

%MVMODELS: a Macro for Survival and Logistic Analysis

Jeffrey Meyers, Mayo Clinic:

Statistical Programmer Analyst III within Mayo Clinic's Cancer Center Statistics team.

Research focus on gastrointestinal and respiratory cancers as well as meta-analysis.

10 years of SAS programming experience focusing on macros, graphics, SQL and reports.

%MVMODELS: a Macro for Survival and Logistic Analysis

What is %MVMODELS

- SAS macro to perform either survival analysis or logistic regression and output results to a forest plot or table
- Capable of performing univariate or multivariate modeling
- Multiple options and features for subgrouping models
- Flexible macro parameters to customize the output
- Outputs the same to RTF, HTML, PDF, EXCEL, and PowerPoint
- Contains error checking, documentation, and cleans up after itself

Sample Dataset EXAMPLE

- Randomly created "Meta-analysis" dataset of 5 studies
- Includes variables for arm, baseline characteristics (age, gender, TNM staging), tumor response status, and overall survival time and status
- Code to produce available in paper
- Not a realistic dataset but will work for examples

Sample Dataset RANDOM

Study Number	Treatment Arm	Age	Gender	T-Stage	N-Stage	M-Stage	Response Status	Overall Survival Time (months)	Overall Survival Status
1	Arm 1	22	Female	T2	N1	MO	No Response	118	0
1	Arm 2	74	Male	Т3	N0	M1	Response	12	0
1	Arm 1	78	Female	T2	N1	MO	Response	22	2
1	Arm 2	35	Female	Т3	N0	M1	No Response	99	2
1	Arm 2	71	Female	T2	N0	M1	Response	72	1
1	Arm 2	34	Female	T1	N2	M1	No Response	120	3
1	Arm 1	48	Male	T2	N0	M1	Response	60	2
1	Arm 1	64	Female	T1	N1	M1	Response	82	2
1	Arm 1	34	Male	T4	N2	M1	Response	50	2
1	Arm 2	75	Female	Т3	N0	M1	No Response	67	3
1	Arm 1	35	Male	T1	N1	MO	No Response	34	1
1	Arm 2	32	Male	T4	N2	M1	No Response	112	2
1	Arm 2	64	Male	T1	N1	MO	No Response	42	3
1	Arm 2	58	Male	T2	N0	MO	No Response	1	0
1	Arm 2	77	Male	T1	N2	MO	No Response	88	1
1	Arm 2	25	Female	T2	N1	M1	Response	25	1

Example Forest Plot

%MVMODELS(DATA=random, METHOD=survival, TIME=os_time, CENS=os_stat, COVARIATES=arm age gender tstage nstage mstage, TYPE = 2 1 2, $CAT_DISPLAY=4,$ CONT_STEP=10, INCREMENT=0.5, REFLINE=1);

					Events/Total	Hazard Ratio (95% Cl)	P-value
Treatment Arm							0.0799
Arm 1			Hel		1027/2048	0.93 (0.85-1.01)	0.0799
Arm 2					1168/2108	Reference	
Age (Step Size: 10)						1.00 (0.97-1.02)	0.7462
Gender							0.2138
Female			Heri		1123/2128	1.05 (0.97-1.15)	0.2138
Male					1072/2028	Reference	
T-Stage							0.6751
T1			+●-1		607/1080	1.07 (0.95-1.20)	0.2835
T2			H		538/1022	1.01 (0.90-1.14)	0.8198
Т3			He-I		525/1037	1.05 (0.93-1.19)	0.4004
T4					525/1017	Reference	
N-Stage							0.4100
NO			Hell		699/1388	0.93 (0.84-1.03)	0.1825
N1			HeH		749/1400	0.97 (0.88-1.07)	0.5562
N2					747/1368	Reference	
M-Stage							0.0951
M0			Hel		1009/1953	0.93 (0.86-1.01)	0.0951
M1					1186/2203	Reference	
	0.0	0.5	1.0	1.5 2	т 2.0		
			lazard Ratio				

¹Type 3 Wald p-value; ²Covariate Wald p-value;

Example Table

		Events/Total	Hazard Ratio (95% CI)
%MVMODELS(Treatment Arm		
DATA=random,	Arm 1	1027/2048	0.93 (0.85-1.01)
·	Arm 2	1168/2108	Reference
METHOD=survival,	Age (Step Size: 10)		1.00 (0.97-1.02)
TIME=os_time,	Gender		
	Female	1123/2128	1.05 (0.97-1.15)
CENS=os_stat,	Male	1072/2028	Reference
COVARIATES=arm age gender tstage	T-Stage		
COVARIATES=arm age genuer islage	T1	607/1080	1.07 (0.95-1.20)
nstage mstage,	Т2	538/1022	1.01 (0.90-1.14)
	Т3	525/1037	1.05 (0.93-1.19)
$TYPE = 2 \ 1 \ 2,$	Τ4	525/1017	Reference
$CAT_DISPLAY=4,$	N-Stage		
$CAT_DISPLAT=4,$	NO	699/1388	0.93 (0.84-1.03)
$CONT_STEP=10,$	N1	749/1400	0.97 (0.88-1.07)
·	N2	747/1368	Reference
INCREMENT=0.5,	M-Stage		
REFLINE=1;	MO	1009/1953	0.93 (0.86-1.01)
((-1)),	M1 1Type 3 Wald p-yalue:2Covaria	1186/2203	Reference

¹Type 3 Wald p-value;²Covariate Wald p-value;

P-value

0.0799¹

0.0799²

0.7462² 0.2138¹

0.2138²

0.6751¹

0.2835²

0.8198²

0.4004²

0.4100¹

0.1825²

0.5562²

0.0951¹

0.0951²

Required Parameters

- DATA: specifies user input dataset
- NMODELS: number of models being run. Default=1
- METHOD: determines if SURVIVAL or LOGISTIC models will run
- PLOT_DISPLAY: determines which output plots/statistics are shown and which order in the forest plot
- TABLE_DISPLAY: determines which output statistics are shown and which order in the table
- Default for DISPLAY parameters is STANDARD which changes depending on what method and options are chosen

DISPLAY Parameters

- PLOT_DISPLAY and TABLE_DISPLAY have keywords based on prefixes and suffixes
 - Prefixes: MED_, KM_, HR_, C_, BIN_, and OR_ stand for median, Kaplan-Meier, Hazard Ratio, C-index, Binomial success rate, and Odds Ratio
 - Suffixes: ESTIMATE, RANGE, EST_RANGE, PLOT stand for estimate, range (lower limit – upper limit), estimate (range), and a plot
- Other keywords include: Subtitle (row headers), TOTAL, EVENTS, EV_T (Events/Total), PCT (percentage Events/Total), EV_T_PCT (Events/Total (%)), and PVAL
- Additionally REF_ is a prefix that can be used on statistics to be shown specifically for reference groups (e.g. REF_EV_T)

