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iv For Your Information 

To learn more… 

 

For information about other courses in the curriculum, contact the  
SAS Education Division at 1-800-333-7660, or send e-mail to 
training@sas.com. You can also find this information on the web at 
http://support.sas.com/training/ as well as in the Training Course 
Catalog. 

 

 For a list of SAS books (including e-books) that relate to the topics 
covered in this course notes, visit https://www.sas.com/sas/books.html or 
call 1-800-727-0025. US customers receive free shipping to US 
addresses. 
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1.1 Introduction 

 

DATA – The SAS Platform streamlines data access and preparation while ensuring that the proper 
controls are in place. Access data of any complexity, size, or speed with a robust suite of data 
management tools.  

DISCOVERY – Visualize and build analytical models. Take advantage of programming flexibility  
by building SAS, Python, and R models in a unified pipeline approach.  

DEPLOY – Putting analytics into production is where value is realized. The SAS Platform helps you 
put analytics into action quickly using a transparent and governed process so that you can reap 
value from your data faster. Move quickly from creating and selecting the champion model to 
deployment with robust model management capabilities, whether you are building a single model  
or thousands.  

Copy right ©  SAS  Inst i tute Inc. Al l  rights reserved.
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The Analytical Life Cycle

DATA – Access and prepare the data

DISCOVER – Visualize and build models

DEPLOY – Put analytics into production
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SAS Model Manager streamlines the often error-prone steps used to bring analytical models to 
production. Model Manager maintains a model repository for each project to manage and deploy  
the organization’s SAS and open source models. The repository enables you to easily compare 
registered models, and it provides tools to monitor the performance of production models. In the 
event of model degradation, models can be efficiently retrained and redeployed.  

Copy right ©  SAS  Inst i tute Inc. Al l  rights reserved.
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SAS Model Manager

Streamlines the steps of creating, managing, deploying, monitoring, 
and operationalizing analytical models.

Maintains a repository of SAS and open source models for analytical projects. 
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1.2 Building and Managing Models 

A financial services company offers a home equity line of credit to its clients. The company extended 
several thousand lines of credit in the past, and many of these accepted applicants (approximately 
20%) defaulted on their loans. By using geographic, demographic, and financial variables, the 
company wants to build a model to predict whether an applicant might default. 

After analyzing the data, the company selected a subset of 12 predictor (or input) variables to model 
whether each applicant defaulted. The response (or target) variable (BAD) indicates whether an 
applicant defaulted on the home equity line of credit. These variables, with their model role, 
measurement level, and description, are shown in the following table from the HMEQ data set. 

NAME MODEL ROLE MEASUREMENT LEVEL DESCRIPTION 

BAD Target Binary 1 = applicant defaulted on loan or 
delinquent, 0 = applicant paid loan 

CLAGE Input Interval Age of oldest credit line in months 

CLNO Input Interval Number of credit lines 

DEBTINC Input Interval Debt to income ratio 

DELINQ Input Interval Number of delinquent credit lines 

DEROG Input Interval Number of derogatory reports 

JOB Input Nominal Occupational categories 

LOAN Input Interval Amount of loan request 

MORTDUE Input Interval Amount due on existing mortgage 

NINQ Input Interval Number of recent credit inquiries 

REASON Input Binary DebtCon = debt consolidation, 
HomeImp = home improvement 

VALUE Input Interval Value of current property 

YOJ Input Interval Years at present job 
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Building SAS and Open Source Models in a Pipeline 

 

Open SAS Drive 

1. Follow the instructions given by your instructor to access the virtual machine. 

2. Click the Google Chrome shortcut on your virtual machine. 

3. Open the SAS Viya shortcut folder and select SAS Drive. 

 

4. Sign in to SAS using the user name student and the password Metadata0. 

5. Click No when asked if you want to opt in to your assumable groups. 

 

Load the Data and Create a Project 

1. Open the Show Applications menu  and select Build Models to open the Model Studio 

visual interface. 

2. In the Model Studio application, select New Project. 

3. Name your project Model Manager Workshop, and leave Type and Template at their default 
values. 

4. Under Data, select Browse to access the Choose Data window. 
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5. From the Choose Data window, click the Import tab.  

 

6. Select Local File to import a file from the local client machine. 

7. Navigate to D:\Workshop\Winsas\UA19DMMM. Select the file hmeq.sas7bdat and click Open. 

8. Click Import Item to import the data to the SAS server. After the import is successful,  
click OK to use this data source for your project. 
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9. Click Save in the New Project window to save the new project settings.  

