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Outlier Detection and Treatment
Ross Bettinger, Silver Spring, MD

Abstract

Outliers in a set of data represent observations that are distinguished from the expected patterns in the
observed data. We are attracted to them because they are somehow atypical of what we expect to see
in the distribution of the data that we have collected or generated. We may be troubled by them be-
cause they may contain important information about the process which we are attempting to model, or
they may simply be spurious noise or even data points that have been corrupted by noise. In any case,
we must be careful in our treatment of them because we cannot easily decide whether they represent
some valuable aspect of the process under study or are simply aberrations.
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Introduction

In the final week of the semester in a statistics class, the professor was reviewing the topics that were
covered. He talked about exploratory data analysis, analysis of variance, regression, variable selection,
sampling bias, hypothesis testing, data collection and data cleaning, and many more of the useful topics
that students regularly encounter in their second statistics course. A student raised his hand and said,
“Professor, can you give us more problems to work so we can practice our skills prior to the final exam?”
And the professor turned to face him, pointed at him, smiled, and proclaimed “Outlier!”

This little anecdote highlights an important statistical topic that is often encountered in statistical and
machine learning applications. What do we mean when we call an observation an outlier? What makes
an outlying observation different from other observations? What, if anything, must we do when we
have outlying observations in our data? Are outliers bad? Can we simply include them with the rest of
our data and build models with them? Can we exclude them and conduct analyses without accounting
for them?

Detecting Outliers in Data

An outlier is an observation that is so different from other observations that it attracts our attention.? It
may be extreme in some sense, or simply “doesn’t look right” to our trained eye. In the anecdote above,
the professor labelled the student as an outlier perhaps because, in the professor’s experience, no stu-
dent had ever asked for more problems to work. He may have been an exception to the professor’s ex-
perience-based characterization of the distribution of students’ willingness to learn statistics.

I Typically, we are concerned with continuous data, but we may also consider the case for categorical data. For
example, a rose growing in a vegetable garden may be considered to be an outlier. Or, a categorical value with un-
usually low frequency may be due to a data labelling error. Domain knowledge must be used in such cases so that
appropriate remedial measures may be applied. Perhaps the observation is so atypical that it must be omitted
from the analysis, or it can be relabeled and merged with another category based on additional characteristics.
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A more formal definition is that an outlier is “an observation that deviates so much from other observa-
tions as to arouse suspicion that it was generated by a different mechanism” [1]. Also, “an outlying ob-
servation, or outlier, is one that appears to deviate markedly from other members of the sample in
which it occurs” [2].

Outlying observations cannot be ignored because they may affect the parameter estimation process.
High-leverage points are extreme or outlying values of x; that distort fitted regression model estimates
by minimizing the error criterion, }; eiz. If an observation has high influence, it will significantly change
the parameter estimates of a fitted regression model if it is omitted from the calculation [3].

Detecting Outliers Using Univariate Regression

A first step in detecting outliers in data is to perform exploratory data analysis of individual variables.
We will use Series Ill of Anscombe’s quartet? [4] to represent the importance of visual analysis before
any statistical algorithms are applied. Table 1 indicates the Series Il data points.

Table 1 Anscombe’s Quartet Series Il Data

X 10.0 8.0 13.0 9.0 |11.0 14.0 6.0 4.0 12.0 7.0 5.0
IN_y | 7.46 6.77 12.74 | 7.11 7.81 8.84 6.08 5.39 8.15 6.42 |5.73

Figure 1 shows the scatterplot of the data overlaid on the 45° line of exact fit between actual Ill_y and
predicted Ill_y.
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Figure 1 Anscombe’s Quartet Series Il Scatterplot and Trend Line

We see that observation 3 (note the “3” subscript below the data point in the scatterplot) is an excep-
tion to the trend and biases the trend line upward. The coefficient of determination, R?, is 0.6663, indi-
cating moderate correlation between the dependent and independent variable. The equation of the
trend line is

Iy = 3.00245 + 0.49973 - x (1)
which is close to what Anscombe originally specified to be
Hl y=34+05"x (2)

2 Anscombe’s quartet is a collection of four datasets each of which has the same mean, variance, and correlation as
the others. However, their distributions are strikingly different. Anscombe created the quartet to emphasize the
need for visual analysis of data in addition to computing summary statistics.
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The regression results are given in Table 2. Note that the residuals vary widely in magnitude, and that
the residual of the outlier at observation 3 is much larger than those of any of the data points since its
predicted value, [11_y, is too low.

Table 2 Series Il Regression Results

Obs W_x W_y W_y hat W_y_resid
1 10 746 T.o0o73 053873

2 8 677| 7.00027 | -0.23027
3 121274 | 040201 3.24108@
4 & 7.11| 7.50000 | -0.20000
5 11| 7.81| B40945 | -D.EBB4S
6 14 S.54| 0.090384 | -1.15884
T 6 6.08|6.00082 0.07218
B 4 530| 500136 0.28354
9 12| 815| 800018 | -0.B4018
10 7| 642 650055 | -0.08055
1" 5 673 550109 0.22801

If we include a binary indicator variable to signify the presence of the exceptional data point, we have
new data shown below (Table 3).

