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Abstract 

We have written a suite of SAS® macros designed to facilitate the development of artificial neural net-
work models. These macros perform tasks in the development sequence of data preprocessing, model-
ing, assessing, and scoring. In the modeling phase, PROC NLP is used to find the optimum set of weights 
for a multilayer perceptron network architecture. The neural network that results from this process may 
be stored as Base SAS data step code for scoring new data. These macros may be used for tutorial pur-
poses in revealing the background details of implementing multilayer perceptron neural networks. 
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Introduction 

Artificial neural networks are computer-based algorithms that are essential tools for pattern recognition 
in machine learning applications. The popularity of artificial neural networks is due to their ability to 
“learn” characteristic features of data and capture the relationships embedded in a collection of data as 
a set of weighted basis functions that span the set of representative features. One architecture, the mul-
tilayer perceptron (MLP), is based in concept on the networks of neurons and their connections found in 
brain tissue. 

We have written several SAS macros that prepare data for neural net modeling, drive the learning pro-
cess of extracting patterns from data, assess the accuracy of a candidate neural net model, and apply a 
neural net model to data to produce scores for later use. 

Description of Macros 
The SEMMA1 methodology is frequently used to guide the efforts of data miners in building models. We 
select a sample of data to use in building a model, perform exploratory data analysis on the sample to 
familiarize ourselves with the variables and their contents, modify the variables’ contents as appropri-
ate, build candidate models, and assess the models’ performance. If we are not satisfied with our re-
sults, we return to a previous stage of the work, make appropriate changes, and repeat our efforts in a 
forward manner. When we have become satisfied that our model adequately serves our purposes, we 
move on to the final stage: deploying the model and scoring new data. 

We assume for this discussion that the first two phases of the SEMMA methodology have been com-
pleted, viz. 

1. The population dataset has been sampled appropriately for the problem. 

                                                           
1 “SEMMA” is the acronym for sequential steps in SAS Institute’s data mining methodology. It stands for Sample, 
Explore, Modify, Model, Assess and it is meant to guide the efforts of data miners in building models. 
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a. The data have no missing values.2 
b. The data have been cleaned as appropriate to the measurement scale of each type of 

variable.3 
c. For a classification model, the event/nonevent proportions have been determined, and 

the data have been selected so as to represent those proportions. 
2. Exploratory data analysis has been performed so that the analyst is familiar with the contents of 

each variable and with other combinations of variables as appropriate. 

A complete set of options for each macro is contained in Appendix B. 

Preprocessing 

Preprocessing the data to be used for modeling may be necessary to improve the relationship between 
the target variable and individual predictors. This action may be necessary if there are outliers or ex-
treme values in certain variables that distort the hypothetical functional relationship between target 
variable and predictor. 

There are many transformations available to a modeler, based upon the measurement scale of the vari-
able. For example, to correct for the distorting effects of outliers on continuous variables, a log transfor-
mation may be helpful. Also, standardizing a continuous variable4 may be useful in creating a predictor 
that is more efficiently represented in the context of the problem to be solved than in its original for-
mat.5 

The %ANN_PREPROC macro has features to perform preprocessing on a set of input data and produce a 
set of output data which contains variables corresponding to user-specified transformations. The macro 
header is shown below with default values, and examples of use will be given in the sequel. 

%ANN_PREPROC( DSNIN  /* SAS dataset containing input and target vars       */ 

            , DSNOUT /* SAS dataset containing transformed variables       */ 

            , TARGET    /* target variable                                 */ 

            , BINARY=   /* list of binary-valued   vars in set { 0, 1 }    */ 

            , INTERVAL= /* list of interval-scaled vars                    */ 

            , NOMINAL=  /* list of nominal-scaled  vars                    */ 

            , ORDINAL=  /* list of ordinal-scaled  vars                    */ 

            , BIN_TRANS=dummy       /* encoding   for binary-valued   vars */ 

            , INT_TRANS=min_max     /* xformation for interval-scaled vars */ 

            , NOM_TRANS=glm         /* encoding   for nominal-scaled  vars */ 

            , ORD_TRANS=thermometer /* encoding   for ordinal-scaled  vars */ 

            , MISSING=              /* treatment of missing values         */ 

            ) 

 

                                                           
2 Missing values represent placeholders for values in observations that are unavailable or unknown. Many statisti-
cal and machine learning algorithms, including neural networks, cannot use observations with missing values in 
calculations, so either the missing value must be imputed or the entire observation must be discarded. 
3 See Appendix A for definitions of measurement scale. 
4 An interval variable may be standardized by subtracting its mean from each value and dividing by the standard 
deviation of the variable (e.g., z-score), or it may be mapped into the interval (0, 1). 
5 For example, a variable with a wide range may, if unstandardized, saturate a neuron that uses a logistic combina-
tion function by forcing the backpropagation mechanism to assign extreme values close to 1. If the variable were 
standardized to (0, 1), then its mapping would be unchanged but its effect would be more in concert with other 
variables in the set of predictors. 
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Transformations are prescribed according to measurement scale, as listed in Table 1. 