 

Build a Modeling Pipeline 

1. After the project is created, it opens and brings you to the Data tab. The software has already 
tried to make some decisions about how to treat the input variables, but some changes are 
needed. Select BAD and change the role from Input to Target. 

 

2. Select Pipelines next to Data to move to the Pipelines tab to create a predictive modeling 
pipeline.  
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Note that the default predictive modeling partition is 60% for training, 30% for validation, and 
10% for test. For this project, we keep the default settings. However, the partition can be 
changed by selecting project settings from the Settings icon .  

3. The HMEQ data set has missing data for 11 of the 13 variables. Only the target BAD and the 
input LOAN do not contain missing values. To impute missing values, right-click the Data node 
and select Add child node  Data Mining Preprocessing  Imputation. 

 

4. Click the Imputation node to display the settings for imputing missing values. Notice that, by 
default, missing class inputs are replaced with the mode (Count refers to the one with the 
highest count), and missing interval inputs are replaced with the mean. 
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5. To add a SAS model to the pipeline, right-click the Imputation node and select Add child node 
 Supervised Learning  Gradient Boosting. 

 

6. Add another SAS model to the pipeline. Right-click the Imputation node and select Add child 
node  Supervised Learning  Neural Network. 

Note: The neural network model requires imputation because it ignores any rows with missing 
values. Tree-based models can handle missing values by default. To have an even 
playing field for all our models within the pipeline, the models are connected to the 
Imputation node.  
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7. Right-click the Imputation node and select Add child node  Miscellaneous  Open Source 
Code. 

8. Right-click the Open Source Code node and select Rename. Rename the node Python Forest. 

 

9. In the Python Forest settings, select Data Sample to open more node options. Change the 
sampling method to None and exclude SAS formats. In order to run an open source model from 
Model Studio, the data are downloaded from the server to the client where the Python model is 
run. Because the HMEQ data set contains only 5960 observations, we can download the entire 
data, instead of just a sample, using the None sampling method without concern for flooding the 
local memory. Excluding SAS formats can prevent possible formatting errors when converting 
data from SAS to Python or R.  

10. From the Python Forest settings, select Open Code Editor. On the operating system, navigate 
to D:\Workshop\Winsas\UA19DMMM and open the text file Python_Forest_Code.txt.  

Copy the full text of the file into the code editor and click Save  in the top right and then  

click Close. 

 

Notice that to the left of the code editor are variables that were created for make writing the open 
source code easier. For example, dm_class_input will contain all the categorical variables in the 
pipeline’s data. Other variables are required for the flow of data back and forth between the two 
languages. For example, you must save your predictions in dm_scoreddf to return the results 
back to the pipeline.  

a. Load the RandomForestClassifier model. 

from sklearn import ensemble 
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b. Dummy code the categorical inputs. Python accepts only numeric variables within machine 
learning algorithms. Therefore, categorical variables must be dummy coded before running 
the algorithm.  

dm_input.insert(0, dm_partitionvar) 

fullX = dm_inputdf.loc[:, dm_input] 

fullX_enc = pd.get_dummies(fullX, columns=dm_class_input,  

            drop_first=True) 

c. Get the training data and target. 

X_enc = fullX_enc[fullX_enc[dm_partitionvar] ==  

        dm_partition_train_val] 

X_enc = X_enc.drop(dm_partitionvar, 1) 

y = dm_traindf[dm_dec_target] 

d. Fit the Python random forest and print the model object.  

params = {'n_estimators': 100, 'max_depth': 5,  

          'min_samples_split': 100, 'min_samples_leaf': 100,  

          'max_features': 5, 'random_state': 12345} 

dm_model = ensemble.RandomForestClassifier(**params) 

dm_model.fit(X_enc, y) 

print(dm_model) 

Note: The PRINT function returns command-line output from Python to the Model Studio 
results page.  