Table 3 Series Il Data and Binary Indicator Variable

X 10.0 8.0 13.0 9.0 11.0 14.0 6.0 4.0 12.0 7.0 5.0
H_y 7.46 6.77 | 12.74 | 7.11 7.81 8.84 6.08 5.39 8.15 6.42 | 5.73
Binary 0 0 1 0 0 0 0 0 0 0 0

We use OLS regression to compute the least-squares coefficients of the model
Iy = by + byx + byBinaryIndicator (3)

The results from PROC REG are shown in Table 4.
Table 4 Regression of Ill_y on x Using Binary Indicator

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr=F
Model 2 4122812 2061306 2170532 |<.0001
Error 8 0.00007557 | 0.00000850

Corrected Total | 10| 4122620

Root MSE 0.00208 R-Square | 1.0000
Dependent Mean 7.50000 Adj R-5q | 1.0000
Coeff Var 0.04109

Parameter Estimates
Parameter | Standard

Variable DF Estimate Emmor t Value Pr = [t]
Intercept 1/ 400585 000222 | 1368.81 | <.0001
H_x 1 0.34539 0.00032050 (1077.35 <0001
Ind_ouwtlier 1 424420 000353 |1203.54 | <.0001

The coefficient of determination, R?, is 1, indicating exact correlation between the dependent and inde-
pendent variable (to four significant digits of accuracy). The equation of the trend line for the outlier
model is

ITl_y = 4.00565 + 0.34539 - x + 4.24429 - BinaryIndicator (4)



Figure 2 shows how the binary indicator variable improves the prediction of Ill_y.
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Figure 2 Scatterplot of Ill_y vs ITI_y for Outlier Model

We see that the use of the binary indicator variable to distinguish the outlier for observation 3 removes
the bias caused by the outlier and results in a near-perfect fit. The regression results are given in Table 5.
Note that the residuals are quite small.

Table 5 Series Ill Regression Results for Binary Indicator Model

Obs WM_x MN_y Ind_outlier W_y_hat Nl_y_resid

1 10, 746 0 74585 |0.000454545
2 B| 877 0| &.7888 |0.001233760
3 13 1274 1) 127400 0
4 8 711 0 7.1142 | - 004155844
5 11) 781 0 7.5049 |0.0050G4835
6 14 884 0 82411 |-001103808
T 6] 6.08 0 6.0720 |0.002012887
&8 4 539 0 53872 |D.0027a2208
9 12 815 0| B.1503 | -000324875
10 T 842 0 64234 | -003376823
11 3| 573 0| 57328 |-002587403

The effect of adding the binary indicator variable is illustrated by the following computations as shown
in Table 6.

Table 6 Effect of Adding Binary Indicator Variable

Obs #3 Regression Equation Pred Ill_y Resid IlI_y
No Indicator Eqn 1: 1Il_y = 3.00245 + 0.49973 - 13 9.4989 3.24109
With Indicator | Eqn 4: I11_y = 4.00565 + 0.34539 - 13 + 4.24429-1 | 12.7400 0




Since outliers produce large residuals, several measures have been developed to detect outlying obser-
vations based on their associated residuals. PROC REG produces many measures of outlyingness. Among
them are studentized deleted residuals [5] and Cook’s distance (Cook’s D) statistic [6].

Studentized deleted residuals are residuals that have been computed from the original lll_y
value and the predicted Ill_y value where the /" observation has been deleted from the regres-
sion so as to eliminate its influence as an outlier. The residual of the /" observation is then nor-
malized by the adjusted mean square error of the regression excluding the deleted observation.
Each studentized deleted residual has a Student’s t distribution with n — p — 1 degrees of free-
dom.

Cook’s D statistic is “[A]n overall measure of the combined impact of the i" case on all of the es-
timated regression coefficients” [7, p. 403]. Similar to the studentized deleted residual, Cook’s D
is calculated by removing the i observation and recalculating the regression estimates. The
computed value of Cook’s D may be referred to an F distribution with p and n — p degrees of
freedom at the median, e.g., F5o(p,n — p). If D; > 1 then observation i may be considered to be
influential. Another rule-of-thumb is to consider any observation for which Cook’s D = 4/n,
where n is the number of data points, to be an outlier.

Figure 3 contains a PROC REG-produced side-by-side chart of studentized deleted residuals and Cook’s D
for Anscombe’s series Il data without a binary indicator variable to distinguish outliers. The legend at
the bottom of the chart indicates that the t statistic for observation 3 is significantly outlying, and the
value of Cook’s D statistic is similarly greater than the cutoff value of 1.

Studentized Residuals and Cook's D for lll_y
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Figure 3 Series Ill_y Studentized Deleted Residuals and Cook's D



Figure 4 indicates the moderating effect of distinguishing outliers by using a binary indicator variable.
None of the observations produces an extremely large residual that biases the regression estimates.

Studentized Residuals and Cook's D for lll_y
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Figure 4 Series Ill_y Studentized Deleted Residuals and Cook’s D for Binary Indicator Model
Detecting Outliers Using Multivariate Regression

Treatment of outliers in the univariate case may be straightforwardly applied to the more complex case
of multivariate regression. We will use the Boston Housing dataset [8] to investigate treatment of outli-
ers in the multivariate case.