Table 1: Transformations Based on Measurement Scale 

Variable Measurement Scale Transformation 

Binary Dummy, Effect 

Nominal GLM 

Ordinal Thermometer 

Interval Arctan, min_max, sigmoid, tanh, z_score 

 

Modeling 

We represent artificial neural networks as connected weighted sums of input variables. In a feedforward 
MLP neural network, there are at least three layers: input, hidden6, and output. Each layer feeds for-
ward the combined weighted sums of input variables of the current layer to the next layer. Multilayer 
perceptrons were developed to expand the capabilities of single-layer perceptrons. 

A single-layer neural network, called a perceptron, produces an output that is a linear combination of its 
inputs. Hence, it can separate data into disjoint classes only if the data are linearly separable. The input-
output relationship for the two-class exclusive-or problem is 

𝑦 = 𝑏𝑖𝑎𝑠 + 𝑤1𝑥1 + 𝑤2𝑥2 

which is the equation of a straight line. It fails to solve the exclusive-or problem, in which the data points 
are not linearly separable. Figure 1 depicts a single-layer perceptron. 

 

 
 

Figure 1: Single-Layer Perceptron 

 

                                                           
6 There is at least one hidden layer; there may be several hidden layers, depending on the network architecture. 
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Figure 2 demonstrates that linear separation is not possible for the exclusive-or problem. 

 
Figure 2: Exclusive-Or Problem 

Later research on single-layer perceptrons led to multilayer perceptrons in which there is a set of map-
ping functions between the inputs and the outputs. The mapping functions are called nodes. The break-
through advance was due to the insertion of a hidden layer of nodes between inputs and outputs. The 
hidden layer is represented by one or more combination functions that reduce one or more inputs into a 
single output. The output of one or more combinational nodes then becomes the input to an activation 
node. The output node is similarly represented by one or more activation functions that “squash” the 
combination function inputs into an appropriate output value or set of output values. There is a substan-
tial body of knowledge available to inform the choice of combination and activation functions.7 For the 
exclusive-or problem, the logistic function was used for combination and activation functions. Figure 3 
represents a two-input, two-hidden node, single-output feedforward multilayer neural network. 

Inputs 𝑥1 and 𝑥2 are combined by addition into inputs to activation function 𝑓1 . The outputs from 𝑓1 are 
scalar quantities ℎ1 and ℎ2 which are combined by addition into inputs to activation function 𝑓2. The 
output from 𝑓2 becomes the neural network output, 𝑦. 

                                                           
7 See, e.g., https://www.kdnuggets.com/2016/08/role-activation-function-neural-network.html for a list of com-
monly-used functions, and https://en.wikipedia.org/wiki/Activation_function for an extensive list. 

https://www.kdnuggets.com/2016/08/role-activation-function-neural-network.html
https://en.wikipedia.org/wiki/Activation_function
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Figure 3: Two-Input, Two-Hidden, Single-Output MLP 

The values of the input variables are fixed and the weights must be computed to represent the mapping 
between inputs and output(s) so as to optimize an objective function. Originally, backpropagation of er-
rors8 was used to update the weights, but it was computationally slow. More recent methods include 
nonlinear programming methods that are available in PROC NLP. Initial values for the network weights 
are set by the method specified in the WGT_INIT macro parameter9. 

The purpose of the %ANN_NLP macro is to 1) assemble programming statements for PROC NLP to use in 
representing a feedforward multilayer neural network and 2) invoke PROC NLP to solve for values of the 
network weights. The code fragment below demonstrates the use of the %ANN_NLP macro to solve for 
the network weights of the two-class exclusive-or problem. 
 

%ANN_NLP( ANN.xor                   /* reference to input dataset       */ 

        , y_binary                  /* name of target variable          */ 

        , binary=x1 x2              /* names of binary variables        */ 

        , ACTIV_HIDDEN=tanh         /* activation fcn for hidden layer  */ 

        , ACTIV_OUT=logistic        /* activation fcn for output layer  */ 

        , DSNPREDICT=ANN.xor_scored /* reference to output dataset      */ 

        , HIDDEN=2                  /* # of nodes in hidden layer       */ 

        , grid_inc=100              /* # of grid points for PROC NLP    */ 

        , TECH=dbldog               /* use double dogleg algorithm      */ 

                                                           
8 Backpropagation of error was the original method used to update the weights of neural network nodes with re-
spect to the error that each node produces. It is a gradient descent optimization technique designed to minimize 
the squared error of the activation function of the network [2]. 
9 Table B.2 contains the algorithms available for initial network weight specification. 
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        , target_type=binary        /* measurement scale of target var  */ 

        , WGT_INIT=uniform          /* initialize network weights       */ 

        , MODELCODE=C:\_ann_.txt    /* reference to modeling code file  */ 

        ) 

The PROC NLP code produced by the %ANN_NLP macro and stored in file _ann_.txt is 

proc nlp data=ANN.xor( keep= y_binary x1 x2 ) maxfunc=32000 maxiter=32000 

outest=work.ann_parm_est out=ANN.xor_scored tech=dbldog best=0 ; 

parms 

b2_1=0, 

w1_1_1=-0.010410964 to 0.0104109637 by 0.0002082193, 

w1_2_1=-0.050461731 to 0.0504617309 by 0.0010092346, 

b2_2=0, 

w1_1_2=-0.53517399 to 0.5351739899 by 0.0107034798, 

w1_2_2=-0.388470429 to 0.3884704286 by 0.0077694086, 

b3_1=0, 

w2_1_1=-0.368347776 to 0.3683477761 by 0.0073669555, 

w2_2_1=-0.339574038 to 0.3395740381 by 0.0067914808, 

; 

