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General Article

In psychology, a common task is to investigate whether 
a variable tends to be larger in one population than in 
another. The most used statistical technique for this 
research question is the parametric t test. Although the 
recommended Welch version of the t test (Delacre et al., 
2017) assumes normality, it is asymptotically robust1 to 
violations of this assumption, that is, in large samples, 
it typically has the correct Type I error rate and high 
power even if normality is violated.

However, in some situations, applying the t test is 
inappropriate even in large samples. In particular, the t 
test is often inappropriate for ordinal data because it is, 
for example, sensitive to the choice of the coding 
scheme. Consider the following example. A research 
group is interested in comparing their new depression 
therapy approach with a control group. As outcome 
variable, the depression score after 12 months of (mock) 
therapy is measured as an ordinal variable with the 
levels no improvement, slight improvement, substantial 
improvement, and symptom-free, which are coded as 1, 

2, 3, and 4, respectively. For the control and the treat-
ment groups, 10,000 participants2 each are available, and 
the relative frequencies are as displayed in Table 1. 
Using the recommended Welch version of the t test 
(Delacre et  al., 2017) leads to the following results: 
t( , . ) .19 778 84 0 00= , p > .999. Consequently, one would 
act as if the new therapy method does not work. How-
ever, when coding no improvement as 0, such that the 
new coding scheme is 0 2 3 4, , , and , the results of Welch’s 
t test are t( , . ) .19 722 70 2 78= − , p = .005, with a higher 
average level of improvement for the treatment (M = 2 35. ) 
compared with the control group (M = 2 30. ). Conse-
quently, one would act as if the new therapy approach 
works. Thus, the results of the statistical analysis, and 
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thus the fate of the new therapy approach, depend on 
the more or less arbitrary coding scheme.

A test that is insensitive to the coding scheme and is 
thus more appropriate for ordinal data is the nonpara-
metric Mann-Whitney U test. For the example, the result 
for the Mann-Whitney U test is U = 50 000 000, , , p > .999. 
for both coding schemes.

Unfortunately, the means by which the Mann-Whitney 
test is applied in psychology is often flawed. To reveal 
this, I need to clarify which hypothesis the Mann-Whitney 
test assesses. The Mann-Whitney test can be used to test 
many different hypotheses (Fay & Proschan, 2010). In 
psychology, it is typically presented as either a test of 
equality of the two populations regarding all aspects, 
which is often called equality of distributions (Howell, 
2012) or equality of population medians (Divine et al., 
2018). In the statistical literature, it has been argued that 
the Mann-Whitney test actually tests stochastic equality 
(Chung & Romano, 2016; Divine et al., 2018). If outcome 
scores are denoted by X in one population and by Y 
in the other, then stochastic equality is defined as 
P X Y P X Y( ) ( )< = > . The notation P X Y( )<  denotes the 
probability of a random observation from Population 1 
(represented by X) to be bigger than a random observa-
tion from Population 2 (represented by Y). Conversely, 
P X Y( )<  describes the probability for the opposite. 
Thus, stochastic equality tests whether the probability 
of an observation from one population being bigger than 
an observation from the other deviates from random 
expectation.

The first problem is that the Mann-Whitney test is 
associated with strong assumptions for all three hypoth-
eses (Chung & Romano, 2016; Fay & Proschan, 2010), 
which are rarely met in psychology. For example, for 
the equality of medians hypothesis, the assumption of 
equal variances across populations must be met, which 
is rarely the case in psychology (see Delacre et al., 2017).

The second problem is that if the assumptions are not 
met, this can completely invalidate the Mann-Whitney 
test (Chung & Romano, 2016). More specifically, the 
Type I error rates of the Mann-Whitney test can be seri-
ously inflated even for large sample sizes. Thus, the 
Mann-Whitney test is generally not even asymptotically 
robust to violations of its assumptions. This is in contrast 
with the parametric counterpart of the Mann-Whitney 

test, Welch’s t test, which is known to be asymptotically 
robust regarding the violations of its core assumption, 
normality (Delacre et al., 2017). Thus, somewhat coun-
terintuitively, the nonparametric Mann-Whitney test 
makes rather strong assumptions and is, in some aspects, 
more vulnerable to violations of its assumptions than its 
parametric counterpart.

This observation calls for alternatives to the Mann-
Whitney test. Because the Mann-Whitney test can be 
used for testing different hypotheses, a substitute for 
each hypothesis is needed. In this article, I concentrate 
on the stochastic equality hypothesis because first, it is 
the most appropriate nonparametric operationalization 
of the intuitive hypothesis that a variable tends to be of 
equal size across two populations (see Cliff, 1993; 
Neuhäuser & Ruxton, 2009; or the explanation presented 
in the next section), and second, it has repeatedly been 
argued to be the most appropriate hypothesis for the 
Mann-Whitney test (Chung & Romano, 2016; Divine 
et al., 2018).

Fortunately, multiple alternatives to the Mann-Whitney 
test exist that are asymptotically robust tests of stochastic 
equality. These can be categorized into “classical” proce-
dures and “resampling procedures.” Whereas the classical 
procedures employ theoretical sampling distributions, the 
resampling procedures estimate the sampling distribu-
tion empirically. The classical procedures include the 
Fligner-Policello (Fligner & Policello, 1981), Cliff’s (1993), 
and the Bunner-Munzel (Brunner & Munzel, 2000) tests. 
The resampling procedures include the permutation ver-
sion of the Brunner-Munzel test (Neubert & Brunner, 
2007), the Reiczigel approach (Reiczigel et  al., 2005), 
and the Ruscio approach (Ruscio & Mullen, 2012).