The Boston housing dataset represents housing values in suburbs of Boston. It consists of 506 observa-
tions that were collected in 1978. There are 13 interval-scaled attributes and one binary variable. The
dependent variable in this exercise is median home value in $1,000’s. Appendix A contains attribute in-
formation.



We used PROC REG to perform variable selection using the adjusted R? model selection option3. The
predictors AGE and INDUS were omitted from the final model. Table 8 shows the results.
Table 7 Regression of Median Home Value on Selected Variables
Regression of Median Home Value on Selected Variables
The REG Procedure
Model: BostonHousing
Dependent Variable: MEDV
MNumber of Observations Read 506
Number of Observations Used 506

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr>F
Model 11 31635 287590286 12821 |<.0001
Error 494 11081 2243191

Corrected Total 505 42716

Root MSE 473623 R-Square 0.7406
Dependent Mean 2253281 AdjR-Sq 07348
Coeff Var 2101928

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|
Intercept = 1 3634115 506749  7.17 | <0001

B 0.00929 000267 347 0.0006
CHAS 271872 085424 3.18 0.0016
CRIM -0.10841 003278 -3.31 00010
DIs -149271 | 018573 -8.04 <0001
LSTAT -052255 | 0.04742 | -11.02 | <0001

1
1
1
1
1
NOX 10 -17.37602 | 353524 492 <0001
1
1
1
1
1

PTRATIO -084652 | 012907 | -7.33 <0001
RAD 029961 006340 473 <0001
RM 3.80158 040632 936 <0001
TAX -001178  0.00337  -349 0.0005
ZN 004584 001352 339 0.0008

3 The adjusted R? method finds subsets of independent variables that best predict a dependent variable by linear
regression in the given sample. The method finds the models with the highest adjusted R? for a given combination
of variables in a subset of the predictors. See, e.g., https://documentation.sas.com describing PROC REG model
selection methods.



https://documentation.sas.com/

Figure 5 is a scatterplot of observed versus predicted median home values. It shows the outlying obser-
vations that are not within the 95% prediction ellipse*. The observations at the upper right corner of the
plot all have the same median home value, so it is possible that they were capped at $50,000.
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Figure 5 Observed vs Predicted Median Home Values

4 A prediction ellipse is a graphical representation of the 100(1 — a)% confidence region of prediction for the loca-
tion of a new observation assuming bivariate normality of observed and predicted points. For a Type 1 error of 5%,
the 95% prediction ellipse represents the bivariate region of the plane in which 95% of predicted points would be
contained. Thus, points outside of the prediction ellipse boundary may be potential outliers.
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Table 8 represents 33 observations that equaled or exceeded the Cook’s D value of 0.0079, which indi-
cates the threshold of an influential observation for this dataset. Note that there are studentized de-
leted residual t-values that do not exceed the critical value of t = 3, so we conclude that Cook’s D statis-
tic may produce more “false alarms”® than the studentized deleted residual t-statistic.

Table 8 Multivariate Regression Influential Observations

Influential Observations
Cook's D == 4/506 = 0.0079

Significant
Median Studentized Studentized Significant

Obs ' Home Predicted Residual Deleted Deleted Cook's Cook's D

# Value MEDV  MEDV Residual Residual D Statistic

65 330 23368 96532 207965 0223 =
142 144 39451 104549 226537 0.01885 =
149 178 97413 80587 1.74616 00235 =
162 500 366104 133896 288404 001744 =
163 500 4041684 95836 208107 00816 =
164 500 417054 82946 1.60692 00616 =
167 500 370348 129652 279554 0.01843 =
187 500 359503 14.0497 302001 * 00472 =
196 500 408564 8 91436 1.96503 0.00962 =
204 485 419811 65189 1.41100 0.00808 =
205  RD0O 4313681 68639 148673 0.00916 =
215 237 111629 125371 270738 001982 =
2260 500 398160 101840 2.19689 0.01430 =
234 48B3 371641 111389 239008 001112 =
254 428 298924 129076 281298 0.03296 =
263 488 410583 T7412 1.66860 0.00889 =
268 500 408993 91002 1.95975 0.01094 =
36h 219 374984 155984 -346177 ¢ 0.0789% *
366 2ThH 143022 13.1978 295011 0.07400 *
368 231 108235 122765 270694 0.04633 =
369 R00 237627 | 262373 589360 * 016121 =
3r0.  RD0O 326264 173736 381376 ¢ 006142 *
n R00 345861 154139 337503 ¢ 0.04956 =
7?2 500 249100 250900 LR0D42 * 0.04242 =
373 RD0 260230 239770 532535 * 0.10858 *
rd 138 6T TEZTS 1.64220 000812 =
irs 138 08351 129649 282736 0.03159 *
376 1500 252831 -102831 -2 20653 0.00999 =
s 104 14337 -39317 -0.99563 0.03623 =
406 RO B2078 -32078 073707 0.00840 *
413 179 1.7365 16,1635 354878 * 0.0579%6 *
415 700 42331 11233 247594 0.03974 =
5060 119 223408 -104408 -2 235095 0.00847 =