Modeling Key Parameters

- COVARIATES: space delimited list of independent covariates for either survival analysis or logistic regression
 - Not required. Can still compute other statistic such as median timeto-event without covariates
- TYPE: indicates whether covariates are continuous (TYPE=1) or categorical (TYPE=2)
 - Space delimited list where first type will match with first COVARIATE, second type with second COVARIATE, etc.
 - Last TYPE listed will carry forward if more COVARIATES exist.
 - Example: TYPE=1 2 2 2 will be the same as TYPE=1 2 for four covariates

Continuous Covariate Parameters

- CONT_STEP: determines the numeric step size that a hazard ratio or odds ratio constitutes
 - E.g. CONT_STEP=10 for age will give the hazard ratio for a 10 step increase in age
- CONT_DISPLAY: determines how continuous covariates are displayed

	Hazard Ratio	
	(95% CI)	P-value
CONT_DISPLAY: 1 and CONT_STEP=1		
Age (Step Size: 1)	1.00 (1.00-1.00)	0.7650 ¹
CONT_DISPLAY: 2 and		
CONT_STEP=10		
Age	1.00 (0.97-1.02)	0.7650 ¹
CONT_DISPLAY: 3 and		
CONT_STEP=100		
Age		0.7650 ²
Step Size: 100	0.97 (0.77-1.22)	0.7650 ¹
¹ Covariate Wald p-value; ² Type 3 Wald	p-value;	

Categorical Covariate Parameters

- CAT_ORDER: changes the order categorical values are displayed.
 - Default is unformatted values
 - Example: CAT_ORDER=2 3 1 will cause the default 2nd value to be first, default 3rd value to be second and the default 1st value to be 3rd
 - ` (lowercase ~) is used as a delimiter between multiple categorical covariates
- CAT_REF: determines the reference value for hazard and odds ratios
 - Formatted value should be listed without quotes
 - ` (lowercase ~) is used as a delimiter between multiple categorical covariates
- CAT_DISPLAY: determines how categorical covariates are displayed
 - Some statistics can only be shown on the covariate level if CAT_DISPLAY=4

		Hazard Ratio	
	Events/Total	(95% CI)	P-value
CAT_DISPLAY: 1			
Gender (Female vs Male)		1.06 (0.97-1.15)	0.2050 ¹
CAT_DISPLAY: 2			
Gender (Reference: Male)			0.2050 ²
Female		1.06 (0.97-1.15)	0.2050 ¹
CAT_DISPLAY: 3			
Gender			0.2050 ²
Female		1.06 (0.97-1.15)	0.2050 ¹
CAT_DISPLAY: 4			
Gender			0.2050 ²
Female	1123/2128	1.06 (0.97-1.15)	0.2050 ¹
Male	1072/2028	Reference	
CAT_DISPLAY: 5			
Gender			0.2050 ²
Female vs Male		1.06 (0.97-1.15)	0.2050 ¹
¹ Covariate Wald p-value: ² Type	3 Wald p-value:		

Covariate Wald p-value;²Type 3 Wald p-value;

Survival Method Key Parameters

- TIME: numeric time-to-event variable (Required)
- CENS: numeric event indicator. (Required)
 - CEN_VL: determines the censor value (Default=0)
 - EV_VL: determines event of interest when SURV_METHOD=CIF (Default=missing)
- SURV_METHOD: determines if survival methods will be Kaplan-Meier (KM), 1-Kaplan-Meier (1-KM), or cumulative incidence (CIF). Default=KM
- TIMELIST: specifies time-points for event-free rates
 - TDIVISOR: transforms TIME variable into other units
 - e.g. TDIVISOR=12 will divide time by 12 transforming months to years

Survival Method Available Statistics

KM and 1-KM Methods

- Number patients and events
- Median time-to-event
- Time-point event-free rates
- Hazard ratios
- P-values (type-3 tests, logrank, wilcoxon, Wald)
- Concordance index
- Fit statistics

CIF Methods

- Number patients and events
- Median time-to-event
- Time-point event-free rates
- Hazard ratios
- P-values (type-3 tests, Gray ksample test, Wald)

Survival Method Procedures Used

KM and 1-KM Methods

- LIFETEST Procedure
 - Number patients and events
 - Median time-to-event
 - Time-point event-free rates
 - Logrank/Wilcoxon p-values
- PHREG Procedure
 - Hazard ratios
 - P-values (type-3 tests, Wald)
 - Fit statistics
- Manual programming¹
 - Concordance index

CIF Methods

- LIFETEST Procedure
 - Number patients and events
 - Median time-to-event
 - Time-point event-free rates
 - Gray k-sample test p-value
- PHREG Procedure
 - Hazard ratios
 - P-values (type-3 tests, Wald)

¹ Therneau T (2014). _A Package for Survival Analysis in S_. R package version 2.37-7, <URL: http://CRAN.R-project.org/package=survival>.

Survival Method Available Plots

KM and 1-KM Methods

- Median time-to-event
- Time-point event-free rates
- Hazard ratios
- Concordance index

CIF Methods

- Median time-to-event
- Time-point event-free rates
- Hazard ratios

Survival Method Example Plot

Treatment Ar A vs B	m Events/Total	1	Hazard Ratio (95% Cl)	Ĩ	4 year OS (95% Cl)	1	C-Index (95% Cl)
Study							
1	399/790	H# 1	0.85 (0.70-1.04)	H=1	0.81 (0.78-0.84)	H	0.47 (0.44-0.50)
2	344/687	H a -1	0.93 (0.75-1.15)	┝╾┥	0.79 (0.76-0.83)	⊢∙⊣	0.46 (0.43-0.49)
3	463/861	++-1	0.99 (0.83-1.19)	Her	0.77 (0.74-0.80)	H#1	0.45 (0.42-0.47)
4	479/908	He I	0.96 (0.80-1.15)	++1	0.80 (0.77-0.83)	H#-1	0.45 (0.43-0.48)
5	510/910	H a -I	0.92 (0.77-1.10)	H a l	0.79 (0.76-0.81)	+++	0.45 (0.43-0.48)
	0.0	0 0.5 1.0 1.5 Hazard Ratio	2.0 0.5		1 .9 0	.4 0.5 C-index	0.6
¹ Covariate Wald	p-value;	nazaru Naulo		4 year OS rate		C-index	

Logistic Method Key Parameters

- EVENTCOV: determines the binomial event variable. This is the dependent covariate in logistic regression models
- EVENT: determines the event to be considered the "success" in binomial analyses and the event to be modeled in logistic regression models

Logistic Method Available Statistics

- Number patients and events
- Binomial success rates for designated event
- Odds ratios
- > P-values (type-3 Wald test, Wald, Chi-square, Fisher's exact)
- Concordance index (non-stratified models)
- Fit statistics

Logistic Method Procedures Used

FREQ Procedure

- Number patients and events
- Binomial success rates for designated event
- Chi-square and Fisher's exact p-value

Logistic Procedure

- Odds ratios
- P-values (type-3 Wald test, Wald)
- Fit statistics
- Manual Programming
 - Concordance index (non-stratified models)
 - cNeil BJ: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29-36, 1982.