The performance of the classical procedures is similar, 
and no classical approach is generally superior (Delaney 
& Vargha, 2002). The resampling procedures have not 
yet been compared extensively with each other. A first 
small comparison (Neubert & Brunner, 2007) suggests 
that the Reiczigel test and the permutation Brunner-
Munzel test behave similarly to each other as well as to 
the classical Brunner-Munzel test. However, the Reiczigel 
test was too conservative, and the classical Brunner-
Munzel test was too liberal, problems that did not occur 
for the permutation Brunner-Munzel test. Although the 
results of Ruscio and Mullen (2012) suggest that the Ruscio 
approach outperforms the classical approaches for con-
fidence interval generation, its utility as a hypothesis test 
is questioned by its inventors (Ruscio & Mullen, 2012). 
In summary, the current evidence seems to favor the 
permutation Brunner-Munzel test weakly. In addition, the 
permutation Brunner-Munzel test has the advantage that 
it is close to the Mann-Whitney test, which is also a per-
mutation test. Therefore, I focus on the permutation 
Brunner-Munzel test in this article.

Table 1.  Relative Frequencies of the Level of Improvement 
for the Control Group and the Treatment Group

No 
improvement

Slight 
improvement

Substantial 
improvement

Symptom-
free

Control 20% 30% 30% 20%
Treatment 15% 35% 35% 15%
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It has not been investigated how the Brunner-Munzel 
test and the Mann-Whitney test compare in terms of 
power, particularly when the assumptions are met. This 
is important because typically a modification of a test to 
make it more robust reduces its power. To address this 
question, I perform a power comparison. Unexpectedly, 
the Brunner-Munzel test was almost always equally as 
powerful as the Mann-Whitney test or even more power-
ful. The only exception was skewed data together with 
unequal sample sizes, for which the Mann-Whitney test 
had a small power advantage.

Despite the advantages of the Brunner-Munzel test, 
the Mann-Whitney test is still widespread in psychology, 
whereas the Brunner-Munzel test is mostly unknown. A 
Google Scholar search for articles published between 
2015 and 2020 in journals that contain psychology in their 
name and Brunner-Munzel in their text led to two 
results, whereas 3,350 results contained Mann-Whitney.3 
One reason for the continuing popularity of the Mann-
Whitney test in psychology might be that whereas the 
flaws of the Mann-Whitney test and the advantages of 
the Brunner-Munzel test are well known in the statistical 
literature, those articles tend to be too technical to be 
accessible to applied psychologists or even teachers of 
psychological methods. Furthermore, the arguments that 
I summarized so far are spread throughout multiple sta-
tistical articles. Moreover, the articles describing the 
Brunner-Munzel test (Brunner & Munzel, 2000; Neubert 
& Brunner, 2007) introduce the Brunner-Munzel test in 
a rather technical manner, disconnected from the Mann-
Whitney test. Finally, practical advice on how to apply 
and report on the Brunner-Munzel test is missing.

I thus begin this article by reviewing and demonstrat-
ing the flaws of the Mann-Whitney test in more detail. 
Then, I introduce the Brunner-Munzel test in a nontech-
nical manner, as a straightforward modification of the 
Mann-Whitney test. I continue with a simulation study, 
comparing the power of the Mann-Whitney and Brunner-
Munzel tests. After that, I provide practical advice for 
applied researchers, in particular, which software to use 
for the Brunner-Munzel test and how to report on and 
interpret its results.

Flaws of the Mann-Whitney Test

Notation

A variable has been observed across two groups. For 
Group 1, the observations are denoted as x1,…, xn1

 and 
for Group 2 as y1,…, yn2

. Thus, the sample sizes of Groups 
1 and 2 are n1 and n2, respectively. For Group 1, the 
observations are assumed to be a random sample of Pop-
ulation 1 and for Group 2 of Population 2. The distribu-
tions of Populations 1 and 2 are P and Q, respectively.

Multiple perspectives on the  
Mann-Whitney test

For analyzing ordinal data, the Mann-Whitney test is a 
valid test under at least three different perspectives (Fay 
& Proschan, 2010). A perspective is defined by a com-
bination of null hypothesis, alternative hypothesis, and 
assumptions. A test is called valid for a certain perspec-
tive if its Type I error rate is always below the desired 
significance level α (typically set to 5%) when the 
assumptions are met. The three valid perspectives are 
equality of distributions, equality of medians, and sto-
chastic equality.

Below I list the null hypothesis, alternative hypoth-
esis, and assumptions for all three perspectives. Note 
that all perspectives additionally assume independence, 
that is, all observations are assumed to be independent 
of each other.

•• Equality of distributions
-  Null hypothesis: Population distributions are 

equal in all aspects; P = Q.
-  Alternative hypothesis: Population distribu-

tions differ in any aspect; P ≠ Q.
-  Assumptions: None.

•• Equality of medians
-  Null hypothesis: Population medians are 

equal; Mdn(P) = Mdn(Q).
-  Alternative hypothesis: Population medians 

are unequal; Mdn(P) ≠ Mdn(Q).
-  Assumptions: If the null hypothesis is true 

(no differences in medians), the population 
distributions are identical (P = Q).

•• Stochastic equality
-  Null hypothesis: P X Y P X Y( ) ( )> = < .
-  Alternative hypothesis: P X Y P X Y( ) ( )> ≠ < .
-  Assumptions: If the null hypothesis is true, the 

population distributions are identical (P = Q).

The assumptions for the different perspectives are all 
a special case of the Mann-Whitney test’s core assump-
tion, exchangeability. In the Mann-Whitney test setting, 
exchangeability reduces to if the null hypothesis is true, 
the two population distributions must be identical.

Note that the equality of distributions null hypothesis 
is wrong if the population distributions differ in any 
aspect. It encompasses the other two null hypotheses, 
in the sense that if any of those is wrong, then the equal-
ity of distributions null hypothesis is wrong.

Applying the three perspectives to the depression 
therapy example from the introduction leads to answers 
to the following different and, in principle, equally valid 
research questions. I assume now that the numbers dis-
played in Table 1 represent the population values. For 
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equality of distributions, the relative frequencies across 
the two groups are different, so the distributions are not 
equal. For equality of medians, the median improvement 
level in both groups is slight improvement. Thus, regard-
ing the median improvement level, the therapy and the 
control groups do not differ. For stochastic equality, the 
probability that a random person from the treatment 
population has a larger increase than a random person 
from the control population [P X Y( )> ] is 0.36, which is 
the same as the reverse [P X Y( ) .< = 0 36], and conse-
quently, the two distributions are stochastically equal.