N=33

5 The concept of a false alarm is relative in this discussion since there is no definitive knowledge that an observa-
tion is sufficiently distinct from the other points in the sample to be considered an outlier. Hence, we observe that
Cook’s D statistic may be a more sensitive indicator than the studentized deleted residual t-statistic.
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If we add to the model a binary indicator variable for which BinaryIndicator = 1 when
Cook’s D = 0.0079 and 0 otherwise, we get the following improved result as seen in Table 9:

Table 9 Multivariate Regression Model Using Binary Indicator

Regression of Median Home Value on Selected Variables
Binary Indicator Distinguishes Influential Observations
The REG Procedure
Model: BostonHousing
Dependent Variable: MEDV

Number of Observations Read 506
Number of Observations Used 506

Analysis of Variance

Sum of Mean
Source DF  Squares Square FValue Pr=F
Model 12 35144 2926 65186 19067 <0001
Ermor 493 757247308 | 15.35599

Corrected Total 505 42716

Root MSE 391918 |R-Square 0.8227
Dependent Mean 22532681 AdjR-Sq 08184
Coeff Var 17.39323

Parameter Estimates
Parameter Standard

Variable DF Estimate Error t Value Pr = |t
Intercept 1) 2809306 41949 9.08 <0001
B 1 000669 000222 302 00027
CHAS 1 167561 071024 236 00187
CRIM 1 018959 | 002765 -686 <0001
DIs 1 126604 | 015445 -B813 <0001
LSTAT 1) 050690 003926 -1291 <0001
NOX 1 -1667115 | 292575 -570 <0001
PTRATIO 1 088748 010687 -8.30 <0001
RAD 1 029956 0052460 571 <0001
RM 1) 323833 033828 957 <0001
TAX 1 001216 000279 436 <0001
N 1 00383 001120 342 0.0007
1

binaryindicator 1129441 074726 | 1511 <0001
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We compare the prediction performance of the two models below. Figure 5, reproduced from above,
shows the 95% prediction ellipse of the regression model sans binary indicator variable. Figure 6 is a
scatterplot of observed versus predicted median home values for the regression model that includes a
binary indicator to distinguish outlying observations.

We observe that the observations are grouped more closely within the 95% prediction ellipse for the
binary indicator model, and that there appear to be fewer outliers in the neighborhood of the centroid
of median home value. We conclude that the accuracy of the model has been improved by the inclusion
of the binary indicator variable.
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Figure 5 Observed vs Predicted Med Home Values Figure 6 Observed vs Predicted Median Home Values,

Binary Indicator Model
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Table 10 contains the 27 observations detected by Cook’s D statistic. Every observation in Table 8 was
assigned BinaryIndicator = 1. In Table 10, only 11 of the original 33 distinguished observations sur-
pass the Cook’s D threshold of 0.0079.% The inclusion of the binary indicator variable has resulted in re-
ducing the total number of suspect outliers from 33 to 27.

Table 10 Influential Observations Distinguished by Binary Indicator Variable

Influential Observations Distinguished by Binary Indicator Variable
Cook's D >=4/506 = 0.0079

Significant
Median Studentized ' Studentized Significant

Home Predicted Residual Deleted | Deleted Cook's Cook’'s D Binary

Obs  Value MEDV MEDV  Residual Residual D Statistic Indicator
99| 438 336941 10,1059 261980 0.01049 * a
148 146 B4h24| 61476 161218 0.01055 * a
158 413 3156663 | 97337 252338 0.01026 * a
225 448 364ATX6| B32r4 215967 0.00908 * a
229 467 340546 | 126454 328301~ 0.01233 * a
257 440 359915 80085 208355 0.01084 |* a
258 500 4DG548| 934R2 245343 0.02200 * a
262 431 353155 | 77845 202003 0.00869 * a
283 460 380057 | 79343 209048 0.01442 |* a
284 500 416737 B3263 220470 0.02544 a
365 219 453390 |-23.4390 65453764 |- 0.30822 * 1
369 500 343919 156081 424230 * 0.12970 * 1
370 500 411994 88006 233957 0.03162 * 1
3 00| 428093| 7.1907 1.90751 0.02092 1
32 500 345701 154299 4.09057 * 0.05755 1
3r3 500 349542 | 150358 403738 * 0.09017 1
3f6 150 335279 -1B5279 -494780 - 0.08192 1
381 104 172225 58225 -2109369 014922 * 1
406 50 136659 -86659 -2 43283 0.08903 * 1
408 279 186325 92675 239740 0.00r9z a
410 275 180971 94029 243770 0.01000 * a
411 150 113775 | 3625 098613 0.01036 * a
413 179 128447 50553 1.35231 0.01366 * 1
419 88 06877 81123 232132 010131 * a
491 8.1 39123 | 41877 1.11503 0.00845 * a
493 201 152551 438449 128588 0.01023 * a
56 119 332197 213197 577285 ¢ 0.13685 * 1

N=27

6 Observations 365, 369, 370, 371, 372, 373, 376, 381, 406, 413, and 506 were identified as outliers in the non-bi-
nary indicator regression, as reported in Table 8.
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We can gauge the effect of adding the binary indicator variable by comparing regression performance
statistics in the two models, as shown in Table 11.