Logistic Method Available Plots

- Binomial success rates for designated event
- Odds ratios
- Concordance index (non-stratified models)

Logistic Method Example Plot

Response=Y	es Events/Total	Ĩ	Odds Ratio (95% Cl)		Binary Rate (95% Cl)		C-Index (95% CI)
Study							
1	311/790	H	2.89 (2.15-3.89)	⊢⊷⊣	0.39 (0.36-0.43)	⊢⊷⊣	0.63 (0.59-0.67)
2	278/687	⊢⊷⊣	2.08 (1.53-2.84)	⊢⊷⊣	0.40 (0.37-0.44)	⊢⊷⊣	0.59 (0.55-0.63)
3	337/861	H#-1	2.67 (2.02-3.55)	⊢⊷⊣	0.39 (0.36-0.42)	⊢⊷⊣	0.62 (0.58-0.66)
4	357/908	⊢ •-1	2.35 (1.79-3.09)	⊢∙⊣	0.39 (0.36-0.42)	⊢∙⊣	0.60 (0.57-0.64)
5	355/910	H	2.20 (1.68-2.89)	⊢⊷	0.39 (0.36-0.42)	⊢⊷⊣	0.60 (0.56-0.64)
	0.5	1 2 4		0.35 0.40 0.45 0		0.55 0.60 0.65 0.	70
¹ Covariate Wald		Odds ratio	Ę	Binary Success Rate		C-index	

- Two primary methods to run multiple models: manual or subgroup variables
- Manual:
 - NMODELS: determines how many models will be run
 - | (pipe) symbol changes options for each model
 - Example: COVARIATES=age gender sex|age gender will use age, gender and sex for model 1 and only age and gender for model 2
 - Any options without a | symbol will be used for all models
 - TIME=os_time without any | will use os_time for every model
 - Most control, but also more complicated macro call
 - WHERE: allows a where clause to be applied to an individual model

%mvmodels(

DATA=random, NMODELS=3,

METHOD=survival,

TIME=os_time, CENS=os_stat,

COVARIATES=arm|arm age|arm age gender,

TYPE=2|2 1|2 1 2,

REFLINE=1,

MODEL_TITLE=Model 1: Treatment Arm

Model 2: Treatment adjusted for age

Model 3: Treatment adjusted for age and gender, MODEL_TITLE_OWNROW=1, BOLD_COV_LABEL=0);

	Ť	Events/Total	Hazard Ratio (95% Cl)	P-value ¹
Model 1: Treatment Arm		2195/4156		
Treatment Arm (Arm 1 vs Arm 2)	Hel		0.93 (0.85-1.01)	0.0819
Model 2: Treatment adjusted for age		2195/4156		
Treatment Arm (Arm 1 vs Arm 2)	H e -I		0.93 (0.85-1.01)	0.0826
Age (Step Size: 1)	•		1.00 (1.00-1.00)	0.7833
Model 3: Treatment adjusted for age and gene	der	2195/4156		
Treatment Arm (Arm 1 vs Arm 2)	H e -I		0.93 (0.85-1.01)	0.0799
Age (Step Size: 1)	•		1.00 (1.00-1.00)	0.7769
Gender (Female vs Male)	H ● -1		1.06 (0.97-1.15)	0.1971
0.0 0.4	4 0.8 1.2 1 Hazard Ratio	.6 2.0		
ovariate Wald p-value;				

%mvmodels(DATA=random, NMODELS=3, METHOD=survival, TIME=os_time, CENS=os_stat, COVARIATES=arm|arm age|arm age gender, TYPE=2|2|1|2|1|2, REFLINE=1, MODEL_TITLE=Model 1: Treatment Arm Model 2: Treatment adjusted for age Model 3: Treatment adjusted for age and gender, MODEL_TITLE_OWNROW=0, SHOW_ADJCOVARIATES=0);

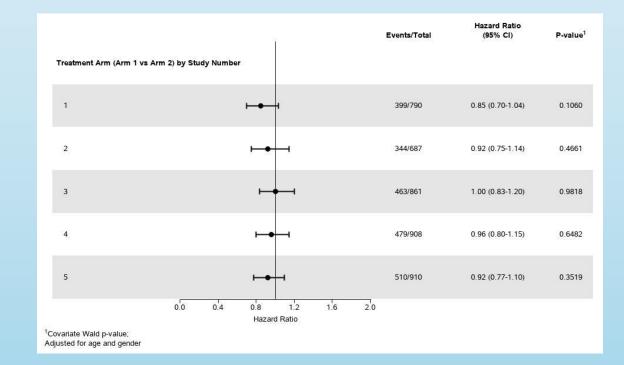
Model 1: Treatment Arm 2195/4156 0.93 (0.85-1.01) Model 2: Treatment adjusted for age 2195/4156 0.93 (0.85-1.01)	0.0819
Model 2: Treatment adjusted for age → 2195/4156 0.93 (0.85-1.01)	
	0.0826
Model 3: Treatment adjusted for age and gender 0.0 0.4 0.8 1.2 1.6 2.0 Hazard Ratio ¹ Covariate Wald p-value:	0.0799

- MODEL_TITLE: gives each model its own title
 - If only one covariate is listed it will merge its output row with the title row unless MODEL_TITLE_OWNROW=1
- SHOW_ADJCOVARIATES: determines if any covariate beyond the first is shown in the plot/table.
 - Condenses table if only intending in showing how covariate of interest changes when adjusting for other factors
- BOLD_ and INDENT_ options: allows the user to control the boldface and indent of different output types
 - Example: BOLD_COV_LABEL controls the boldface of covariate label rows
 - Example: INDENT_MODEL_TITLE controls indent of model titles

- Subgroup variables:
 - BY: specifies one or more variables to duplicate the current model across
 - COLBY (Column BY): specifies one variable to duplicate all models and subgroups in multiple columns
 - ROWBY(Row BY): specifies one variable to duplicate all models and subgroups in multiple rows
 - GROUPBY (Group BY): specifies one variable to duplicate all models such that all by levels are grouped into the same row with different colors