/* begin neural network model code */ 

COMB2_1=b2_1+w1_1_1*x1+w1_2_1*x2 ; 

H2_1=TANH( COMB2_1) ; 

COMB2_2=b2_2+w1_1_2*x1+w1_2_2*x2 ; 

H2_2=TANH( COMB2_2) ; 

COMB3_1=b3_1+w2_1_1*H2_1+w2_2_1*H2_2 ; 

H3_1=( COMB3_1) ; 

p_y_binary = 0.5 *( tanh(H3_1 ) + 1 ) ; 

/* end neural network model code */ 

loglik = ll_binary( y_binary, p_y_binary ) ; 

max loglik ; 

run ; 

The tanh(x) function is used as the combination function for the hidden layer instead of the logistic(x) 
function because it has a wider linear range than the logistic(x) function. It can be used as the “squash-
ing” function for the predicted value of the target variable, p_y_binary, because  

𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑥) =
1

2
(𝑡𝑎𝑛ℎ(𝑥) + 1) 

The weight estimates computed by PROC NLP are 
b2_1              0.254826 

w1_1_1            0.376333 

w1_2_1            0.558106 

b2_2             -0.635517 

w1_1_2            0.275550 

w1_2_2            0.533867 

b3_1           -124.727586 

w2_1_1          172.481699 

w2_2_1         -135.719723  

where 

 The neural network variables 𝑏𝑖𝑗 and 𝑤𝑖𝑗𝑘 are represented in the PROC NLP code as bi_j and 
wi_j_k 
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  the prefix b represents bias and the subscripts i,j represent (current layer, node in current 
layer) 

 the prefix w represents weight and the subscripts i,j,k represent (current layer, node in cur-
rent layer, node in next layer) 

The weight estimates are dependent on the initial values of the network parameters and will vary ac-
cording to their initializations. 

The MLP network equations after substitution of the bias and weight estimates are 

ℎ1 = 𝑡𝑎𝑛ℎ( 0.254826 + 0.376333𝑥1 + 0.558106𝑥2 ) 

ℎ2 = 𝑡𝑎𝑛ℎ ( −0.635517 + 0.275550𝑥1 + 0.533867𝑥2 ) 

ℎ3 = −124.727586 + 172.481699ℎ1 − 135.719723ℎ2 

𝑝_𝑦_𝑏𝑖𝑛𝑎𝑟𝑦 = 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐( ℎ3 ) 

The MLP network equations produce the results shown in Table 2. We see that the estimates are very 
close to the actual values of the exclusive-or function. 

Table 2: Results of XOR MLP 

X1 X2 Y=XOR( X1, X2) P_Y_Binary 

0 0 0 0.0000184817 

0 1 1 0.9999311295 

1 0 1 1.0000000000 

1 1 0 0.0000584415 

Since the %ANN_NLP macro has a number of parameters and options, a more complete discussion is 
deferred to Appendix B. 

Assessing 

There is a provision in the %ANN_NLP macro to score the data used in building the network model. If 

the &DSNPREDICT macro parameter contains the name of a SAS dataset, PROC NLP will store the net-
work predictions into the specified dataset for later use. 

The %ANN_ASSESS macro uses the information stored in the &DSNPREDICT dataset to compute de-
scriptive statistics and key performance indicators (KPI) derived from the actual data and predicted val-
ues of the data produced by the MLP model. 

The performance metrics are specific to the type of model produced, e.g., classification or regression. If 
a binary classification model has been produced, the KPIs are lift, Brier score, ROC chart, area under the 
ROC curve, and 2x2 classification table. For a regression model, the KPIs are the 𝑅2 statistic and the 
standard error of the regression. 

The %ANN_ASSESS macro is invoked with the following parameters: 

%ANN_ASSESS( DSNIN         /* dataset containing output from %ANN_NLP   */ 

           , TARGET        /* target variable                           */ 

           , TARGET_TYPE   /* target variable measurement scale         */ 

           , PRED_TARGET   /* predicted target variable                 */ 

           , N_QUANTILE=10 /* [optional] number of quantiles for lift   */ 

           , PLOTFILE=     /* [optional] file to which to send PDF plot */ 

           ) 
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Scoring 

The goal of model-building for classification and regression tasks is to capture the relationship between 
a target variable and its predictors in a well-defined set of functional statements. Once a model has 
been developed and has been validated, the next step is to use it to score observations and create pre-
dicted values of a target variable. 

The %ANN_SCORE macro uses network parameter estimates produced by PROC NLP via the %ANN_NLP 
macro to apply the modeling statements stored in the &MODELCODE file to new data. An estimated 
value for the target variable is computed by passing the values of each observation’s variables through 
the network. The macro is invoked with the following parameters: 

%ANN_SCORE( DSNIN      /* SAS dataset of target var and input vars      */ 

          , DSNSCORE   /* SAS dataset of scored data                    */ 

          , DSNEST     /* SAS dataset of network parms and estimates    */ 

          , MODELCODE  /* name of modeling file produced by %ANN_NLP    */ 

          , SCORECODE= /* name of Base SAS program output by %ANN_SCORE */ 

          ) 

It produces values of &TARGETVAR in the dataset &DSNSCORE and writes the Base SAS representa-
tion of the neural network created by %ANN_NLP into file &SCORECODE. Since this file contains the rep-
resentation of the neural network as Base SAS data step code, it may be used independently to score 
new data. 