Table 11 Comparison of Models

Performance Metric No Binary Indicator | Includes Binary Indicator
Root MSE 4.73623 3.91918
Coefficient of Variation 21.01928 17.39323

R? 0.7406 0.8227
Adjusted R? 0.7348 0.8184

We see that adding the binary indicator to distinguish observations detected by Cook’s D statistic has
the effect of improving the model’s accuracy by 17%’, with a corresponding increase in adjusted R? of
8.36%.

Detecting Outliers Using Mahalanobis Distance

One or more outlying values in the univariate case, e.g., Anscombe’s Series Il data, will be easy to spot
because a histogram of the data will show them at a significant distance from the body of the data. In
the multivariate case, however, creating histograms for each variable can quickly become tedious to an-
alyze, and may not readily reveal a pattern that can be used for labelling certain observations as outliers
since there is no direct way to visualize the interactions between multiple variables.

The Mahalanobis distance is a commonly-used metric that converts an observation consisting of several
continuous values into a single scalar value. The histogram of the distribution of these distances can be
used to highlight observations whose distance from the centroid of the data is considered to be exces-
sive.

The formula for the Mahalanobis distance is

D*(x) = (x; — )" (x; — X) (5)
where x; = (X1, X2, -, Xip),i = 1,..., N is a row vector of p variables, X is the row vector of means of
each variable, i.e., the centroid of the data, and S™1 is the inverse of the sample covariance matrix.2 We
may specify a boundary point, )(12,,0_975, that determines an ellipsoid in p dimensions. If D?(x;) <
)(5‘0_975, then the point x; lies within the ellipsoid and is not an outlier. Otherwise x; is an outlier. One
difficulty with using the Mahalanobis distance to identify outliers is that “[D]ata sets with multiple outli-
ers or clusters of outliers are subject to masking and swamping effects” [9, p. 7]. An observation that
would be considered to be an outlier by itself is masked if there is another observation close to it which
skews the mean and covariance estimates significantly to reduce the distance of the outlying points to
the centroid of the data. Swamping occurs when an observation that would normally be a non-outlier is
grouped with outlying instances that skew the mean and the covariance estimates toward the centroid
of the group and not the centroid of the main body of the data. Distances in this case are large so that
the normally non-outlying observation is classified as an outlier.

Since outliers significantly influence the mean and covariance estimates of a dataset, estimates of dis-
tance ought to be computed using robust procedures such as PROC ROBUSTREG. Further discussion of
outliers using robust algorithms is a substantial topic that is outside the scope of this paper.

7 We compute (RootMSE_Nolndicator-RootMSE_Includingindicator)/ROOTMSE_Nolndicator to get -0.17238, or
about 17% decrease in Root MSE due to inclusion of a binary indicator variable for suspected outliers.

& The Mahalanobis distance is the multivariate equivalent of the z-score where z = (x — X) /s in the univariate
case.
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Using PROC ROBUSTREG, we computed Mahalanobis and robust distances and compared them in Figure
7. We see that there is significant masking of Mahalanobis distances which the robust distance calcula-
tion technique uncovers. The Mahalanobis distance-observation number plot and the corresponding
box-and-whisker plot show only moderate distances from observations to the centroid of the data,
while the equivalent robust results from PROC ROBUSTREG reveal significant deviations.

Comparison of Mahalanobis and Robust Distances

Method = Mahalanobis Method = Robust
100
B0
1 H]
2 a0
=
il
[
40
20
. M
O 100 200 300 400 5000 100 200 300 400 500
Cbservation Mumber
Method = Mahalanobis Method = Robust
100
o
B0 o
] :
2 a0
m
W
i

40

20
=_|=jb_=

Figure 7 Comparison of Mahalanobis and Robust Distances
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In Figure 8, we compare the predictions generated by the OLS binary indicator model using Cook’s D sta-
tistic (Figure 6) and the OLS regression using the binary outlier indicator created by PROC ROBUSTREG as
a predictor of outlyingness.’ We observe that the two results are closely matched.

(LS Regression Estimation of Median Home Value
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Figure 8 Comparison of Robust and OLS Regression Predictions

Table 12 contains selected performance statistics of the two regression models. We see that the robust
regression detection of outliers is slightly more powerful than using Cook’s D as a measure of outlying-
ness.

Table 12 Comparison of OLS Regression and Robust Regression

. OLS Regression Using Cook’s D | Robust Regression Using ROBUSTREG
Performance Metric . . . .
Binary Indicator Binary Indicator
Root MSE 3.91918 3.62416
Coefficient of Variation 17.39323 16.08394
R? 0.8227 0.8481
Adjusted R? 0.8184 0.8447

9 PROC ROBUSTREG creates a binary variable, eponymously called “OUTLIER”, to distinguish observations that ex-
ceed a cutoff value for outlyingness. The feature is documented in the PROC ROBUSTREG MODEL statement and
described more fully in the Leverage-point and Outlier Detection portion of the Details section of the ROBUSTREG
Procedure documentation.
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Detecting Outliers Using Local Outlier Factor and Local Outlier Probability

An outlier detection algorithm may compare an observation to all other observations in a set of data, in
which case it is deemed to be global in scope, or it may compare the observation to its neighbors in a
cluster, in which case it is local in scope. The detection techniques described above are global in scope,
and here we discuss two techniques that are local in scope, pertaining to outliers relative to observa-
tions in a particular cluster.

