

Tip Sheet

Topic: Expression Engine Language Programming Date: 06/15/2010 Author name: Jeff Bailey

Expression Node

Create custom, user‐written, DataFlux Expression Engine Language code for dfPower Architect jobs.

Pre‐processing Expression Tab

Enter the code that should be
executed before looping through
the records in the input data
source. You can use the Functions
and Fields buttons to automatically
include function calls and field
names.

Expression Tab
Code written in the Expression Tab
is executed for each record in the
input data source. You can assign
values to variable, call functions and
use programming constructs (eg.
loops
and IF/THEN/ELSE) here. For
example: you may want to count
values or keep a tally of error
conditions. You can do that here.

Post‐processing Tab
The code included in the Post‐
processing Tab is executed last.
Think of this as the clean up portion
of your code. Data records are not
being processed here. This is a good
place to output any counters that
you have been using and controlling
output.

Note: many of the code samples and some of the text included in the Tip Sheet were directly copied from the DataFlux
Expression Language Reference Guide.

Other UI Components

Here are some of the other tasks that can be accomplished by the Expression node. Please see the help for more info.

Declarations

Variables (DataFlux calls these SYMBOLS) – Symbols can contain spaces but must be surrounded by grave accent marks –
‐backwards quote on the upper‐left side of the keyboard – if they do. Symbols can be declared anywhere except within
programming constructs (eg. Loops and IF/THEN/ELSE).

Example: `First Name`

PUBLIC – is the default, are visible outside the code block in which they are defined.
PRIVATE – is only visible within the code block in which they are defined.
STATIC – the symbol’s value is not reset between rows read in dfPower Architect.
VISIBLE – is the default. The symbol is output from the expression step.
HIDDEN – the symbol’s value is not output from the expression step.

INTEGER – a number with no fractional part. 234 is an example.
STRING – by default it is 255 characters. Can be explicitly set “STRING(20) myStr” and can be set to bytes
“STRING(20 BYTES) myStr”.

REAL – number. 2.134 is an example of a real number.
BOOLEAN – “true” or “false”. Useful for flags.
POINTER – is an available data type although it is not documented.

Example Declarations:
public string myStr // 255 characters by default
static integer myInt

private string(20) myPrivStr // explicitly set to 20 characters

string (20 bytes) `My 20 Byte String` // string set to 20 bytes

hidden boolean updataFlag
visible date `Todays Date` /* C style comments work too */

Statements

DataFlux EEL statements can are separated by semi‐colons or. This applies to declarations as well as programming
statements.

Syntax Samples

// Assignment
`some symbol` = expression

// IF/THEN/ELSE
IF (x>y) THEN statement ELSE statement

IF (x==y) THEN

BEGIN

statement

statement

END

ELSE

BEGIN

statement

statement

END

// FOR Loop
FOR i = 1 TO 10 STEP 1

statement

FOR i = 1 TO 10

BEGIN

statement

statement

END

// Return exits the block + returns value
RETURN expression

// Goto and Label
INTEGER x
x = 0

// continue is a label used for looping

continue:
x = x + 1
IF x < 10 goto continue

Operators Description
(,) Parenthesis can be nested
*
/
%

Multiply
Divide
Modulo

+

-
Add
Subtract

!=

<>

==

>

<

>=

<=

Equals – “!=” and “<>” are
the same

and Boolean and
or Boolean or

Arrays

Arrays of integers, strings, reals, dates and Booleans can
be created. You cannot create arrays of objects:
dbCursor, dbconnection, regex, file or any other type of
object.

The dim() function is used to size or resize and array. It
will also tell you how large an array is.

//declare an array

string array str_list

// size it so that it will hold 5 strings

Str_list.dim(5)

// resize it to hold 10 strings

Str_list.dim(10)

// determine the array size

string array str_list // define array

integer array_size // hold size

array_size = 0 // initialize to 0

str_list.dim(33) // array size is 33

// determine array size

array_size = str_list.dim()

string_array, integer_array, data_array, Boolean_array
and date_array are reserved words.

Set the value of an array item using the SET function.

Str_list.set(1, "EEL is awesome")

Get the value of an array item using the GET function.

String this_str

This_str = str_list.get(1)

FOR Loop

Has a start, end and step value. These values can be any
expression.