%MVMODELS(DATA=random, METHOD=survival, TIME=os_time, CENS=os_stat, NMODELS=1, BY=study, SHADING=2, COVARIATES=arm age gender, TYPE = 2 1 2,REFLINE=1);

	Events/Total	Hazard Ratio (95% Cl)	P-value
Study Number			
1	399/790		
Treatment Arm (Arm 1 vs Arm 2)		0.85 (0.70-1.04)	0.1060
Age (Step Size: 1)		1.00 (0.99-1.01)	0.9403
Gender (Female vs Male)		1.00 (0.82-1.21)	0.9624
2	344/687		
Treatment Arm (Arm 1 vs Arm 2)		0.92 (0.75-1.14)	0.4661
Age (Step Size: 1)		1.00 (1.00-1.01)	0.3242
Gender (Female vs Male)	4	1.02 (0.83-1.26)	0.8434
3	463/861		
Treatment Arm (Arm 1 vs Arm 2)		1.00 (0.83-1.20)	0.9818
Age (Step Size: 1)		1.00 (0.99-1.00)	0.4692
Gender (Female vs Male)		1.13 (0.94-1.36)	0.1857
4	479/908		
Treatment Arm (Arm 1 vs Arm 2)		0.96 (0.80-1.15)	0.6482
Age (Step Size: 1)		1.00 (0.99-1.00)	0.6786
Gender (Female vs Male)		1.04 (0.87-1.25)	0.6675
5	510/910		
Treatment Arm (Arm 1 vs Arm 2)		0.92 (0.77-1.10)	0.3519
Age (Step Size: 1)		1.00 (0.99-1.00)	0.5375
Gender (Female vs Male)	4	1.06 (0.89-1.27)	0.4844
0.0 0.4 0.8 1.2	1.6 2.0		
Hazard Ratio			



%MVMODELS(DATA=random, METHOD=survival, TIME=os_time, CENS=os_stat, NMODELS=1, BY=study, SHADING=2, COVARIATES=arm age gender, TYPE = 2 1 2,REFLINE=1);

		Hazard Ratio	
	Events/Total	(95% CI)	P-value ¹
Study Number			
1	399/790		
Treatment Arm (Arm 1 vs Arm 2)		0.85 (0.70-1.04)	0.1060
Age (Step Size: 1)		1.00 (0.99-1.01)	0.9403
Gender (Female vs Male)		1.00 (0.82-1.21)	0.9624
2	344/687		
Treatment Arm (Arm 1 vs Arm 2)		0.92 (0.75-1.14)	0.4661
Age (Step Size: 1)		1.00 (1.00-1.01)	0.3242
Gender (Female vs Male)		1.02 (0.83-1.26)	0.8434
3	463/861		
Treatment Arm (Arm 1 vs Arm 2)		1.00 (0.83-1.20)	0.9818
Age (Step Size: 1)		1.00 (0.99-1.00)	0.4692
Gender (Female vs Male)		1.13 (0.94-1.36)	0.1857
4	479/908		
Treatment Arm (Arm 1 vs Arm 2)		0.96 (0.80-1.15)	0.6482
Age (Step Size: 1)		1.00 (0.99-1.00)	0.6786
Gender (Female vs Male)		1.04 (0.87-1.25)	0.6675
5	510/910		
Treatment Arm (Arm 1 vs Arm 2)		0.92 (0.77-1.10)	0.3519
Age (Step Size: 1)		1.00 (0.99-1.00)	0.5375
Gender (Female vs Male)		1.06 (0.89-1.27)	0.4844
¹ Covariate Wald p-value;			

%MVMODELS(DATA=random, METHOD=survival, TIME=os_time, CENS=os_stat, NMODELS=1, BY=study, SHADING=2, COVARIATES=arm age gender, $TYPE = 2 \ 1 \ 2,$ REFLINE = 1, SHOW_ADJCOVARIATES=0, FOOTNOTE=Adjusted for age and gender);

%MVMODELS(

· · · **,**

COLBY=nstage, UNDERLINEHEADERS=1);

		NO				N-Stage N1				N2		
	Ť	Events/Total	Hazard Ratio (95% Cl)	P-value ¹		Events/Total	Hazard Ratio (95% CI)	P-value ¹		Events/Total	Hazard Ratio (95% Cl)	P-value ¹
Treatment Arm	n (Arm 1 vs Arm 2) by Stu	dy Number										
1	L---1	109/252	0.77 (0.53-1.13)	0.1869	 -1	147/255	1.03 (0.74-1.43)	0.8621		143/283	0.78 (0.56-1.09)	0.1447
2		100/220	0.84 (0.56-1.26)	0.3904	 1	124/250	1.11 (0.78-1.58)	0.5621	⊢ •−1	120/217	0.81 (0.56-1.16)	0.2472
3	F + - I	158/295	0.94 (0.68-1.29)	0.6901	⊢ •−-1	155/285	1.08 (0.78-1.48)	0.6525	F 4-1	150/281	0.98 (0.71-1.35)	0.8953
4	 -1	163/301	0.97 (0.71-1.33)	0.8367	F1	158/309	0.96 (0.70-1.32)	0.8003	F=-1	158/298	0.95 (0.70-1.31)	0.7700
5	 1	169/320	1.07 (0.78-1.45)	0.6810	⊢ ∙−1	165/301	0.85 (0.62-1.15)	0.2859	F=-1		0.97 (0.71-1.31)	0.8259
	0.0 0.4 0.8 1.2 Hazard Ratio	1.6 2.0		0	0 0.4 0.8 1.2 1.6 2.0 Hazard Ratio)		0.	.0 0.4 0.8 1.2 1.6 2.0 Hazard Ratio	<u>)</u>		
¹ Covariate Wald p- Adjusted for age a	value;											

Paper Number AP-005

COLBY works well with EXCEL destination due to its horizontal space

		NO			N-Stage N1		N2		
	Events/Total	Hazard Ratio (95% CI)	P-value ¹	Events/Total	Hazard Ratio (95% Cl)	P-value ¹	Events/Total	Hazard Ratio (95% CI)	P-value ¹
Treatment Arm (Arm 1 vs Arm 2) by Study Number									
1	109/252	0.77 (0.53-1.13)	0.1869	147/255	1.03 (0.74-1.43)	0.8621	143/283	0.78 (0.56-1.09)	0.1447
2	100/220	0.84 (0.56-1.26)	0.3904	124/250	1.11 (0.78-1.58)	0.5621	120/217	0.81 (0.56-1.16)	0.2472
3	158/295	0.94 (0.68-1.29)	0.6901	155/285	1.08 (0.78-1.48)	0.6525	150/281	0.98 (0.71-1.35)	0.8953
4	163/301	0.97 (0.71-1.33)	0.8367	158/309	0.96 (0.70-1.32)	0.8003	158/298	0.95 (0.70-1.31)	0.77
5	169/320	1.07 (0.78-1.45)	0.681	165/301	0.85 (0.62-1.15)	0.2859	176/289	0.97 (0.71-1.31)	0.8259