Local Outlier Factor

If a point is relatively isolated from its nearest neighbors in a cluster, it may be an outlier with a degree
of outlyingness related to its distance from its nearest local neighbors in the cluster. Using this concept,
Breunig et al. [11] described an algorithm for finding locally-outlying observations relative to their near-
est neighbors. A point is “local in that the degree of outlyingness depends on how isolated the object is
with respect to the surrounding neighborhood” [11, p. 93]. A tutorial example is presented in [12] in de-
tail.

The Local Outlier Factor, a positive real number that represents the density'® of observations around a
point compared to the density of its nearest k neighbors, can be used to quantify the isolation of a given
point and thus measure its outlyingness. The LOF algorithm requires the specification of an integer, k,
which represents the locality, i.e., the number of nearest neighbors to a point. Interpretation of the LOF
is not straightforward since it is the average ratio of the density of the k nearest neighbors of a point A
to the density of point A and is not necessarily comparable from one cluster to another. For a given
point, a LOF ~1 indicates similar density as its neighbors, LOF < 1 indicates higher density than its
neighbors, and LOF > 1 indicates lower density, i.e., fewer neighbors so higher likelihood of outlying-
ness.

We have written a SAS® macro, %LOF_LoOP, to compute the LOF and the LoOP (Local Outlier Probabil-
ity, discussed below). Several graphical representations of the data are also produced to facilitate inter-
pretation and definition of outlyingness based on the LOF and the LoOP. We applied the %LOF_LoOP
macro to Fisher’s iris data [13] and present selected results.!!

10 Density is measured in number of points per unit of distance.
11 The %LOF_LoOP macro invocation code used to produce the LOF and LoOP graphics is given in Appendix B.
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A histogram of the LOF may be used to suggest a cutoff value above which to declare an observation to
be an outlier. Values < 1 represent inliers, while values slightly > 1 may be “near outliers” but not con-
clusively so. In Figure 9, values >> 1, e.g., > 1.5, are likely outliers. Since the LOF is not a uniform metric
between clusters, it is difficult to make conclusive statements such as “an observation with a LOF value
above 1.5 ought to be treated as an outlier.”

Figure 9 shows the frequency histogram of LOF factors for Fisher’s iris data using k = 20 nearest neigh-
bors. The choice of k is important since the LOF may change markedly according to k. Xu et al. [15] have
developed a technique for finding an optimal value of k.

Histogram of Local Outlier Factor
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Figure 9 Frequency Histogram of LOF
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The empirical cumulative distribution function may be used to detect the LOF value at which the in-
crease in the frequency of distinct values levels off, indicating minor changes in the number of outlying
observations. It is another way to depict the distribution of LOF values in addition to the frequency his-

togram.
Figure 10 represents the distribution of LOF values as a cumulative proportion of the entire set of
scores.

Empirical CDF of Local Outlier Factor

Cumulative Proportion

Local Outlier Factor

Figure 10 Empirical CDF of Local Outlier Factor
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Figure 11 is a scatterplot of the clustered iris data using the k = 20 nearest neighbors. In the interests of
legibility, we set the minimum LOF value to 1.17 so that circles of LOF > 1.17 would be drawn, thus sup-
pressing circles for smaller values of the LOF.

Scatterplot of Local Outlier Factor
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Figure 11 Scatterplot of Local Outlier Factor, Minimum Radius=1.17
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Local Outlier Probability

Kriegel et al. [14] have extended the local outlier paradigm to produce a probability of outlyingness (Lo-
cal Qutlier Probability) which is easier to interpret than the LOF itself. The LoOP is a normalized probabil-

ity that can be compared between clusters and is thus more applicable to all of the points in a set of
data.

The distribution of the Local Outlier Probability for the iris data is shown in Figure 12. Similar reasoning

as for LOF suggests that LoOP values above 0.6 may indicate that the algorithm has detected an outlying
observation.

Histogram of Local Outlier Probability
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Figure 12 Histogram of Local Outlier Probability
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The empirical CDF of the LoOP in Figure 13 serves as a graphical description of the cumulative LoOP val-
ues and may be used similarly as the ECDF of the LOF.

Cumulative Proportion
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Figure 13 Empirical CDF of Local Outlier Probability
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Figure 14 is the scatterplot of the LoOP of Fisher’s iris data, with circles drawn around points for which
LoOP = 0.2. The %LOF_LoOP macro has the provision to create an outlier flag for observations whose
probability of outlyingness exceeds a threshold value. For example, if the macro parameter
OUTLIER_PROB = 0.6 and the LoOP score is > 0.6, the variable OUTLIER would be set to 1 in the SAS
output dataset produced by the macro.

Scatterplot of Local Outlier Probability
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Figure 14 Scatterplot of Local Outlier Probability, Minimum Radius=0.2

Treatment of Outliers

Detecting outliers is the first step in remediating their tendency to influence the predictions of a regres-
sion model. They may be identified visually or through analytical means, and a binary indicator variable
can be used to mark their presence in a regression analysis.