The STEP value can be positive or negative. If it is not
specified the default (1) is used.

If start value > end value you must specify a negative
value for STEP.

// Example FOR loop code…

INTEGER i

FOR i = 1 to 10 STEP 1

CALL PRINT("I = " & i)

FOR i = 100 to 1 STEP -1

PRINT("i = " & i)

WHILE Loop

Loop while a condition is remains true.

INTEGER i

i = 10

WHILE i > 10

BEGIN

PRINT("Condition is met")

i = i + 1
END

// Another example…

BOOLEAN continue_flag

continue_flag = "true"

INTEGER x

x = 0

WHILE continue_flag

BEGIN

x = x + 1

IF x = 10 THEN

continue_flag = "false"
END

Expressions

An expression always results in a

value. That value can be null.

Operators in order of precedence

String Expressions

string Str1

Str1 = "Hello"

String Str2

Str2 = "World"

String answerStr

answerStr = ""

// Concatenation

answerStr = str1 & " " & str2

// now answerStr contains

// "Hello World"

Integer and Real Expressions

There is automatic conversion between numeric values
and strings.

real rNum

string myStr

myStr="3.14"

rNum = myStr // rNum = 3.14

Date Expressions

Dates are stored as a real number. The whole portion is
the number of days since Jan 1, 1900. The fractional
portion represents the fraction of a day.

Dates are denoted by #.

If you add a whole number to a date it adds that many
days to the value.

date mydate

mydate = #10/06/09# // October 6, 2009

mydate = #06 October 2009#

mydate = #Oct 06 2009 10:59:00#

mydate = mydate + 1 // now Oct 7

Boolean Expressions

A boolean expression can be: true or false. The results of
comparisons are always either true of false.

Using AND or OR in an expression results in a boolean
value.

EEL understands the following values: yes, no, true, false,
y, n, t and f.

Numeric values of 0 are false. All others are true.

boolean t

boolean f

boolean answer

t = true

f = false

answer = t or f // answer is true

answer = t and f // answer is false

answer = 10<20 // answer is true

answer = 10==20 // answer is false

answer = "yes" // answer is true

answer = "no" // answer is false

Nulls

Null means “I don’t know what the value is.”
Empty string is a string that contains nothing.

null != empty string

Coercion (forcing an expression to a different data type)

You cannot convert an expression of type POINTER to
any other data type.

You cannot convert an expression of type BOOLEAN to
DATE. Also, you cannot convert a type of DATE to
BOOLEAN.

Functions

Takes arguments (of specific data types) and returns a
value (of a specific data type).

If you need to call a function but don’t want the return
value you can use the CALL statement. This is commonly
done with the PRINT() function.

Some functions alter the values of the parameters that
are passed to them (call by reference). Check the
documentation for the function that you are calling.

Function calls can be nested inside one another.

string mytext

mytext = "lower case"

finalText = print(upper(mytext))

“LOWER CASE” is written to the Step Log.

Objects

An object combines data structures with executable code
(functions) that is designed to operate on the data

File Object
Text file reading and writing (File Object)

structure. The file object can be used to read and write files, copy
files, read information about the file (exists), execute

Blue Fusion Objects
Expressions and Functions

programs and run batch files.

This object allows you to dynamically alter match
definitions, read them from another object or setting
different match definitions.

For more information go to the DataFlux Expression
Language Reference Guide page 87.

Database Objects
Database Connectivity (DBConnect Object)

For more information go to the DataFlux Expression
Language Reference Guide page 65.

Regular Expressions Object
Regular expression searches (Regex Object)

The regex object allows you to do regular expression
searches of strings and text replacement operations.

The EEL DBConnect object allows you to work with
databases. You can use this object to connect to data
sources, return a list of data sources and evaluate data
that is being input from parent nodes.

For more information go to the DataFlux Expression
Language Reference Guide page 80.

For more information go to the DataFlux Expression
Language Reference Guide page 84.

Note: many of the code samples and some of the text included in the Tip Sheet were directly copied from the DataFlux
Expression Language Reference Guide.

Copyright © 2008 SAS Institute Inc., Cary, NC, USA. All Rights Reserved. SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the

USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