Example of Use 

We demonstrate the use of the macros by applying them to the Home Equity dataset DMLHMEQ in li-
brary C:\Program Files\SASHome\SASFoundation\9.4\dmine\sample. We will score dataset DMTHMEQ 
and compare the results to those created by Enterprise Miner as a comparison. 

The Home Equity loan scoring dataset contains data collected by a financial services company on clients 
to whom a home equity line of credit was extended. The company wants to use geographic, demo-
graphic, and financial information to build a credit scoring model to predict likelihood of a client to de-
fault on a loan. A detailed description is available in [3]. 
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There is one binary target and 12 predictors. The variables are described in Table 3. 

Table 3: Home Equity Loan Variables 

Name Role Measurement 
Scale 

Description 

BAD Target Binary A value of 1 indicates that the client defaulted on the loan or 
is seriously delinquent. A value of 0 indicates that the client 
paid off the loan. 

CLAGE Input Interval Age of the oldest credit line, measured in months 

CLNO Input Interval Number of credit lines 

DEBTINC Input Interval Debt-to-income ratio 

DELINQ Input Interval Number of delinquent credit lines 

DEROG Input Interval Number of major derogatory reports 

JOB Input Nominal Occupational category 

LOAN Input Interval Amount requested for the loan 

MORTDUE Input Interval Amount due on the existing mortgage 

NINQ Input Interval Number of recent credit inquiries 

REASON Input Nominal The value ‘DebtCon’ indicates that the loan was intended for 
debt consolidation. The value ‘HomeImp’ indicates that the 
loan was for home improvement. 

VALUE Input Interval Value of the current property 

YOJ Input Interval Years at the applicant’s current job 

Preprocessing consists of identifying the target variable, indicating measurement scales for each varia-
ble, indicating transformations for each variable, and specifying the treatment of missing values. The 
%ANN_PREPROC macro will read observations from dataset DMSAMPLE.DMLHMEQ and write to da-
taset WORK.HMEQ_LEARN all of the original variables in DMSAMPLE.DMLHMEQ and the preprocessed 
variables specified in the nominal, ordinal, and interval macro parameter lists. The prepro-
cessed variables have ‘X_’ prefixed to their names to distinguish them from the original variables. Inter-
val variables will be transformed into their z-score equivalents. Observations with missing values will be 
excluded from the output dataset. 

Preprocessing 

The %ANN_PREPROC macro invocation explicitly names the target and all predictors and specifies 
transformations according to measurement scale. 

libname DMSAMPLE “C:\Program Files\SASHome\SASFoundation\9.4\dmine\sample” ; 

%ANN_PREPROC( DMSAMPLE.dmlhmeq, WORK.hmeq_learn, bad 

, binary   =bad 

, nominal  =job reason 

, ordinal  = 

, interval =clage clno debtinc delinq derog loan mortdue ninq value yoj 

, int_trans=z_score 

, missing=drop 

) 

It is important to scale predictors so as to maintain homogeneity of magnitude. For example, if there is 
wide variety of housing values in the home loan data, homes with mortgages in the $100,000 range may 
be included with homes whose mortgages are in the $10,000,000 range. In this case, it is possible that 
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the error estimates produced by the computational algorithm will “saturate” the combination function 
chosen by the modeler. For the logistic combination function, inputs in the range (−∞, +∞) produce 
outputs in the range (0, 1). If large positive inputs to the combination function are produced in the 
course of computing the network weights, then the network’s weights may be driven close to 1. In this 
case, the weight update equations will fail to adjust the weights so as to minimize the errors in estima-
tion because the gradient of the error function is too small to produce changes in output. A log transfor-
mation of the mortdue variable will transform the values into the range 5 to 7 and reduce the possibil-
ity of saturating the neuron’s combination function. 

Modeling 

The %ANN_NLP macro invocation explicitly names the target and all predictors using the 
%ANN_PREPROC nomenclature. 

%ANN_NLP( work.hmeq_learn, x_bad 

, binary= 

, nominal= x_job x_reason 

, ordinal= 

, interval=x_clage x_clno x_debtinc x_delinq x_derog x_loan x_mortdue x_ninq 

           x_value x_yoj 

, activ_hidden=tanh 

, activ_out=tanh 

, DSNEST=work.ann_parm_est 

, DSNPREDICT=ANN.hmeq_learn_scored 

, hidden=4 

, ranseed= 

, grid_inc=5 

, tech=quanew 

, target_type=binary 

, wgt_init=uniform 

, preproc=y 

, modelcode=C:\Users\UserID\Documents\My SAS Files\Ann\_ann_hmeq.txt 

) 

Assessing 

The %ANN_ASSESS macro uses the SAS dataset produced by the %ANN_NLP macro. 