Requirements for a reasonable test

To demonstrate that the Mann-Whitney test is not a 
reasonable test for any of those perspectives, I concen-
trate on two requirements. Essentially, they formalize 
asymptotical robustness of a test to its assumptions and 
ensure that a test still works reasonably if its assumptions 
are not met.

The first requirement is asymptotic validity under real-
istic assumptions. Again, a test is valid if its Type I error 
rate is always lower than the desired significance level 
α. Asymptotic validity weakens validity because it 
requires the Type I error rate to only approach the sig-
nificance level α with increasing sample size. However, 
validity is required only if the assumptions are met, 
whereas here, asymptotic validity is also required if the 
assumptions are not met.

The second requirement is consistency under realistic 
assumptions and relates to power. Asymptotic validity 
alone is easy to obtain. For example, a test that randomly 
rejects the null hypothesis with probability α without 
considering the data is asymptotically valid but useless. 
Thus, power also needs to be considered. Classically, 
one aims at identifying the test with uniformly highest 
power among all valid tests. Such a test is called a uni-
formly most powerful test. However, uniformly most 
powerful tests can be identified only under rigorous 
assumptions. For example, even if all assumptions are 
met, Student’s t test is not uniformly most powerful. A 
weaker and obtainable criterion is consistency. A test is 
consistent if its power always approaches 1 as the sam-
ple size increases.

Problems with asymptotic validity

First, I argue that the assumptions associated with the 
equality of medians and stochastic equality perspectives 
are not realistic in psychology. The assumptions for both 
perspectives are similar. If there is no difference between 
the two populations concerning the tested aspect (equal-
ity of medians or stochastic equality), there may not be 
a difference at all. This situation is unrealistic in psychol-
ogy. For example, there are often variance differences 

between two populations despite there not being mean 
differences (Delacre et al., 2017).

This observation calls for investigating the perfor-
mance of the Mann-Whitney test under more realistic 
assumptions. I use the assumption of the two popula-
tions’ variances being finite because the parametric 
Welch t test is asymptotically valid and consistent under 
this assumption (Fay & Proschan, 2010). For both per-
spectives, I generated data such that the corresponding 
null hypothesis is true.

For the equal medians perspective, the distribution P 
of the first population was the uniform distribution on 
the interval 0−1. The distribution Q of the second dis-
tribution was a mixture of two uniform distributions. 
With probability 0.5, data were generated from a uniform 
distribution on the interval 0−0.5 or from a uniform 
distribution on the interval 0.5−1.5. Note that the median 
of both populations was thus 0.5.

For the stochastic equality perspective, both popula-
tions were normally distributed with a zero mean. The 
only difference was that for Population 1, the variance was 
1, and for Population 2, it was 4. Note that the hypothesis 
of stochastic equality is met.

I estimated the Type I error rates for increasing sam-
ple sizes. The sample sizes for Group 1 were 10, 50, 100, 
250, 500, 750, and 1,000. For the equal medians perspec-
tive, the sample size of Group 2 was equal to the sample 
size of Group 1. For the stochastic equality perspective, 
the sample size of Group 2 was always 2 times bigger 
than the sample size of Group 1.

In Figure 1, I display the estimated Type I error rates 
of the Mann-Whitney test under the equal median and 
stochastic equality perspectives. Clearly, the Mann-Whitney 
test is not asymptotically valid. For the equal median 
perspective, the Type I error rate increased with sample 
size and even converged to 1. The Type I error rate for 
the stochastic equality perspective seems to be stable at 
around 0.09.

Problems with consistency

For the difference in distributions perspective, the Mann-
Whitney test is asymptotically valid under the finite vari-
ances assumptions. The only assumption needed for the 
validity of the Mann-Whitney test for the difference in 
distribution perspective is independence (Fay & Proschan, 
2010). Consequently, it is also asymptotically valid. How-
ever, the Mann-Whitney test is also not reasonable under 
this perspective because it is not consistent.

The simulation study I performed for showing that 
the Mann-Whitney test is not asymptotically valid for the 
stochastic equality perspective showcases this. Note that 
in this scenario, the population distribution differed by 
their variances. Thus, the null hypothesis of equal dis-
tributions was false. However, as is visible in Figure 1b, 
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the power of the Mann-Whitney test remained relatively 
constant around 0.09 with increasing sample size instead 
of approaching 1, as would be the case for a consistent 
test.

Brunner-Munzel Test

Importance of the stochastic equality 
perspective

The observations from the previous section call for alter-
natives to the Mann-Whitney test for each perspective. In 
this article, I focus on the stochastic equality perspective 
because more often than not, this is the perspective psy-
chologists should take when applying the Mann-Whitney 
test. To unpack this statement, I discuss the different 
perspectives and when they should be chosen.

The equality of distributions perspective stands out 
because it does not answer a directional question 
(Schlag, 2015), in the sense that it does not investigate 
whether a variable tends to be larger in one population 
than in another. Note that the equality of distributions 
null hypothesis is wrong if the population distributions 
differ in any aspect.

However, psychologists typically are interested in 
making a directional statement (Schlag, 2015). This is 
especially the case when the Mann-Whitney test is 
applied because it is understood to be the nonparametric 
equivalent of the t test (Rayner, 2018, Section 1.5), which 
clearly is a directional test. For example, clinical psy-
chologists typically are interested in establishing that 
patients who underwent therapy are better off than the 
control participants, not just that the distributions differ. 
For these directional questions, the equality of distribu-
tions perspective is inappropriate. In contrast, the 
median and the stochastic equality perspective are both 
directional.