Adjusted for age and gender

%MVMODELS(..., UNDERLINEHEADERS=1,

ROWBY=tstage);

						. 0	Events/Total	Hazard Ratio (95% Cl)	P-value
	Treatment Arm (A	(rm 1 vs Arm 2) b	y Study Nu	mber		(à <u></u>	· · · · · · · · · · · · · · · · · · ·		<u></u>
	1		–	• 1			108/203	0.78 (0.53-1.13)	0.1899
	2		H	•			103/181	0.93 (0.62-1.38)	0.7123
F	3						134/234	1.07 (0.76-1.51)	0.7009
	4			⊢ •−−			115/225	1.00 (0.68-1.45)	0.9813
	5						147/237	1.06 (0.76-1.48)	0.712
	Treatment Arm (A	rm 1 vs Arm 2) b	y Study Nu	mber					
	1						94/196	1.05 (0.69-1.57)	0.830
	2		H		_		88/182	0.96 (0.63-1.48)	0.867
1	3			—			120/212	0.98 (0.68-1.40)	0.899
	4		H	•	-		117/217	0.91 (0.62-1.34)	0.641
	5		-	• 1			119/215	0.74 (0.51-1.08)	0.121
	Treatment Arm (A	rm 1 vs Arm 2) b	y Study Nu	mber					2
	1						100/202	0.97 (0.65-1.44)	0.880
_	2						80/158	1.11 (0.70-1.74)	0.661
۴	3		H	•	-		93/198	0.88 (0.58-1.34)	0.561
	4			⊢			127/245	1.00 (0.70-1.43)	0.992
	5		-				125/234	0.82 (0.57-1.19)	0.296
	Treatment Arm (A	rm 1 vs Arm 2) b	y Study Nu	mber					
	1			• •			97/189	0.70 (0.46-1.04)	0.079
47	2			•			73/166	0.79 (0.49-1.28)	0.338
4	3						116/217	1.05 (0.72-1.52)	0.802
	4			⊢			120/221	1.00 (0.70-1.44)	0.979
	5				—		119/224	1.09 (0.75-1.59)	0.643
		0.0	0.4	0.8 1.2	1.6	2.0			
		0.0	9. -T	Hazard Ratio	1.0	2.0			
				nazaro Ratio					

 ROWBY works well with skinny but long destinations such as PDF and RTF

			Hazard Ratio	
T-Stage		Events/Total	(95% CI)	P-value
T1	Treatment Arm (Arm 1 vs Arm 2) by Study Number			
	1	108/203	0.78 (0.53-1.13)	0.1899
	2	103/181	0.93 (0.62-1.38)	0.7123
	3	134/234	1.07 (0.76-1.51)	0.7009
	4	115/225	1.00 (0.68-1.45)	0.9813
	5	147/237	1.06 (0.76-1.48)	0.712
T2	Treatment Arm (Arm 1 vs Arm 2) by Study Number			
	1	94/196	1.05 (0.69-1.57)	0.830
	2	88/182	0.96 (0.63-1.48)	0.867
	3	120/212	0.98 (0.68-1.40)	0.899
	4	117/217	0.91 (0.62-1.34)	0.641
	5	119/215	0.74 (0.51-1.08)	0.121
Т3	Treatment Arm (Arm 1 vs Arm 2) by Study Number			
	1	100/202	0.97 (0.65-1.44)	0.880
	2	80/158	1.11 (0.70-1.74)	0.661
	3	93/198	0.88 (0.58-1.34)	0.561
	4	127/245	1.00 (0.70-1.43)	0.992
	5	125/234	0.82 (0.57-1.19)	0.296
T4	Treatment Arm (Arm 1 vs Arm 2) by Study Number			
	1	97/189	0.70 (0.46-1.04)	0.0793
	2	73/166	0.79 (0.49-1.28)	0.338
	3	116/217	1.05 (0.72-1.52)	0.802
	4	120/221	1.00 (0.70-1.44)	0.9794
	5	119/224	1.09 (0.75-1.59)	0.643

%MVMODELS(

..., COLBY=nstage, ROWBY=tstage, BYLABELON=0, SUBTITLEHEADER=Treatment Arm (Arm 1 vs 2) by Study);