%ANN_ASSESS( ANN.hmeq_learn_scored, x_bad 

, binary 

, p_x_bad 

, plotfile=C:\Users\UserID\Documents\My SAS Files\ANN\ann_assess_learn.pdf 

) 

Scoring 

The %ANN_SCORE macro uses the Base SAS code in the &MODELCODE file produced by SAS dataset 
produced by the %ANN_NLP macro to score new observations. 

%ANN_SCORE( work.hmeq_learn 

, hmeq_learn_scored 

, work.ann_parm_est 

, C:\Users\UserID\Documents\My SAS Files\ANN\_ann_hmeq.txt 

, scorecode=C:\Users\UserID\Documents\My SAS 

Files\ANN\_ann_hmeq_learn_score.txt 

) 
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/* score DMTHMEQ (Home Equity test) data */ 

%ANN_PREPROC( DMSAMPLE.dmthmeq, work.hmeq_test, bad 

, binary=bad 

, nominal=job reason 

, ordinal= 

, interval=clage clno debtinc delinq derog loan mortdue ninq value yoj 

, int_trans=z_score 

, missing=drop 

) 

 

%ANN_SCORE( work.hmeq_test 

, work.hmeq_test_scored 

, work.ann_parm_est 

, C:\Users\UserID\Documents\My SAS Files\ANN\ConferencePaper\_ann_hmeq.txt 

, scorecode=C:\Users\UserID\Documents\My SAS 

Files\ANN\_ann_hmeq_test_score.txt 

) 

 

%ANN_ASSESS( work.hmeq_test_scored, x_bad 

, binary 

, p_x_bad 

, plotfile=C:\Users\UserID\Documents\My SAS Files\ANN\ann_assess_test.pdf 

) 

Comparison of Results 

We compared the model results generated by applying the %ANN_NLP macro to the results produced 
by SAS Enterprise Miner using the Home Equity data. 

The Enterprise Miner model used the same network architecture and optimization algorithm as the 
%ANN_NLP macro. The Process Flow Diagram is shown below. 

 
Figure 4: Enterprise Miner Process Flow Diagram 
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Table 4 shows the KPIs for the %ANN_NLP macro and Enterprise Miner. 

Table 4: Comparing %ANN Macro KPIs to Enterprise Miner KPIs 

# of Hidden Nodes 
%ANN_NLP Enterprise Miner 

Top Decile Lift Area Under 
ROC Curve 

Top Decile Lift Area Under 
ROC Curve 

1 0.69 0.487 2.05 0.770 

2 1.56 0.516 1.38 0.789 

3 1.73 0.583 1.38 0.872 

4 2.25 0.584 2.05 0.822 

We see that the Enterprise Miner model outperforms the %ANN_NLP model in most cases. This result is 
expected because 1) the EM model used a validation dataset to provide feedback to the iterative weight 
determination process and thus avoid overfitting the model, and 2) the EM software has evolved over 
time through several generations of improvement by teams of skilled data scientists. 

Summary 

We have developed a set of SAS macros that preprocess data, generate SAS code for multilayer percep-
tron neural network models, assess the predictions of these models, and score new data. We demon-
strated their use for a credit scoring problem and found that they produce similar results as the Enter-
prise Miner-developed model for the same data. 

We propose that these macros have value for tutorial purposes in demonstrating how multilayer per-
ceptron neural network models may be constructed and used without requiring Enterprise Miner soft-
ware. These macros may be customized for specific applications and enhanced to include new features 
developed by researchers. 
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Appendix A 
Reference [1] contains a description of the measurement scales commonly used in data mining. 

 Nominal-scaled data are categorical in nature and do not have any natural ordering. There are 
typically a small number of distinct categories. Nominal data may be of character or numeric 
data type. There is no transitive relationship between two nominal data items. The distance be-
tween two nominal values is undefined. 

 Ordinal-scaled data are categorical in nature and can be ordered relative to each other. There 
are typically a small number of distinct categories. Ordinal data may be of character or numeric 
data type.  There is a transitive relationship between two ordinal data items. The distance be-
tween two ordinal values is undefined. 

 Interval-scaled data are real-valued quantities. Interval-scaled data are ordered and there is a 
transitive relationship between two interval data items. The distance between two interval val-
ues is defined as their difference relative to an arbitrary zero point. The ratio between two inter-
val-scaled data items is not defined. 

 Ratio-scaled data are real-valued quantities. They extend interval-scaled data by defining the 
ratio between two ratio-scaled data items relative to a natural value of 0, which is lacking for 
interval-scaled data. 
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Appendix B 

The %ANN_PREPROC macro header and parameter descriptions are given below. 

%macro ANN_PREPROC( DSNIN  /* name of SAS dataset containing input and target variables */ 

                  , DSNOUT /* name of SAS dataset containing transformed variables      */ 

                  , TARGET /* target variable                                           */ 

                  /* inputs */ 

                  , BINARY=   /* binary-valued variables, numeric in set { 0, 1 }  */ 

                  , INTERVAL= /* interval-scaled variables                         */ 

                  , NOMINAL=  /* nominal-scaled variables                          */ 

                  , ORDINAL=  /* ordinal-scaled variables                          */ 

                  /* transformations */ 

                  , BIN_TRANS=dummy       /* [optional] encoding       for binary-valued variables   */ 

                  , INT_TRANS=min_max     /* [optional] transformation for interval-scaled variables */ 

                  , NOM_TRANS=glm         /* [optional] encoding       for nominal-scaled variables  */ 