Treatment of Outliers by Excision

Our first impulse regarding outliers, once we believe that we have confidently detected them, may be to
excise them from the sample data. We may tell ourselves that, since these outlying observations are not
characteristic of the data, we may remove them from the analysis without consequence, and all will be
well. But we may have fooled ourselves with the false assumption that these data points are truly outli-
ers or noise-contaminated data. What if they represent the beginning of an emerging trend?
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For example, in ATM fraud detection, a one-time spike in the amount of cash withdrawn from an indi-
vidual’s account may represent money withdrawn for a vacation, or it may signify that a fraudster has
hacked the account. If the issuing bank denies the transaction and it is legitimate, the accountholder will
be angry. If the transaction is permitted and the accountholder denies making the transaction, the bank
may be required to absorb the cost of a false positive decision and incur the expenses associated with
cancelling the account and issuing a new debit card. A sequence of unusually large withdrawals in a
short amount of time may signify an emerging trend of fraudulent activity, which is very expensive to
the bank. Merely to excise such transactions as “contaminated by noise” would be to make a costly and
easily-avoided error.

Hopefully, we understand that simply throwing out data points ought not to be a reflex action, but must
be considered in light of the consequences of ignoring potentially valuable information. At the very
least, the properties of the sample data have changed, and data selection bias has been introduced into
what was previously a random sample.

Treatment of Outliers Using Binary Indicator Variables

We have discussed the use of binary indicator variables to distinguish and remediate the effects of out-
lying values and observe that their use is substantiated in practice as a valid technique. We note that the
use of binary indicators does not affect the original distribution of the sample data.

Treatment of Outliers Using Winsorization

Winsorization [10] is the process of replacing a specified set of extreme values of a given variable in a set
of sample data with specified values computed from the data. Small extreme values are replaced by
larger ones and large extreme values are replaced by smaller ones. While this substitution may reduce
the effects of outlying values, it changes the distribution characteristics of the variable that is Winso-
rized.

For example, in the Boston Housing data, the minimum and maximum values of CRIM are 0.00632 and
88.97620, and the 1°t and 99" percentiles are 0.01360 and 41.52920. So a 98% Winsorization of CRIM
would substitute the values 0.01360 in place of any value lower than 0.01360 and 41.52920 in place of
any value higher than 41.52920. We see from the box-and-whisker plots in Figure 15, which contains the
z-score standardization of the sample data, that the range of the CRIM variable is attenuated in the Win-
sorized sample.
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Figure 15 Comparison of Standardized Boston Housing Data and Standardized Winsorized Boston Housing Data

Since we have seen the distorting effects of outliers in masking and swamping outlying and well-be-
haved observations, we may naturally expect to see an improvement in any model built with Winsorized
data.

Table 13 presents the results of predicting median home value using 98% Winsorized Boston housing
data. The variables AGE and INDUS were omitted by the adjusted R? selection algorithm.
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Table 13 Regression Model Using 98% Winsorized Data

Regression of Winsorized Boston Housing Data
The REG Procedure
Model: Winsorized
Dependent Variable: MEDV
Number of Observations Read 508
Mumber of Observations Used 508

Analysis of Variance

Sum of Mean
Source DF Squares Square FValue Pr=F
Model 1 31737 |2885.18665 | 13223 |<.0001
Error A0 10778 | 21.82028

Corrected Total 505| 42518

Root MSE 467122 |R-Square |0.7485
Dependent Mean |22 54488 Adj R-Sq |0.7408
Coeff Var 2071968

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr= [t
Intercept | 1 3427824 520531 6.58 | <.0001

B 0.00974 | 0002685 367 | 0.0002
CHAS 270206 | 084320 32100014
CRIM 012322 | 004673 | -264 0.0086
OIS -1.52175 | 019102 | -8.02 | <0001
LSTAT -0.50203 | 0.04B823 | -10.41 | <0001

1
1
1
1
1
NOX 1| -17B2540 | 355414 | -502 | <0001
1
1
1
1
1

PTRATIO 086530 | 012850 | -7.51 <0001
RAD 0.30375 | D.0G6555 4 56 | <.0001
RM 4.18406 | 042182 2.84 | <0001
TAX 001198 | 000346 | -3.46 0.0006
| 0.04181 | 001342 312 | 0D.0012

Table 14 shows the comparison of OLS regression using a binary indicator variable and OLS regression
using the Winsorized data.

Table 14 Comparison of OLS Regression Using Robust Binary Indicator and Winsorized Data

Performance Metric Robust Regression Using ROBUSTREG | OLS Regression Using
Binary Indicator 98% Winsorized Data

Root MSE 3.62416 4.67122

Coefficient of Variation 16.08394 20.71966

R? 0.8481 0.7465

Adjusted R? 0.8447 0.7408

The performance of the model built on the Winsorized sample data is clearly inferior to the model built
on the original data using the binary indicator variable created by PROC ROBUSTREG. We conclude that
there is significant information in the tails of the distributions of the Winsorized variables that is lost
when a relatively indiscriminate Winsorization is performed on the Boston Housing sample data.
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Treatment of Outliers Using Transformations

Sometimes, transformations may be used to mitigate the distorting effects of extreme values. For exam-
ple, income is frequently distributed according to a log-normal distribution. Taking the logarithm of in-
come then produces a predictor that is more normally distributed in the logarithm of the variable. This
approach might be recommended to reduce the skewness of income, which if untreated would tend to
produce disproportionate effects in the model’s parameter estimates. However, introducing this trans-
formed value into the regression equation changes the model from one where change in Y is propor-
tional to change in Income to one where change in Y is proportional to the change in the logarithm of
Income and hence the model is nonlinear in Income. For example, given the linear regression model

Y=a+)pix;+v" Income +¢€, (6)
if we transform Income to log(Income) then we must solve for the parameter estimates of the model
Y= a+);Bix;i+vy - log(iIncome) + €. (7)
It can be rewritten into the regression model format
Y:a+Zﬁixi+y-xL+e (8)
i

where x; = log(Income). This model is still a linear regression model because it is linear in the parame-
ters, but is no longer straightforward. Explanation of the marginal change in Y with a unit change in
Income is now more complicated.