		NO				N-Stage N1				N2		
		200	Hazard Ratio	-			Hazard Ratio	-			Hazard Ratio	
Treatm	ent Arm (Arm 1 vs 2) by Study	Events/Total	(95% CI)	P-value ¹		Events/Total		P-value ¹	1	Events/Total	(95% CI)	P-value ¹
1	⊢ •−−]		0.47 (0.21-1.05)			42/62	1.14 (0.59-2.22)			37/74	0.98 (0.51-1.89)	
2		33/57	0.84 (0.40-1.76)		· · ·	- 34/63	1.82 (0.88-3.77)		⊢• –+	36/61	0.50 (0.24-1.07)	
E 3	H-•	44/81	1.41 (0.75-2.65)			47/81	1.03 (0.57-1.85)			43/72	1.04 (0.55-1.97)	
4	H•+1	36/68	0.79 (0.40-1.59)			45/90	0.86 (0.47-1.60)		⊢ +•	34/67	1.26 (0.60-2.66)	
5	⊢ • − −1	46/78	0.83 (0.45-1.52)	0.5380		47/85	0.90 (0.50-1.62)	0.7340	⊢ •	54/74	1.70 (0.95-3.03)	0.0750
1	H-•	— 32/72	1.54 (0.76-3.14)	0.2311	⊢ •−−−1	33/60	1.24 (0.59-2.58)	0.5699	H•	29/64	0.67 (0.32-1.42)	0.3004
2	⊢ • 1	23/54	0.90 (0.37-2.21)	0.8188	⊢	32/65	1.22 (0.56-2.66)	0.6128		33/63	0.83 (0.40-1.69)	0.5997
2 3	H	41/73	0.66 (0.32-1.34)	0.2448	H•	44/80	1.23 (0.67-2.27)	0.5098	⊢ •───	35/59	1.20 (0.60-2.40)	0.6032
9 4	⊢ • 1	39/72	0.90 (0.46-1.75)	0.7588	H	35/69	0.80 (0.38-1.66)	0.5448	⊢∔ −−−1	43/76	1.01 (0.52-1.96)	0.9755
a 4 5 1	H•	36/67	0.68 (0.32-1.44)	0.3080		40/71	0.87 (0.45-1.67)	0.6792		43/77	0.75 (0.40-1.40)	0.3696
μ <u>μ</u>		20/53	0.98 (0.39-2.43)	0.9595	H-•	43/78	1.38 (0.75-2.54)	0.3028		37/71	0.79 (0.39-1.58)	0.5045
2	I	23/56	0.86 (0.35-2.13)	0.7404	H• 1	24/54	1.17 (0.51-2.68)	0.7092	⊢ • − −	33/48	1.68 (0.75-3.77)	0.2071
<u>۲</u> 3	H •1	35/71	0.81 (0.40-1.65)	0.5573	H-•	- 25/53	1.67 (0.70-4.01)	0.2519	H	33/74	0.61 (0.29-1.27)	0.1842
. 4	⊢ •−−1	46/89	1.16 (0.64-2.11)	0.6222	H	41/77	0.95 (0.50-1.82)	0.8805	H	40/79	0.96 (0.49-1.91)	0.9149
5	⊢→	43/94	1.05 (0.56-1.98)	0.8865	⊢ •−−−1	43/77	0.84 (0.44-1.60)	0.5923	H	39/63	0.60 (0.31-1.15)	0.1221
1	⊢ •−−−1	28/60	0.72 (0.32-1.58)	0.4059	H	29/55	0.56 (0.26-1.21)	0.1371		40/74	0.93 (0.49-1.74)	0.8180
2	⊢ •−−−1	21/53	0.86 (0.36-2.08)	0.7354	H	34/68	0.68 (0.31-1.49)	0.3323	H	18/45	0.75 (0.29-1.94)	0.5537
T 3		38/70	0.95 (0.50-1.83)	0.8822		39/71	0.81 (0.42-1.57)	0.5358	⊢ •−−−	− 39/76	1.46 (0.75-2.85)	0.2606
4	H	42/72	1.24 (0.64-2.39)	0.5270	—	37/73	1.27 (0.62-2.61)	0.5084	H	41/76	0.66 (0.34-1.28)	0.2176
5	H •	- 44/81	1.76 (0.91-3.40)	0.0918	H+	35/68	0.69 (0.32-1.48)	0.3377	⊢ •	40/75	1.40 (0.68-2.88)	0.3592
	0.0 0.6 1.2 1.8 2.4	3.0		0.	0 0.6 1.2 1.8 2.4	3.0		0	.0 0.6 1.2 1.8 2.4	3.0		
	Hazard Ratio				Hazard Ratio				Hazard Ratio			
¹ Covariate W Adjusted for	/ald p-value; age and gender											

%MVMODELS(

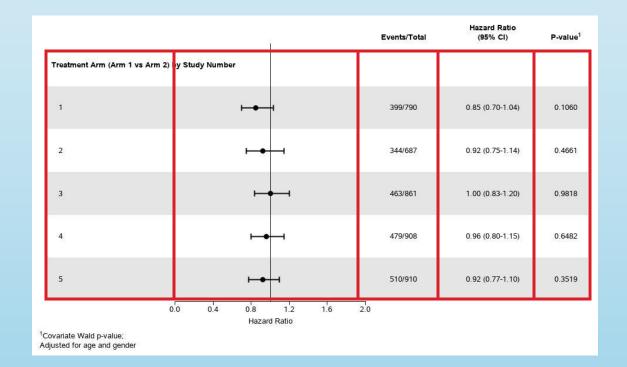
GROUPBY=nstage, SHOW_ADJCOVARIATES=1, CAT_DISPLAY=4);

			Events/Total	Hazard Ratio (95% CI)	P-value
Treatment Arm					0.2890 ¹ 0.8016 ¹ 0.1053 ¹
Arm 1			326/675 361/699 340/674	0.92 (0.79-1.07) 0.98 (0.85-1.13) 0.89 (0.77-1.03)	0.2890 ² 0.8016 ² 0.1053 ²
Arm 2			373/713 388/701 407/694	Reference Reference Reference	
Age (Step Size: 1)		•		1.00 (1.00-1.00) 1.00 (1.00-1.00) 1.00 (1.00-1.00)	0.6954 ² 0.6398 ² 0.7417 ²
Gender					0.9294 ¹ 0.5540 ¹ 0.1747 ¹
Female			358/720 371/701 394/707	1.01 (0.87-1.17) 1.04 (0.90-1.21) 1.10 (0.96-1.28)	0.9294 ² 0.5540 ² 0.1747 ²
Male			341/668 378/699 353/661	Reference Reference Reference	
	0.0 0.4	0.8 1.2 1.0 Hazard Ratio N-Stag	e		
ype 3 Wald p-value; ² Co	ovariate Wald p-valu	Je;			

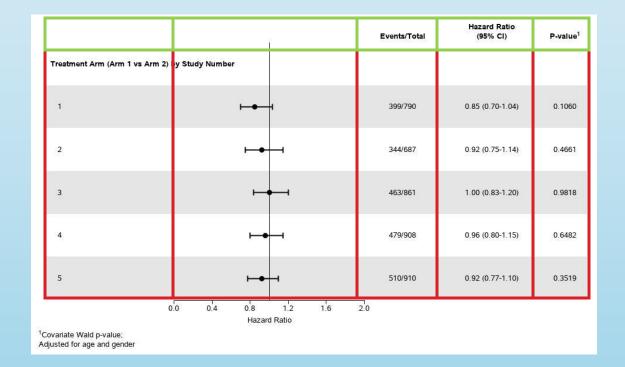
Running Multiple Models

- Using grouping variables creates many subgrouped models quickly but is not as customizable as manually running models
- BY is useful for quickly replicating the same model across multiple variable levels
- COLBY is useful for comparing models side-by-side
- ROWBY is useful for comparing models vertically
- GROUPBY is useful for comparing components of different models more easily

- Graph Template Language (GTL) is used to create the forest plot
- Macro creates dataset conducive for generating a forest plot
- Macro uses annotation functions such as DRAWTEXT over data-driven graph statements
- SGRENDER is used to render the final graph