                  , ORD_TRANS=thermometer /* [optional] encoding       for ordinal-scaled variables  */ 

                  /* data management */ 

                  , MISSING= /* [optional] treatment of missing values */ 

                  ) ; 

 

    /* PURPOSE: create transformations on data prior to using it in %ANN for creating neural networks 

     * 

     * PARAMETERS: 

     *  DSNIN     ::= name of SAS dataset containing input and target variables to use in building ANN 

     *  DSNOUT    ::= name of SAS dataset containing transformed variables 

     *  BINARY    ::= name(s) of binary-valued   variables 

     *  INTERVAL  ::= name(s) of interval-scaled variables 

     *  NOMINAL   ::= name(s) of nominal-scaled  variables 

     *  ORDINAL   ::= name(s) of ordinal-scaled  variables 

     *  BIN_TRANS ::= encoding       to be applied to binary-valued   variables (dummy) 

     *  INT_TRANS ::= transformation to be applied to interval-scaled variables 

     *               (arctan, min_max, sigmoid, tanh, z_score) 

     *  NOM_TRANS ::= encoding       to be applied to nominal-scaled  variables (glm) 

     *  ORD_TRANS ::= encoding       to be applied to ordinal-scaled  variables (thermometer) 
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     *  MISSING   ::= [ keep | drop ] missing values 

     * 

     * NOTE: 

     *  if variable is followed by "/transform", e.g., INTERVAL= x1/arctan, 

     *  then arctan transform is applied to variable x1 

     *  this option is available for BINARY and INTERVAL-scaled variables ONLY 

     * 

     * NOMENCLATURE: 

     *  transformed variables are renamed using original name with "1" or "2" or ... or "n" 

     *  appended to name to signify transformed value 

     * 

     * EXAMPLE OF USE: 

     * 

     * %let BINARY    = YESNO M_F/effect                ; 

     * %let INTERVAL  = X1/arctan X2/min_max X3/sigmoid ; *** distinct transforms for each variable *** 

     * %let NOMINAL   = NOM1 NOM2                       ; 

     * %let ORDINAL   = ORD1 ORD2                       ; 

     * %let INT_TRANS = z_score                         ; 

     * %let NOM_TRANS = glm                             ; 

     * %let ORD_TRANS = thermometer                     ; 

     * 

     * %ANN_PREPROC( InputDataset, OutputDataset 

     *             , binary=&BINARY, interval=&INTERVAL, nominal=&NOMINAL, ordinal=&ORDINAL 

     *             , int_trans=&INT_TRANS, nom_trans=&NOM_TRANS, ord_trans=&ORD_TRANS 

     *             , missing=drop 

     *             ) 

     */ 
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The %ANN_PREPROC macro has optional individual transformations according to the measurement scale of a variable. Table B.1 shows the pos-
sible transformations available as exemplified below. 

Table B. 1: %ANN_PREPROC Transformations 

Measurement 
Scale 

Data Type Transformation Example Effect 

Nominal Numeric Binary Dummy encoding BinaryVar/dummy Maps BinaryVar into [ 0, 1 ] 

 Numeric Binary Effect encoding BinaryVar/effect Maps BinaryVar into [ -1, 1 ] 

 Character, Numeric GLM encoding NominalVar/GLM Creates dummy var for each distinct value of NominalVar 

Ordinal Character, Numeric Thermometer encoding OrdinalVar/Thermometer Creates dummy var for each value <= ordinal value 

Interval Numeric Arctangent IntervalVar/arctan Maps z_score( IntervalVar ) into ( -π/2, π/2 ) radians 

  Min_Max IntervalVar/min_max Maps IntervalVar into [ -1, 1 ] 

  Sigmoid IntervalVar/sigmoid Maps z_score( IntervalVar ) into ( 0, 1 ) 

  Hyperbolic Tangent IntervalVar/tanh Maps z_score( IntervalVar ) into ( -1, 1 ) 

  Z-Score IntervalVar/z_score Maps IntervalVar into 
(𝑥−𝜇)

𝜎
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The %ANN_NLP macro header and parameter descriptions are given below. 

%macro ANN_NLP( DSNIN  /* SAS dataset containing input and target variables                              */ 

              , TARGET /* target variable                                                                */ 

              /* inputs */ 

              , BINARY=   /* binary-valued   input variables                                             */ 

              , INTERVAL= /* interval-scaled input variables                                             */ 

              , NOMINAL=  /* nominal-scaled  input variables                                             */ 

              , ORDINAL=  /* ordinal-scaled  input variables                                             */ 

              , PREPROC=N /* flag to indicate that &DSNIN has variables preprocessed by %ANN_PREPROC     */ 

              /* ANN architecture */ 

              , ACTIV_HIDDEN=tanh  /* [optional] activation function(s) to use for hidden layer units(s) */ 

              , ACTIV_OUT=logistic /* [optional] activation function to use for output unit(s)           */ 

              , HIDDEN=2           /* [optional] list of number of hidden nodes per layer                */ 

              , RANSEED=           /* [optional] random number seed used to intialize biases and weights */ 

              , TARGET_ERR_FCN=    /* [optional] error function that is optimized to reduce network error*/ 