Which directional perspective is the most appropriate 
to take should be determined for each research project 
individually. However, the stochastic equality perspec-
tive is closer to the individual person, and thus often to 

the substantive research question, than the equality of 
medians perspective. For the equality of medians per-
spectives, all individuals are summarized by one value, 
the median. The medians are then compared across the 
groups. This strategy, summarizing first and then com-
paring, leads to a lot of information loss. The stochastic 
equality perspective, in contrast, compares all individu-
als with each other directly, and thus all available infor-
mation is considered. I illustrate with the therapy 
example. Consider that the population frequencies are 
as displayed in Table 2. Thus, no person in the treatment 
group had worse improvement than any person in the 
control group, and many persons in the treatment group 
had substantially better improvements than all persons 
in the control group. Thus, clearly, the therapy works. 
However, under the equality of medians perspective, the 
therapy and the control treatment are equally effective 
because for both, the median is slight improvement. In 
contrast, the stochastic equality perspective correctly 
captures the difference between the two groups because 
it compares the individual improvement levels directly:  
P(improvement treatment > improvement control) = 64% > 
0 = P(improvement treatment < improvement control), 
that is, the probability that the therapy leads to a bigger 
improvement than the control treatment is 64%, whereas 
the probability that the control treatment leads to the 
bigger improvement than the therapy is 0%.

Mann-Whitney U statistic

Because the Brunner-Munzel test modifies the Mann-
Whitney test, I first introduce the computational details 
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Fig. 1.  Estimated Type I error rates of the Mann-Whitney test. The horizontal line displays 0.05, the desired Type I error rate.

Table 2.  Relative Frequencies of the Level of Improvement 
for the Control Group and the Treatment Group

No  
improvement

Slight 
improvement

Substantial 
improvement

Symptom-
free

Control 40% 60% 0%   0%
Treatment   0% 60% 0% 40%
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of the latter. For the definition of the Mann-Whitney U test 
statistic, I introduce the following function, which quanti-
fies whether an observation xi from Group 1 is smaller, 
bigger, or equal than an observation yi from Group 2:

S x y

x y

x yi j

i j

i j( , ) =

<

=











1

1

2
0

if

if

otherwise

The Mann-Whitney U statistic is then the sum of this 
function over all possible Group 1, Group 2 pairings

U S x y
i

m

j

n

i j=
= =
∑∑

1 1

( , ).

Stochastic superiority statistic p̂"

The Brunner-Munzel test builds on an equivalent version 
of the Mann-Whitney test, which uses an easier to inter-
pret modification of the U statistic. Instead of using the 
sum over all possible pairings, the average value is cal-
culated. The resulting test statistic is

ˆ .p
U

n n
″ =

1 2

The test statistic p̂"  is inherently linked to the sto-
chastic equality perspective. The stochastic equality null 
hypothesis P X Y P X Y( ) ( )> = <  can be equivalently 
expressed as p P X Y P X Y" = = =( ) . ( ) . .< + 0 5 0 5  Thus,  
if the Populations 1 and 2 are stochastistically equal, 
p" = 0 5. . If P X Y P X Y( ) ( )< >> , then p" > 0.5, and if 
P(X < Y ) < P(X > Y ), then p" < 0 5. . The term 0.5 P(X = 
Y ) is needed to take into account ties, which are almost 
guaranteed in ordinal data. I call the concept p" stochas-
tic superiority. The stochastic superiority p"  is also used 
as an alternative effect size obtained from Cohen’s d and 
is known as the probability of superiority (Ruscio & 
Mullen, 2012). An important distinction is that stochastic 
superiority, as defined here, is estimated without distri-
butional assumptions. In contrast, normality is assumed 
if it is obtained from Cohen’s d.

The stochastic superiority estimate p̂"  is what statisti-
cians call a consistent estimator of the stochastic supe-
riority p. Thus, with larger sample sizes, p̂"  gets closer 
and closer to the population value p". In contrast to 
Mann-Whitney U, the stochastic superiority statistic p̂" 
can thus be interpreted easily. If p̂"  is around 0.5, this 
is evidence for stochastic equality. If p̂"  is significantly 
bigger (smaller) then 0.5, this is evidence for Population 
2 (Population 1) being stochastically superior, that is, 
tending to bigger values.

From stochastic superiority statistic p̂" 
to P value

For the Mann-Whitney test, multiple techniques exist to 
translate the stochastic superiority statistic p̂"  into a  
p value. The most accurate technique employs the per-
mutation approach, which is described in detail in Good 
(2005).

Essentially, the permutation approach is a generally 
applicable technique to translate a test statistic into a p 
value. It comes with one core assumption, exchange-
ability, and thus is the reasion why exchangeability is 
also the core assumptions of the Mann-Whitney test. In 
addition, it is well known that the permutation test is 
not asymptotically valid when exchangeability is violated 
(Chung & Romano, 2013). This explains why the Mann-
Whitney test is not asymptotically valid under the equal-
ity of medians and stochastic equality perspectives if the 
corresponding assumptions are violated.

However, statisticians have invented a general tech-
nique, called studentization, which makes a permutation 
test asymptotically valid even if exchangeability is vio-
lated (Chung & Romano, 2013; Janssen, 1997). Neubert 
and Brunner (2007) applied this technique to the Mann-
Whitney test to make it asymptotically valid. The result-
ing test is the Brunner-Munzel test.

Studentizing the stochastic superiority 
statistic p̂"

The core idea behind studentization is surprisingly sim-
ple. The test statistic is transformed such that it has 
approximately a standard normal distribution under the 
null hypothesis. However, the required derivations are 
quite technical. The interested reader is referred to Neubert 
and Brunner (2007) and Brunner et al. (2018). Here, I 
will present only the result.

The modified test statistic is the studentized stochastic 
superiority statistic

ˆ
ˆ .

ˆ
p

p

p

* =
−" 0 5

σ

with the pooled standard deviation σ̂p defined as follows

ˆ ˆ ˆσ σ σp = +










1 1 1

1 2 2
1

1
2n n n n

with σ̂i as defined in Neubert and Brunner (2007, p. 5194).
As for the Mann-Whitney test, optimally, a permuta-

tion approach is employed to translate the studentized 
stochastic superiority statistic p̂* into a p value. The 
resulting test is known as the permutation Brunner-
Munzel test. Note that the permutation versions of the 
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Mann-Whitney test and the Brunner-Munzel test differ 
only by the fact that the former uses the normal stochas-
tic superiority p̂"  and the latter uses the studentized 
stochastic superiority estimate p̂* as test statistic.