- Dataset is created to be one row for each row of the forest plot
- Each graph has variables for the estimate and confidence limits
- Each statistic has a character column of pre-formatted text
 - Example: HR_EST_RANGE is formatted to be x.xx (x.xx-x.xx)
- The subtitle (or row header) column has variables for indicating boldface, number of indentations, and whether the row should be shaded.
- When COLBY is used each variable has a suffix of _n (_1, _2, _3) to indicate which COLBY level the variable's belong to
- P-values are kept as two components: the p-value and the footnote indicator number. These are combined in the graph template
- The lower limit and upper limit numbers have "cap" variables to indicate whether the error bar should be capped or not
 - If error bars exceed the width of the graph space they are not capped by default to indicate they do not stop

subind bold	ind subtitle	ev_t_1	estimate1_1	lcl1_1	ucl1_1	hr_est_range_1	pval_1	pfoot_index_1	у	shadeind	Icl1_cap1	ucl1_cap
	This is a really long title that goes across multiple											
0	1 panels								.5			
1	1 Study Number								1.5			
2	01	399/790							2.5			
3	1 Treatment Arm						0.1063	1	3.5			
4	0 Arm 1	185/397	0.85	0.70	1.04	0.85 (0.70-1.04)	0.1063	2	4.5		Serif	Serif
4	0 Arm 2	214/393				Reference			5.5			
2	02	344/687							6.5			
3	1 Treatment Arm						0.507	1	7.5			
4	0 Arm 1	163/346	0.93	0.75	1.15	0.93 (0.75-1.15)	0.507	2	8.5		Serif	Serif
4	0 Arm 2	181/341				Reference			9.5			
2	03	463/861							10.5			
3	1 Treatment Arm						0.939	1	11.5			
4	0 Arm 1	225/418	0.99	0.83	1.19	0.99 (0.83-1.19)	0.939	2	12.5		Serif	Serif
4	0 Arm 2	238/443				Reference			13.5			
2	04	479/908							14.5			
3	1 Treatment Arm						0.6708	1	15.5			
4	0 Arm 1	235/462	0.96	0.80	1.15	0.96 (0.80-1.15)	0.6708	2	16.5		Serif	Serif
4	0 Arm 2	244/446				Reference			17.5			
2	05	510/910							18.5			
3	1 Treatment Arm						0.3492	1	19.5			
4	0 Arm 1	219/425	0.92	0.77	1.10	0.92 (0.77-1.10)	0.3492	2	20.5		Serif	Serif
4	0 Arm 2	291/485				Reference			21.5			

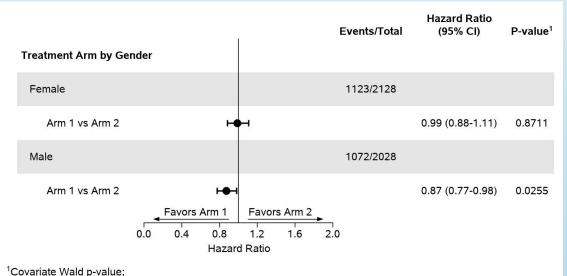


- The plot is created using a lattice layout
 - One column for each plot or statistic
 - One row for each level of ROWBY
- Statistical columns have text drawn by DRAWTEXT
- Plot columns have estimates drawn by SCATTERPLOT and confidence bands drawn by HIGHLOWPLOT
- Axis labels are drawn in the COLUMNHEADERS space with ENTRY statements within GRIDDED layouts to allow multiple rows

- Column headers are drawn in a
 SIDEBAR block that holds another
 LATTICE layout with the same weights as the graph (Green)
 - Normally this could be done in a COLUMN2HEADERS block, but this interferes with putting spanning headers in for COLBY labels
 - DRAWTEXT is used here instead of ENTRY statements
- Titles and footnotes are drawn with the ENTRYTITLE and ENTRYFOOTNOTE statements

- Spanning headers are drawn with another SIDEBAR block with a LATTICE layout (BLUE)
- COLBY labels are drawn with a final SIDEBAR block with a LATTICE layout (Purple)

		NO				N-Stage N1				N2		
		Events/Tot:	Hazard Ratio (95% CI)	P-value		Events/Tota	(95% CI)	P-value ¹		Events/Tota	(95% CI)	P-value ¹
Treatment Arm (Arm 1 vs Arm 2) by Study	Nuriber										
1	I	109/252	0.77 (0.53-1.13)	0.1869	⊢– −1	147/255	1.03 (0.74-1.43)	0.8621	⊢ •−1	143/283	0.78 (0.56-1.09)	0.1447
2	 1	100/220	0.84 (0.56-1.26)	0.3904	 i	124/250	1.11 (0.78-1.58)	0.5621	 -1	120/217	0.81 (0.56-1.16)	0.2472
3	⊢ •−−1	158/295	0.94 (0.68-1.29)	0.6901	 i	155/285	1.08 (0.78-1.48)	0.6525	F-41	150/281	0.98 (0.71-1.35)	0.8953
4	 -1	163/301	0.97 (0.71-1.33)	0.8367	 1	158/309	0.96 (0.70-1.32)	0.8003	⊢ •−-1	158/298	0.95 (0.70-1.31)	0.7700
5	⊢ •(169/320	1.07 (0.78-1.45)	0.6810	Fe-1	165/301	0.85 (0.62-1.15)	0.2859	⊢ − −1	176/289	0.97 (0.71-1.31)	0.8259
0. covariate Wald p-val ljusted for age and	Hazard Ratio	2.0		0	0 0.4 0.8 1.2 1.6 Hazard Ratio	2.0		0.	0 0.4 0.8 1.2 1.6 2 Hazard Ratio	0		



- ROWBY headers are drawn within the ROWHEADERS block with DRAWTEXT statements and a GRIDDED layout
- ROWBY labels are drawn in a SIDEBAR block with DRAWTEXT statements and a GRIDDED layout
- Underlined column headers are created using DRAWLINE statements

					Even	ts/Total	Hazard Ratio (95% Cl)	P-value
1	Treatment Arm (A	arm 1 vs Arm 2) by S	Study Number	1	10			
	1		⊢ ●−		108	3/203	0.78 (0.53-1.13)	0.1899
	2				103	3/181	0.93 (0.62-1.38)	0.7123
F	3			• 1	134	4/234	1.07 (0.76-1.51)	0.7009
	4			• · · · · ·	115	5/225	1.00 (0.68-1.45)	0.981
	5			• •	142	7/237	1.06 (0.76-1.48)	0.712
- 7	Treatment Arm (A	rm 1 vs Arm 2) by S	Study Number		10			
	1			• 1	94	/196	1.05 (0.69-1.57)	0.830
	2				88	/182	0.96 (0.63-1.48)	0.867
1	3			—	120	0/212	0.98 (0.68-1.40)	0.899
	4		•		113	7/217	0.91 (0.62-1.34)	0.641
2	5		— •		119	9/215	0.74 (0.51-1.08)	0.121
	Treatment Arm (A	rm 1 vs Arm 2) by S	Study Number					
-	1				100	0/202	0.97 (0.65-1.44)	0.880
-	2			•	- 8 0	/158	1.11 (0.70-1.74)	0.661
£	3		⊢ •		93	/198	0.88 (0.58-1.34)	0.561
	4			• • • •	123	7/245	1.00 (0.70-1.43)	0.992
	5		⊢ •−		125	5/234	0.82 (0.57-1.19)	0.296
- 7	Treatment Arm (A	rm 1 vs Arm 2) by S	Study Number				10	
	1		- 	4	97	/189	0.70 (0.46-1.04)	0.079
100	2				73	/166	0.79 (0.49-1.28)	0.338
4	3			• 1	110	6/217	1.05 (0.72-1.52)	0.802
	4			↓	120	0/221	1.00 (0.70-1.44)	0.979
	5			• •	119	9/224	1.09 (0.75-1.59)	0.643
		0.0	0.4 0.8	1.2 1.6	2.0			
		0.0	1000000 100000	d Ratio	2.0			
			Haza	O ISAUO				