              , TARGET_TYPE=binary /* [optional] target type: BINARY, INTERVAL, NOMINAL, ORDINAL         */ 

              , WGT_INIT=          /* [optional] weight initialization probability density function      */ 

              /* solver options */ 

              , GRID_INC=5         /* [optional] grid increments for setting parameter values            */ 

              , ID=                /* [optional] name(s) of var(s) to use to identify obs for matching   */ 

              , MAXFUNC=32000      /* [optional] maximum # of function calls                             */ 

              , MAXITER=32000      /* [optional] maximum # of iterations in the optimization process     */ 

              , PRINTOPT=          /* [optional] print options                                           */ 

              , TECH=              /* [optional] default optimization technique                          */ 

              /* scoring options */ 

              , DSNPREDICT= /* [optional] dataset having predictions of neural network applied to &DSNIN */ 

              , DSNEST=     /* [optional] dataset containing all NN parameter estimates for reuse        */ 

              , MODELCODE=  /* [optional] output file to which to write model scoring code for reuse     */ 

              ) ; 

                                                                                                                                                                                       

    /* PURPOSE: develop artificial neural network using PROC NLP to solve for network weights                                                                

     *                                                                                                                                                                                 

     * PARAMETERS:                                                                                                                                                                     

     *  DSNIN          ::= name of SAS dataset containing input and target variables to use in building ANN                                                                            

     *  TARGET         ::= name of output variable whose values are to be predicted by ANN                                                                                             
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     *  INTERVAL       ::= name(s) of interval-scaled variables                                                                                                                        

     *  NOMINAL        ::= name(s) of nominal-scaled variables (must be preprocessed)                                                                                                  

     *  ORDINAL        ::= name(s) of ordinal-scaled variables (must be preprocessed)                                                                                                  

     *  ACTIV_HIDDEN   ::= list of activation function(s) to be used for each unit in hidden layer                                                                                     

     *  ACTIV_OUT      ::= activation function to be used for each unit in output layer                                                                                                

     *  HIDDEN         ::= number of hidden layers                                                                                                                                     

     *  RANSEED        ::= random number seed used in weight initialization                                                                                                            

     *  TARGET_ERR_FCN ::= name of likelihood function that is optimized to produce neural network weights                                                                             

     *  TARGET_TYPE    ::= measurement scale of &TARGET, e.g., BINARY, NOMINAL, ORDINAL, INTERVAL                                                                                      

     *  WGT_INIT       ::= probability dist from which to compute random weight initialization or a number 

     *  GRID_INC       ::= number of increments between end points of grid search interval                                                                                             

     *  ID             ::= name(s) of variable(s) to use to identify obs for matching                                                                                                  

     *  MAXFUNC        ::= maximum # of function calls                                                                                                                                 

     *  MAXITER        ::= maximum # of iterations for &TECH optimization algorithm                                                                                                    

     *  TECH           ::= PROC NLP optimization technique                                                                                                                             

     *  PRINTOPT       ::=                                                                                                                                                             

     *  DSNPREDICT     ::= name of dataset to contain neural network predictions                                                                                                       

     *  MODELCODE      ::= name of file to which to write modeling code  

     * 

     * NOTE:    any preprocessed variables must be prefixed with "X_" so that appropriate programming 

     *          statements can be assembled to account for, e.g., preprocessed nominal or ordinal variables 

     *          that will require special treatment to represent multiple values. this situation will occur 

     *          if a nominal or ordinal variable has been preprocessed to be encoded with a GLM or a 

     *          thermometer encoding representation 

     * 

     *          a preprocessed nominal variable that contains multiple values will be represented as 

     *          n binary variables, one per distinct nominal value.                               

     *          thus, if the variable Gender has the values Male, Female, Unknown, it must be preprocessed 

     *          into X_GENDER1, X_GENDER2, X_GENDER3                                        

     *          where each value (Male, Female, Unknown) will be represented as a binary variable using GLM 

     *          encoding 

     * 

     *          similarly, the ordinal variable Age that has the values Child, Teen, YoungAdult, Adult, 

     *          Senior must be preprocessed into X_AGE1, X_AGE2, X_AGE3, X_AGE4, X_AGE5 

     *          where each value (Child, Teen, ..., Senior) will be encoded using thermometer encoding 

     * 

     * ARCHITECTURE SCHEMA: 

     *  ANN architecture is input layer-hidden layer(s)-output layer 

     *  all node   indices refer to layer, input-to-[ hidden | output ] unit 

     *  all weight indices refer to layer, input-to-[ hidden | output ] unit, output-from-unit 

     *      Example: 2-2-1 ( 2 inputs, 1 hidden layer with 2 nodes, 1 output layer with 1 node 
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     *      X11 -> H21 

     *      X11 -> H22 

     *      X12 -> H21 

     *      X12 -> H22 

     *      H21 -> O31 

     *      H22 -> O31 

     * 

     *      CombinationFunction21 = bias21 + w111 * X11 + w121 * X12 

     *      CombinationFunction22 = bias22 + w121 * X11 + w122 * X12 

     * 

     *      HiddenNode21 = ActivationFunction21( CombinationFunction21 ) 

     *      HiddenNode22 = ActivationFunction22( CombinationFunction22 ) 

     * 

     *      OutputNode31 = ActivationFunction31( bias31 + w131 * HiddenNode21 + w132 * HiddenNode22 ) 