However, this rather small difference leads to sub-
stantially different properties. The Mann-Whitney test is 
not asymptotically valid for the stochastic equality per-
spective. Thus, if the assumption of exchangeability is 
not met, the Type I error rate can be substantially higher 
than the significance level, even for large samples. I 
demonstrated this in the preceding section (see Fig. 1). 
In contrast, Brunner and Munzel (2000) proved that the 
Brunner-Munzel test is asymptotically valid under the 
rather general and reasonable assumption that the vari-
ances of both population distributions are finite. Note 
that this is exactly the same condition under which the 
parametric Welch t test is asymptotically valid.

Simulation Study

The fact that the Brunner-Munzel test is asymptotically 
valid does not guarantee that the Type I error rates 
are satisfactory for sample sizes as they occur in psy-
chology. In addition, the theoretical results do not 
quantify how the Brunner-Munzel test compares with 
the Mann-Whitney test in terms of power. In particular, 
if the assumptions of the Mann-Whitney test are met, 
it could be that the Mann-Whitney test has higher 
power and thus should be preferred in this case. The 
appropriate tool to investigate these questions is a 
simulation study.

Multiple simulation studies have already investigated 
under which conditions the Type I error rate of the Brun-
ner-Munzel test is sufficiently close to the significance 
level α (Brunner & Munzel, 2000; Delaney & Vargha, 
2002; Neubert & Brunner, 2007; Neuhäuser, 2010; 
Neuhäuser & Ruxton, 2009). In general, the results are 
reassuring. Even for small samples, the Type I error rate 
was sufficiently close to the significance level α. As one 
example, in the simulation study performed by Brunner 
and Munzel (2000), the Type I error rates were between 
4.6% and 5.7% for a significance level of α = 5% under 
all investigated conditions with samples sizes n1, n2 > 10.

Rather surprisingly, to my knowledge, no previous 
study compared the power of the Brunner-Munzel and 
Mann-Whitney tests. Thus, this is the focus of this simu-
lation study. I also report Type I error rates because no 
previous study used a design specifically tailored to 
mirror the factors as they occur in psychology and to 
keep this article self-contained.

The full details of the simulation study can be found 
in the Supplemental Material available online. Here, I 
focus on summarizing the results.

Concerning Type I error rates, the results are in line 
with the results from previous simulation studies. The 
estimated Type I error rate of the Brunner-Munzel test 
was never higher than 6%. For sample size n1 50≥ , it 
was even always in the range of 4.90% to 5.16%. This is 
in contrast to the Mann-Whitney test for which the Type 
I error rate was outside of the range 4% to 6% in 15.66% 
of the conditions. Even for the largest sample size con-
sidered (n1 = 150), the Type I error rate of the Mann-
Whitney test ranged from 3.21% to 10.23%.

For power, I consider only the conditions in which 
exchangeability was met. Only in these conditions is it 
guaranteed that both tests have the same Type I error 
rate, which is required for a meaningful power compari-
son. Overall, the power of both tests was similar. The 
mean of the absolute power differences was 1.38%, and 
the median was 0.50% (see also Table S2 in the Supple-
mental Material).

However, for the symmetric distributions, the 
Brunner-Munzel test had more power than the Mann-
Whitney test.4 The power advantage ranged from 0% to 
4.05%.

For the skewed distribution, the opposite pattern 
emerged. Although the Mann-Whitney test was not more 
powerful in all conditions, it was more powerful in the 
majority of the conditions. The Mann-Whitney test’s 
maximum power advantage was 10.33%.

In summary, the Type I error rate of the Brunner-
Munzel test converged very quickly to the significance 
level of α = 5%. Both tests performed similarly in terms 
of power; the Brunner-Munzel test had a slight advantage 
for the symmetric distributions, and the Mann-Whitney 
had a slight advantage for the skewed distribution.

Brunner-Munzel Test in Practice

Example data set

In this section, I discuss practical considerations by 
applying the Brunner-Munzel test to an example data 
set. The example data come from the Eurobarometer 
73.2 (European Commission, 2012). The data are open 
and available at http://doi.org/10.4232/1.11429. As part 
of the Europarameter 73.2, participants were asked the 
question, “How often during the past 4 weeks have you 
felt downhearted and depressed?,” which had the ordinal 
answer options all the time, most of the time, sometimes, 
rarely, and never and the noninformative don’t know. 
The research question is whether either men or women 
feel depressed more often. Because the data are ordinal 
and the research question is directional, the appropriate 
formalization of this question is to test for stochastic 
equality.

http://doi.org/10.4232/1.11429
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Computational considerations

The first practical challenge is computational. After 
removing all missing values, including the don’t know 
responses, the data set consisted of responses from 
14,430 women and 12,199 men. Calculating the test sta-
tistic for all possible permutations of the data, as required 
by the permutation Brunner-Munzel test, is computation-
ally infeasible. The number of permutations needed 
would be > 107973. The computational infeasibility is not 
limited to huge samples. For example, if both groups 
have a size of 100, the number of permutations required 
is > 9 × 1058, which is still computationally infeasible.

This computational infeasibility of the Brunner-
Munzel test for moderately sized samples is shared by 
all permutation tests, thus also by the Mann-Whitney 
test. In general, there are two approaches to solve this 
problem. The first uses a random number of permuta-
tions instead of all permutations (this is sometimes called 
approximate or Monte Carlo approach). The second uses 
a parametric distribution to approximate the permutation 
distribution (this is called the asymptotic approach).

For the Brunner-Munzel test, there seems to be no 
consensus yet which approach is better. However, only 
for the asymptotic approach, detailed evidence that it is 
reasonably accurate for moderately large samples is 
available (Brunner & Munzel, 2000). In addition, in this 
article’s simulation study, I used the asymptotic approach, 
confirming those results. Thus, for now, I recommend 
using the asymptotic approach if the exact approach is 
computationally infeasible.