- Reference guides are available to describe what each side of the reference line indicates for estimates
- Space is allocated within the graph by adding on one row for each row of text plus one row for the arrow
- Text is drawn with DRAWTEXT and the arrows are drawn with DRAWARROW

nonunumperonunum protestatum T

%mvmodels(..., REFLINE=1, REFGUIDELOWER=Favors Arm 1, REFGUIDEUPPER=Favors Arm 2);

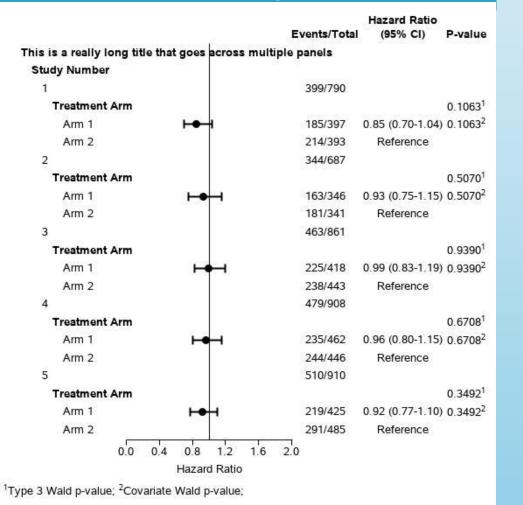
Annotation vs Data Driven or ENTRY Statements

Annotation

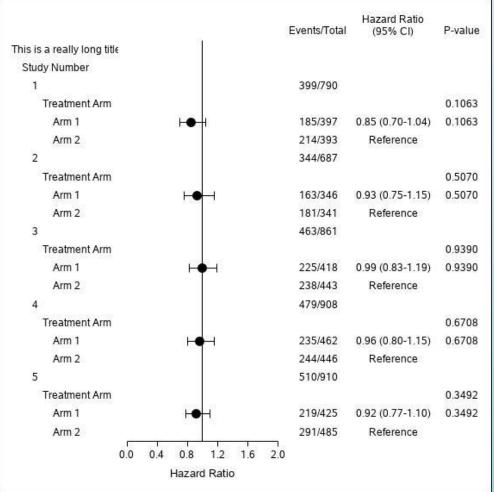
- Allow use of Unicode, superscripts and subscripts
- Can flow across multiple panels
- More cumbersome to program manually
- Requires plot space to be "initialized"

Data Driven and ENTRY

- Limited use of Unicode
- Superscripts and subscripts only in ENTRY statements
- Limited to current Layout block (Overlay, Gridded, etc.) and the potential to get cut off
- Easier to program


Annotation vs Data Driven or ENTRY Statements

- Macro programming avoids the tediousness of annotation
- Forest plots have the potential to have a large number of text collisions across panels that annotation avoids
- Flexibility for Unicode, superscript and subscript is needed for variable levels and footnotes



Annotation vs Data Driven or ENTRY Statements

%MVMODELS Graph

Data Driven Same Dataset

Paper Number AP-005

Outputting Table to Different Destinations

- Macro is designed to output the table to various destinations while maintaining the same appearance
 - RTF, PDF, HTML, EXCEL, POWERPOINT, LISTING, and WORD
- Excel destination is good for wide and/or long tables
 RTF, PDf, WORD and HTML are good for long tables
 LISTING is great for outputting results to .LST files

Outputting Table to Different Destinations

ODS PDF output

		Hazard Ratio	_ .
	Events/Total	(95% CI)	P-value
Model 1	2195/4156		
Treatment Arm			0.0799 ¹
Arm 1	1027/2048	0.93 (0.85-1.01)	0.0799 ²
Arm 2	1168/2108	Reference	
Age (Step size: 10.0)		1.00 (0.97-1.02)	0.7769 ²
Gender			0.1971 ¹
Female	1123/2128	1.06 (0.97-1.15)	0.1971 ²
Male	1072/2028	Reference	

¹Type 3 Wald p-value;²Covariate Wald p-value;

ODS EXCEL output

37					
38					
			Hazard Ratio		
39		Events/Total	(95% CI)		P-value
40	Model 1	2195/4156			
41	Treatment Arm			1	0.0799 ¹
42	Arm 1	1027/2048	0.93 (0.85-1.01)		0.0799 ²
43	Arm 2	1168/2108	Reference		
44	Age (Step size: 10.0)		1.00 (0.97-1.02)		0.7769 ²
45	Gender			1	0.1971 ¹
46	Female	1123/2128	1.06 (0.97-1.15)		0.1971 ²
47	Male	1072/2028	Reference		
10	¹ Type 3 Wald p-value: ² Covariate M	ald p-value:			

48 ¹Type 3 Wald p-value;²Covariate Wald p-value;

ODS POWERPOINT output

	Events/Total	Hazard Ratio (95% CI)	P-value
Model 1	2195/4156		
Treatment Arm			0.07991
Arm 1	1027/2048	0.93 (0.85-1.01)	0.07992
Arm 2	1168/2108	Reference	
Age (Step size: 10.0)		1.00 (0.97-1.02)	0.77692
Gender			0.19711
Female	1123/2128	1.06 (0.97-1.15)	0.19712
Male	1072/2028	Reference	

¹Type 3 Wald p-value;²Covariate Wald p-value;

ODS LISTING output

	Events/Total	Hazard Ratio (95% CI)	P-value
Model 1	2195/4156		
Treatment Arm			0,0799*
Arm 1	1027/2048	0.93 (0.85-1.01)	0.0799**
Ara 2	1168/2108	Reference	
Age (Step size: 10.0)		1.00 (0.97-1.02)	0.7769**
Gender			0.1971×
Fenale	1123/2128	1.06 (0.97-1.15)	0.1971××
Male	1072/2028	Reference	

Paper Number AP-005

Conclusion

- The MVMODELS macro is a powerful tool for performing and outputting survival or logistic regression analysis
- Many options for modifying the forest plot or table to meet the user's needs
- Uses annotation to create a graph that is otherwise unobtainable
- The macro is available for download on the <u>SAS Communities</u> page

Name: Jeffrey Meyers Organization: Mayo Clinic E-mail: <u>meyers.jeffrey@mayo.edu</u> / jpmeyers.spa@gmail.com