     * 

     * EXAMPLE OF USE: 

     * 

     * %let INTERVAL     = INPUT1 INPUT2 X_INPUT3 ; *** variable INPUT3 was preprocessed *** 

     * %let HIDDEN       = 1                      ; 

     * %let TARGET       = prob_event             ; 

     * %let ACTIV_HIDDEN = tanh                   ; 

     * %let ACTIV_OUT    = logistic               ; 

     * 

     * %ANN_NLP( InputDataset 

     *         , interval=&INTERVAL 

     *         , HIDDEN=&HIDDEN 

     *         , TARGET=&TARGET 

     *         , ACTIV_HIDDEN=&ACTIV_HIDDEN 

     *         , ACTIV_OUT=&ACTIV_OUT 

     *         ) 

    */ 
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The %ANN_NLP macro has parameter options that may be specified according to a specific model. Table B.2 shows the options available. 

Table B. 2: %ANN_NLP Parameter Options 

Parameter Meaning Option Value 

ACTIV_HIDDEN Hidden layer activa-
tion function 

Exponential 
Linear 
Logistic 
Hyperbolic Tangent 

EXP 
LINEAR 
LOGISTIC 
TANH 

ACTIV_OUT Output layer activa-
tion function 

Huber 
Logistic 
Normal 
Poisson 
Softmax 

HUBER 
LOGISTIC 
NORMAL 
POISSON 
SOFTMAX 

WGT_INIT Initial network 
weight randomiza-
tion distribution 

He 
 
Normal 
 
Uniform 
 

Sample from 𝑁( 0, √
2

#𝑜𝑓𝐼𝑛𝑝𝑢𝑡𝑁𝑜𝑑𝑒𝑠
} 

Sample from 𝑁( 0, √
1

#𝑜𝑓𝐼𝑛𝑝𝑢𝑡𝑁𝑜𝑑𝑒𝑠
} 

Sample from 𝑈( √
1

#𝑜𝑓𝐼𝑛𝑝𝑢𝑡𝑁𝑜𝑑𝑒𝑠
} 
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The %ANN_ASSESS macro header and parameter descriptions are given below. 

%macro ANN_ASSESS( DSNIN         /* SAS dataset having target variable and predicted value of target var */ 

                 , TARGET        /* target variable                                                      */ 

                 , TARGET_TYPE   /* target variable measurement scale                                    */ 

                 , PRED_TARGET   /* predicted target variable                                            */ 

                 , N_QUANTILE=10 /* [optional] # of quantiles into which to group obs for BINARY target  */ 

                 , PLOTFILE=     /* [optional] file to which to send PDF plot                            */ 

          ) ; 

 

    /* PURPOSE: compute performance statistics to assess a model 

     * 

     * PARAMETERS: 

     *  DSNIN      ::= name of SAS dataset having target variable and predicted value of target variable 

     *  TARGET     ::= name of variable whose values are to be predicted 

     *  PRED       ::= name of predicted value of &TARGET 

     *  N_QUANTILE ::= number of groups to create for &TARGET_TYPE = BINARY 

     *  PLOTFILE   ::= path/name of plot file to which to write graphical output 

     * 

     * EXAMPLE OF USE: 

     * 

     * %let DSN1       = TrainingDataset ; 

     * %let TARGET     = target_var      ; 

     * %let MEAS_SCALE = binary          ; 

     * %let PRED       = prob_event      ; 

     * 

     * %ANN_ASSESS( DSN1, &TARGET, &MEAS_SCALE, &PRED ) 

     */ 
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The %ANN_SCORE macro header and parameter descriptions are given below. 

%macro ANN_SCORE( DSNIN      /* SAS dataset having target variable and input vars to be used in scoring */ 

                , DSNSCORE   /* SAS dataset containing scored data                                      */ 

                , DSNEST     /* SAS dataset containing network parameters and estimates                 */ 

                , MODELCODE  /* name of text file produced by %ANN that contains neural network model   */ 

                , SCORECODE= /* [optional] name of program produced from &MODELCODE having scoring code */ 

                ) ; 

 

    /* PURPOSE: use previously-developed neural network parameter estimates to score data 

     * 

     * PARAMETERS: 

     *  DSNIN     ::= name of SAS dataset containing independent variables used in building %ANN model 

     *  DSNSCORE  ::= name of SAS dataset that will contain predicted target value produced by %ANN model 

     *  DSNEST    ::= name of SAS dataset containing estimates for parameters used in %ANN model 

     *  MODELCODE ::= name of text file produced by %ANN 

     *  SCORECODE ::= name of text file produced by %ANN_SCORE that contains scoring code 

     * 

     * EXAMPLE OF USE: 

     * 

     * %let DSN_IN     = TrainingDataset       ; 

     * %let DSN_SCORE  = ScoredData            ; 

     * %let DSN_EST    = estimated_network_wts ; 

     * %let MODEL_CODE = path/ANN_MODEL.txt    ; 

     * %let SCORE_CODE = path/ANN_SCORE.txt    ; 

     * 

     * %ANN_SCORE( &DSN_IN, &DSN_OUT, &DSN_EST, &MODEL_CODE, SCORECODE=&SCORE_CODE ) 

     */ 
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