The difference between the exact permutation 
approach and the asymptotic approach is most pro-
nounced for very small samples, in which the exact 
permutation approach is computationally feasible. In 
particular, the permutation approach has better Type I 
error control in very small samples (n1, n2 < 10) com-
pared with the asymptotic approach (Neubert & Brunner, 
2007). However, starting at small samples (n1, n2 ≥ 10), 
the Type I error control of the asymptotic approach is 
reasonable (Brunner & Munzel, 2000).

Reporting results

Before reporting the results, I introduce guidelines for 
reporting on the Brunner-Munzel test. I follow the Ameri-
can Psychological Association principles for reporting on 
statistical tests as closely as possible. Note that my rec-
ommendations are different from the standard recom-
mendations for the Mann-Whitney test (Field, 2017, 
p. 296). This is not because the Brunner-Munzel test is 
conceptually different from the Mann-Whitney test but, 
rather, is because of the misconception in the literature 
that the Mann-Whitney test is a reasonable test for median 
differences.

The appropriate test statistic to report is the studen-
tized stochastic superiority estimate p̂*. If the exact or the 
approximate permutation versions of the test are used, 
it does not have associated degrees of freedom. For the 
asymptotic version, the studentized stochastic superiority 
is assumed to be distributed according to a t distribution 
with certain degrees of freedom,5 equivalently to the t 
test. Consequently, the degrees of freedom should be 
reported.

As a measure of effect size, the raw stochastic superior-
ity estimate p̂"  can be recommended because it directly 
estimates the stochastic superiority.

Applying those guidelines to the example data set 
leads to the following results: Women and men were not 
stochastically equal in their reporting of how often they 
felt depressed, p̂∗(26100.38) = −16.05, p < .001, p̂"  = 
0.4462. The probability that a random woman reported 
less frequent depressive feelings than a random man 
was 0.4462, splitting ties evenly. Consequently, women 
tended to feel depressed more often than men.

Interpretation of stochastic superiority 
effect size p̂"

To guide the interpretation of the stochastic superiority 
effect size, multiple approaches have been proposed 
(Cliff, 1993; Divine et al., 2018). I discuss the most promi-
nent here to help readers understand the stochastic 
superiority effect size better and give readers a tool set 
to explain the results of applying the Brunner-Munzel 
test to their readers.

It helps to interpret the stochastic superiority effect 
size p̂"  as summarizing the outcome of a contest. In this 
contest, the observations from the two groups compete. 
In the example, the two groups are women and men, 
and the observations are how often a participant felt 
depressed. Each observation from a group competes 
with all observations from the other group. A match 
between two observations is decided as follows. If one 
observation is bigger, then it wins, and one point is 
awarded to its group. If both observations are equal, 
then half a point is awarded to both groups. The sto-
chastic superiority effect size p̂"  is then the proportion 
of points won by the second group. Consequently, the 
men won p̂"  = 44.62% of the points, and the women 
won 1 − p̂"  = 55.38% of the point. Thus, because the 
women won significantly more points, they tended to 
report more frequent depressive feelings.

The stochastic equality effect size can be visualized 
as a bubble plot (see Fig. 2). In this plot, points above 
the diagonal represent Group 1, Group 2 pairs in which 
the Group 2 observation was bigger. For points below the 
diagonal, the Group 1 observation was bigger, and for 
points on the diagonal, both observations were equal. 
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The stochastic equality effect size summarizes this plot 
by computing the proportion of points above the diago-
nal, including half of the points on the diagonal.

O’Brien and Castelloe (2006) suggested to transform 
the stochastic superiority effect size p̂"  to the so-called 
Wilcoxin-Mann-Whitney (WMW) odds via WMWodds = p̂"/
(1 − p̂"). Thus, the WMWodds quantify how many points 
Group 2 won in relation to Group 1. For the example, 
this amounts to 0.4462/(1 − 0.4462) = 80.58%. Thus, the 
men won only 80.58% of the points that the women won. 
The WMWodds can also be interpreted as odds. In the 
example, the odds are roughly 8:10 for a random women 
reporting less depressive symptoms than a random man, 
splitting ties evenly. If and only if there is stochastic 
equality, the WMWodds are 1 in the population.

Another transformation is Cliff’s δ (Cliff, 1993). Cliff’s 
δ is estimated as follows: ˆ ˆ ˆ( )δ = − −1 p p" " . It is thus 
similar to the WMWodds because it also compares the 
points won by the two groups. However, instead of 
comparing the points using division, it uses the differ-
ence. In particular, Cliff’s δ̂ compares how many more 
points are won by Group 1 compared with Group 2. For 
the example, Cliff’s δ̂ = 10.76%. Thus, women won 
10.76% more points than men. If and only if there is 
stochastic equality, Cliff’s δ̂ is 0 in the population.

For this example, one can reveal the causes of the 
significant stochastic superiority effect size by directly 
comparing the distributions. In Table 3, the relative fre-
quencies are compared across the two groups. Note that 
38.74% of the men but only 31.03% of the women 
reported that they never felt depressive symptoms. The 
option rarely was chosen essentially equally often by 
both genders. In contrast, for sometimes, most of the 
time, and all of the time, the frequencies are all higher 
for the women. Together with the lower frequency of 

women in the never category, this explains the signifi-
cant stochastic superiority effect size.

Confidence intervals

It is often recommended to report confidence intervals 
additionally to or instead of the outcome of a hypothesis 
test. For the example data set, accurate confidence inter-
vals for the stochastic superiority can be obtained from 
the asymptotic Brunner-Munzel test and confidence 
intervals for the other effect sizes by transforming the 
obtained confidence interval for the stochastic superior-
ity (see Appendix). The resulting confidence intervals 
are [0.44, 0.45] for stochastic superiority, [0.78, 0.83] for 
the WMWodds, and [0.09, 0.12] for Cliff’s δ.