There are many transformations possible, but each may introduce complexity into the interpretation of
the model’s construction and complicate the insights into the data, which is the purpose of building a
model. Domain knowledge may be useful in guiding the use of transformations and in explaining param-
eter estimates. Any factor that diminishes straightforward understanding of the model may also reduce
the likelihood of acceptance of results.

Summary

We must approach outlier detection with respect for the data, since the observations in a set of data
contain information relevant to the process being modeled. We must apply domain knowledge to help
modelers decide which observations are typical and which are not characteristic of the generative pro-
cess. Noisy data are especially subject to outliers, and will distort OLS regression model parameter esti-
mates due to their extreme values. Robust regression algorithms such as PROC ROBUSTREG have been
developed to mitigate the effect of extreme values. We may detect outliers by processing the data as a
single group using global outlier detection algorithms, or in individual clusters using local detection algo-
rithms.

Treating outliers using binary indicator variables to distinguish them from nonoutlying observations may
produce more accurate results than Winsorizing them arbitrarily, which adds bias to the data and may
introduce errors into the parameter estimation process. Modifying a variable’s values via a mathemati-
cal or other transformation may improve its performance but at the cost of increasing the model’s com-
plexity and hence its interpretability. A model that is not straightforward to understand may not be ac-
cepted by the user community for which it has been developed.
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Appendix A

The housing.names file contains descriptive information about the Boston housing data. Its URL is
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/ .

The attributes and metadata are given below.

Attribute Name Description

CRIM Per-capita crime rate by town

ZN Proportion of residential land zoned for lots over 25,000 sq. ft.
INDUS Proportion of non-retail business acres per town

CHAS Charles River dummy variable (=1 if tract bounds river, 0 otherwise)
NOX Nitric oxides concentration (parts per 10 million)

RM Average number of rooms per dwelling

AGE Proportion of owner-occupied units built prior to 1940

DIS Weighted distances to five Boston employment centers

RAD Index of accessibility to radial highways

TAX Full-value property-tax rate per $10,000

PTRATIO Pupil-teacher ratio by town

B 1000( Bk — 0.63)"2 where Bk is the proportion of African Americans by town
LSTAT % lower status of the population

MED Median value of owner-occupied homes in $1,000’s

Appendix B

The %LOF_LoOP heading and parameter definitions are:

$macro LOF LoOP( DSNIN,

DSNOUT, K, VAR, DIST FCN=euclid, LAMBDA=3, MIN LOF=1,

MIN_LOOP=O.95, OUTLIER_PROB=.95, PLOT=NONE, PRINT=N

) / minoperator ;
/* PURPOSE: compute local outlier factor (LOF) and local outlier probability (LoOP)
* characterizing an observation as an outlier within a local neighborhood
*
* Create variable OUTLIER in &DSNOUT: if LoOP >= &OUTLIER PROB then OUTLIER = 1 else 0
*
* Parameters:
* DSNIN ::= name of input dataset containing interval-scaled observations
* DSNOUT ::= name of output dataset containing k-NN info
* K ::= k'th nearest neighbor within a local nbhd
* VAR ::= list of interval-scaled variables to be treated for outliers
* DIST FCN ::= [optional] proximity measure, e.g., Euclidean or Manhattan distance
* LAMBDA = [optional] multiplier of the standard distance value for outlier detection
* MIN_ LOF = [optional] min value to plot using LOF value as radius of plot bubble
* MIN_ LOOP = [optional] min value to plot using LOOP value as radius of plot bubble
* OUTLIER PROB = [optional] if Local Outlier Prob >= &OUTLIER PROB then OUTLIER = 1, else O
* PLOT = [optional] plot control flag: ALL, LOF, LoOP, NONE
* PRINT = [optional] print control flag for PROC MODECLUS: Y or N
*/
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https://archive.ics.uci.edu/ml/machine-learning-databases/housing/

We used the Output Display System to capture the graphics produced by the %LOF_LoOP macro.
ods listing close ;

ods pdf file=

"C:\Users\Username\Documents\My SAS Files\Outliers\SASCode\LOF LoOP Iris.pdf" ;
ods graphics on ;

%let IRIS VARS = sepallen sepalwid petallen petalwid ;

%LOF_LOOP(LIBNAME.iriS,iris_LOF_LOOP, 20, &IRIS VARS,
min LOF=1.17, min LOOP=0.2, outlier prob=0.6, plot=all, print=n,
dist fcn=FEuclid
)

ods graphics off ;
ods pdf close ;
ods listing ;

The macro code for %LOF_LoOP is available upon request.
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