event frequencies from abundant to 
rare (event rates ranged from 22% to <0.05%) and numbers of observations from large to small (millions 
to thousands), and chose key performance metrics that would not be influenced by the class imbalance 
due to the sparsity of an event. 

We observed that there was no consistent pattern of improvement in classification performance due to 
applying the HYRES methodology compared to 3-fold cross-validation, and that the results of both 
approaches were very closely matched. We conclude that the HYRES methodology does not represent a 
systematic improvement over conventional cross-validation methodology. 

                                                           
8 The random number seed used to select initial dataset events for the second random sample was 987654321, 
and the seed for nonevents was 123456789. 
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Appendix 

%HYRES Macro 
We wrote the %HYRES (hybrid rare event sampling) SAS macro to produce the T/V/T datasets containing 

specified percentages of signal and noise (𝑆𝑇 , 𝑆𝑉, 𝑆𝐻 , 𝑁𝑇𝑛), for our experiments. 

The macro has the following parameters: 

%macro HYRES( DSNIN            /* name of input  dataset            */ 

            , DSNOUT           /* name of output dataset            */ 

            , TARGET_VAR       /* name of target variable           */ 

            , EVENT_VAL        /* value of event                    */ 

            , LEVEL_EVENT_PCT= /* % of events in data to include in 

                                  sample using level-based sampling */ 

            , N_EVENT=0        /* number of    events in &DSNOUT    */ 

            , N_NONEVENT=0     /* number of nonevents in &DSNOUT    */ 

            , PCT_EVENT=100    /* percent of    events in &DSNOUT   */ 

            , PCT_NONEVENT=50  /* percent of nonevents in &DSNOUT   */ 

            , PCT_TRN=50       /* % of obs to be labelled 'TRN'     */ 

            , PCT_VAL=25       /* % of obs to be labelled 'VAL'     */ 

            , PCT_TST=25       /* % of obs to be labelled 'TST'     */ 

            , SAMPLE_PCT=      /* % of sample pop to comprise sample 

                                  data using level-based sampling   */ 

            , SEED_EVENT=12345 /* random number seed for event      */ 

            , SEED_NONEV=54321 /* random number seed for nonevent   */ 

            ) ; 

As an example of use, let us construct a modeling dataset using %HYRES. We define it to have 1,000,000 
observations with target class percentages of 1% for the event value 1 and 99% for the value 0. We want 
the train/validate/test datasets to have 50%/30%/20% for both the event and nonevent observations. 
We also want to use only 50% of the target events since there are such a surplus of them. Then we write 
the following code: 

data test ; 

    do i = 1 to 1000000 ; 

       tgt_val = mod( i, 100 ) = 0 ; 

       output ; 

     end ; 

    drop i ;  

run ; 

We have created a modeling dataset containing 10,000 observations with target value 1 and 990,000 
observations with target value 0. The macro invocation shown below will produce an output dataset 
containing 50% of the target values for events and nonevents in train/validate/test proportions 
50%/30%/20%. 

%HYRES( test 

      , test_out 

      , tgt_val 

      , 1 

      , pct_event=50, pct_nonevent=50, pct_trn=50, pct_val=30, pct_tst=20 

      ) 
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and we observe the following result from PROC FREQ in Table 5: 
 

Table 5 Hybrid Rare-Event Sampling, 1% Event Rate 

 

The percentages allocated to event and nonevent are 1% and 99%, as in the original dataset, and the 
percentages allocated to train/validate/test categories are 50%/30%/20%, as specified. All that remains 
now is to build a model based on the data. 

The T/V/T datasets may be created using the following SAS statements: 

data train validate test ; 

 set test_out ; 

 if _dataset_class_ = ‘TRN’ then output train    ; else 

 if _dataset_class_ = ‘VAL’ then output validate ; else 

           output test     ; 

 drop _dataset_class_ ; 

run ; 
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If we had desired to use all of the event data, we would have specified pct_event=100 and we 
would observe the results in Table 6: 

Table 6: HYRES Sampling, 100% of Events 

 

In Table 6, we see that all of the events have been distributed to the train/validate/test categories in the 
desired proportions so that the nonevent/event ratio of 99:1 in Table 5 has been halved in Table 6. 
Significantly, the proportion of events in the train/validate/test datasets has doubled since all of the 
events are now available for modeling. Standard cross-validation techniques would reduce the number 
of events and might not capture enough behavioral information in the case of rare event frequencies. 
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