For small samples or if the population stochastic supe-
riority is close to 0 or 1, the confidence interval obtained 
in this fashion should be treated with caution. There is 
still no consensus on which approach to use in this case. 
Potential remedies include a bootstrap approach (Ruscio 
& Mullen, 2012), inverting the permutation Brunner-
Munzel test (Pauly et  al., 2016), and multiple other 
approaches (see Brunner et al., 2018, Section 3.7.2). Imple-
mentations of some of these approaches can be found in 
the R packages rankFD, nparcomp, and RProbSup.
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Fig. 2.  Bubble plot for the example data set.

Table 3.  Relative Frequencies of the Frequency of 
Depressive Symptoms for Men and Women

Never Rarely Sometimes
Most of 
the time

All the 
time

Men 38.74% 33.63% 21.73% 4.92% 0.98%
Women 31.03% 33.46% 26.65% 7.35% 1.51%
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Code

In the Appendix, I provide the R code used for the 
example analysis discussed here.

Discussion

Summary

I have demonstrated that the Mann-Whitney test is not 
a reasonable test of equality of medians, distributions, 
or stochastic equality. This observation motivated iden-
tifying a reasonable test for each perspective. Here, I 
focused on the stochastic equality perspective because 
it is the most appropriate formalization of the intuitive 
hypothesis that one population tends to have larger val-
ues than another. To this end, I introduced the Brunner-
Munzel test. I demonstrated that it is a reasonable test 
for the stochastic equality perspective with often equal 
or even higher power than the Mann-Whitney test. Only 
for skewed data and unequal sample sizes was the 
Mann-Whitney test more powerful. As a consequence, I 
recommend that psychologists should use the Brunner-
Munzel test as the default nonparametric test instead 
of the Mann-Whitney test. They should use the Mann-
Whitney test only if they are confident that their data 
meet the assumptions of exchangeability and are skewed, 
which will rarely be the case. Note that contrary to com-
mon practice, preliminary assumption checks, whether 
based on formal hypothesis tests or visualization tech-
niques, cannot be recommended to establish exchange-
ability or skewness because preliminary assumption 
checks are generally flawed. Among other problems, they 
distort the Type I and II error rates of the actual test of 
interest (Wells & Hintze, 2007). Valid alternative approaches 
to establishing assumptions are theory and reason (Wells 
& Hintze, 2007). To enable researchers to apply the Brunner-
Munzel test, I provided practical guidance.

Nonparametric or parametric testing

I did not yet address the question regarding when 
researchers should adopt the parametric Welch t test over 
the nonparametric Brunner-Munzel test. This question 
has already received a lot of attention (Delaney & Vargha, 
2002; Rietveld & van Hout, 2015; Ruxton, 2006; Ruxton 
& Neuhäuser, 2019), but there still seems to be no con-
sensus. For now, my recommendation is as follows.

The Welch t test is the recommended procedure for 
testing equality of means (Delacre et al., 2017), whereas 
I recommend the Brunner-Munzel test for testing sto-
chastic equality. Thus, the choice between the two tests 
should first and foremost be guided by which hypothesis 
a researcher intends to test. Because each hypothesis is 
associated with a different research question, the choice 

is essentially determined by which research question a 
researcher aims to answer. Note that this is contrary to 
the common practice of choosing between tests on the 
basis of pretesting of assumptions, which, again, should 
be avoided (Wells & Hintze, 2007).

For ratio and interval data, I illustrate using the run-
ning depression therapy example. However, now I 
assume that the improvement was measured using an 
interval variable indicating the extent of the improve-
ment, with high values indicating a large improvement. 
In this example, the equality of means hypothesis is 
equivalent to the research question of whether the ther-
apy, on average, leads to more improvement than the 
control treatment. In contrast, the stochastic equality 
hypothesis is equivalent to whether for a random patient, 
the therapy has a higher chance to lead to a bigger 
improvement than the control treatment. I illustrate that 
those are profoundly different questions using a con-
crete example. In the therapy group, 90% of the patients 
did not improve, whereas 10% improved by 20, which 
is considered a substantial improvement. In the control 
group, all patients improved by 1, which is a slight 
improvement. Using a comparison of means, one would 
conclude that the therapy works given that the mean 
improvement was bigger (M = 2) in the therapy group 
than in the control group (M = 1). In contrast, using 
stochastic equality, one would conclude that the therapy 
does not work given that for two random patients from 
both groups, there is a 90% chance that the patient who 
was in the control group had a bigger improvement.

Again, which research question to ask should be decided 
individually by each researcher. However, psychological 
researchers should consider testing the stochastic equality 
hypothesis more often than is currently done. For example, 
for an individual patient, identifying the treatment with a 
higher chance of leading to a bigger improvement seems 
more relevant than identifying the therapy with the larger 
average improvement. At the very least, testing for stochas-
tic equality and reporting the associated effect sizes pro-
vides useful additional information.

For ordinal data, testing for stochastic equality should 
be the default strategy because a comparison of means 
requires at least an interval scale (Delaney & Vargha, 
2002), and the stochastic equality hypothesis and its 
associated effect sizes are also meaningful for ordinal 
data. This advice seems to conflict with the common 
practice of treating ordinal data as continuous, especially 
if the number of levels is sufficiently large, enabling a 
comparison of means. However, note that this practice 
implicitly assumes that the data are not ordinal but, 
rather, discrete data on an interval scale because it 
implies that the numerical distance between each pair 
of subsequent categories is equal. Consequently, whether 
this practice is appropriate is not related to the numbers 
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of categories but, rather, whether this central assumption 
of an interval scale is fulfilled.

In certain situations, the hypothesis of equal means 
and stochastic equality are equivalent, most importantly, 
if the distributions of the two populations are symmetric. 
Only in this situation should the choice between the tests 
be guided by their statistical properties. To make an 
informed choice between the two tests, a detailed com-
parison of the power of Welch’s t test and the Brunner-
Munzel test is needed, which has not been performed. 
However, the practical value of such a comparison can 
be questioned because one virtually never knows with 
certainty that the population distributions are symmetric. 
Consequently, by default, one should assume that they 
are not and select between the two tests on the basis of 
the different hypotheses they test.

Testing median differences  
and equality of distributions

I have not yet discussed how to best test for median 
differences or equality of distributions. Testing for equal-
ity of distributions is generally a tough problem. A test 
appropriate for general use must be able to detect all the 
numerous ways two distributions can differ. This is prob-
ably one reason why no consensus has been reached 
about how to best test for equality of distributions and 

also casts doubt on whether this will ever be the case. 
However, I agree with Chung and Romano (2016) that 
omnibus tests such as the Kolmogorov-Smirnov and the 
Cramér–von Mises tests, which capture the differences 
of the entire distributions as opposed to only testing for 
stochastic equality, should be preferred over the Mann-
Whitney test. An overview and comparison of available 
classical procedures can be found in Thas (2010), 
whereas Wasserman (2012) provided an overview of 
some modern alternatives.

For testing median differences, the classically recom-
mended procedure is Mood’s median test (Brown & 
Mood, 1951). However, many modern alternatives and 
supposed improvements have been proposed (Bonett & 
Price, 2002; Chung & Romano, 2013; DiCiccio & Efron, 
1996; Schlag, 2015; Wilcox, 2006). A detailed indepen-
dent comparison of those tests is missing, and thus no 
recommendation can be given yet. Consequently, a com-
parison of available tests for median differences is rec-
ommended for future work.

Conclusion

In conclusion, when investigating directional research 
questions, psychologists should test for stochastic equal-
ity more often. However, instead of the Mann-Whitney 
test, they should use the Brunner-Munzel test by default.
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Appendix

R code
In this appendix, I explain the R code used for the 
example analysis so that readers can adapt this code for 
their analysis.

First, the example data set needs to be downloaded 
from http://doi.org/10.4232/1.11429.

The next step is to import the data into R.

library(foreign)
df <- read.spss("ZA5232_v3-0-0.sav", 
to.data.frame = TRUE)

Then, the relevant variables are selected and missing 
values removed.

df <- df[, c("v187", "v218")]
names(df) <- c("freq_dep", "sex")
df <- df[!is.na(df$freq_dep), ]

As the next step, the depressed factor is reverted such 
that a larger value represents a higher frequency of 
depressive symptoms and transformed into an ordered 
factor.

library(tidyverse)
df$freq_dep <- fct_rev(df$freq_dep)
df$freq_dep <- as.ordered(df$freq_dep)
males <- df$freq_dep[df$sex ==  "Male"]
females <- df$freq_dep[
df$sex == "Female"]

From the multiple implementations of the Brunner-
Munzel test available in R (e.g., in the packages lawstat, 
rankFD, and brunnermunzel), I recommend the “brun-
nermunzel.permutation.test” function from the brunner-
munzel package because of its straightforward interface 
and because it implements the recommendation to use 
the permutation version of the Brunner-Munzel test if 
computationally feasible and the asymptotic version if 
not computationally feasible.

The Brunner-Munzel test is performed as follows.

library(brunnermunzel)
res <- brunnermunzel.permutation.test(
females, males)
print(res)

##
## Brunner-Munzel Test
##
## data: x and y
## �Brunner-Munzel Test Statistic = -16, 
## df = 26100, p-value <2e-16
## 95 percent confidence interval:
##  0.440 0.453
## sample estimates:
## P(X<Y)+.5*P(X=Y)
##   0.446

Unfortunately, the degrees of freedom are rounded 
to a whole number. The exact degrees of freedom can 
be extracted as follows.

res$parameter

The Wilcoxon-Mann-Whitney odds and Cliff’s δ, as 
well as their confidence intervals, can be extracted from 
the output.

get_wmw_odds <- function(stoc_sup) {
return(stoc_sup / (1 - stoc_sup))
}

get_cliff_delta <- function(stoc_sup) {
return(1 - 2 * stoc_sup) 
}

#stochastic_superiority 
stoc_sup <- unname(res$estimate)

wmw_odds <- get_wmw_odds(stoc_sup)
print(wmw_odds)

## [1] 0.806

cliff_delta <- get_cliff_delta(stoc_sup)
print(cliff_delta)

## [1] 0.108

wmw_odds_ci <- get_wmw_odds(res$conf.int)
print(wmw_odds_ci)

## lower upper
## 0.785 0.827
## attr(,"conf.level")
## [1] 0.95

cliff_delta_ci <- get_cliff_delta( 
res$conf.int)

cliff_delta_ci <- cliff_delta_ci[c(2, 1)]
print(cliff_delta_ci)

## upper lower
## 0.0944 0.1207

For the bubble plot, I provide a function at https://
github.com/karchjd/bubble_plot. The plot presented in 
the article can be reproduced as follows.

source("https://raw.githubusercontent.
com/karchjd/bubble_plot/master/
bubble_plot.R")

p <- bubble_plot(females[1:1000], 
males[1:1000])

p <- the_plot + xlab("Males") + ylab("Females")

Note that I used only the first 1,000 women and men 
for computational convenience.

http://doi.org/10.4232/1.11429
https://github.com/karchjd/bubble_plot
https://github.com/karchjd/bubble_plot
https://raw.githubusercontent.com/karchjd/bubble_plot/master/bubble_plot.R
https://raw.githubusercontent.com/karchjd/bubble_plot/master/bubble_plot.R
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Notes

1. Asymptotical robustness is only one aspect of general robust-
ness, as described in, for example, Wilcox (2016). Note that 
Welch’s t test is not generally robust. As an example, its power can 
be heavily affected by violations of normality (see e.g., Wilcox,  
2016).
2. I chose this unusually high sample size because it is required 
for the small mean difference introduced by the change in the 
coding scheme to be significant. However, the argument pre-
sented is relevant for all sample sizes.
3. The exact search strings used were “‘mann-whitney’ source: 
psychology” and “‘brunner-munzel’ source:psychology,” both re- 
stricted to articles between 2015 and 2020.
4. Rarely, the Mann-Whitney test appears to be slightly more 
powerful. However, the power advantage was never bigger than 
0.0015 and thus could not be distinguished from estimation error.
5. The exact formula is displayed in Equation 5.9 in Brunner and 
Munzel (2000).
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