Selected RandomForestClassifier arguments: 

n_estimators  Number of trees in the forest. 

max_depth  Maximum depth allowed for each tree. 

min_samples_split Minimum number of samples required to split an internal node. 

min_samples_leaf Minimum number of samples required to be a leaf node. A split point 
at any depth is considered only if it leaves this many training samples 
in each of the left and right branches.  

max_features  Number of features to consider when looking for the best split.  

random_state  Seed used by the random number generator to reproduce results.  

e. Save variable importance to be printed in Model Studio. To save and return the variable 
importance measures, save the data frame as a CSV file in the predetermined node directory 
using the variable handle dm_nodedir.  

varimp = pd.DataFrame(list(zip(X_enc,  

         dm_model.feature_importances_)),  

         columns=['Variable Name', 'Importance']) 

varimp.to_csv(dm_nodedir + '/rpt_var_imp.csv', index=False) 

f. Score the HMEQ data and save predictions in dm_scoredf. 

fullX_enc = fullX_enc.drop(dm_partitionvar, 1) 

dm_scoreddf = pd.DataFrame(dm_model.predict_proba(fullX_enc),  

              columns=['P_BAD0', 'P_BAD1']) 
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To return the prediction to Model Studio, you must save results in the dm_scoreddf variable 
handle. Furthermore, you must also use the SAS naming conventions for the predictions to 
match the pipeline standards. The naming convention is P_ followed by the target name BAD 
and then the level of prediction, 1 or 0. That is, the column names are P_BAD0 and P_BAD1.  

11. Right-click the Python Forest node and select Move  Supervised Learning. This tells the 
software that this node contains a predictive model and will output scored data. It turns the node 
green and automatically connects it to the Model Comparison node. 

 

12. Click Run Pipeline.  
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Compare Models and Register the Champion 

1. Right-click the Python Forest node and select Results. 

 

The first window displays the saved CSV file of variable importance measures, and the Python 
output window displays the model output requested with the PRINT statement. The Python code 
window shows not only the code that we copied and pasted into the code editor but also 
automatic variable handles created for the user.  
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2. Navigate to the Assessment tab to see lift plots, ROC plots, and fit statistics for the open source 
model. Notice that the Open Source Code node still produces the same assessment plots as all 
the other modeling nodes provided by SAS.  

 

For Python or R models, SAS automatically creates lift plots, ROC plots, and other model 
comparison tools when scored data are returned to the pipeline from the Open Source Code 
node.  

3. Close the Python Forest node.  

4. Right-click the Model Comparison node and select Results.  

5. Click the Assessment tab to view numeric and graphical comparisons of the models.  
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6. Change the accuracy graphic to ROC and expand the window. 

 

The ROC comparison for the three models shows that the gradient boosting model performs the 
best, with the largest C statistic for all three data partitions, followed by the SAS neural network 
and the Python random forest.  

7. Close the ROC window and expand the Fit Statistics window. 

 

Again, the numeric summaries show that the gradient boosting model performed the best overall. 
For this reason, we declare the SAS gradient boosting model the champion and register it to 
Model Manager for follow up analyses. Note that the forthcoming analyses can also be done with 
open source models.  
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8. Close the Fit Statistics window and then navigate back to the Node tab. Notice that the 
champion model for this pipeline is designated as the gradient boosting model, with the largest 
KS statistic and smallest misclassification rate.  

 

9. Close the Model Comparison node and then click the Pipeline Comparison tab. 

 

10. Right-click the champion model name and then click Register models. 
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Setting Project Properties 

 

1. Open the Show Applications menu  and select Manage Models to open the Model 

Manager visual interface. 

 

2. Select the Model Manager Workshop project. 

 

3. Select the box next to the Gradient Boosting model and then click the Actions icon  in the top 

right. Select Set as champion from the Actions list. Setting the champion is optional, but doing 
so enables Model Manager to set default project settings needed for future analyses. For 
example, setting the champion model imports the appropriate variables into the project from the 
Model Studio pipeline.  
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4. Select EM_EVENTPROBABILITY as the model output variable to use as the project output 
variable. Click Save. This simply species the variable name to be used as output for scoring 
within the Model Manager project.  

 

5. Click Yes to add all the model variables to the project. This adds all the Model Studio pipeline 
variables to the project in lieu of manually importing the variables.  
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6. From the Projects window, click the Variables tab to view the imported project variables.  

 

7. From the Projects window, select Properties. Set Default train table to HMEQ (if the table is 
not available, you might need to refresh), set Target variable to BAD, set Target event value to 
1, set Target values to 1 and 0, set Target level to Binary, and set Output event probability 

variable to EM_EVENTPROBABILITY. Finally, click the Save icon  in the top right. These 

steps ensure that the user can score new data with any model within the project.  
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Importing an Open Source Model into Model Manager 

 

View the Open Source Code 

1. Open the R_Logistic_Regression_Code.txt file located in the course folder at 
D:\Workshop\Winsas\UA19DMMM. 

2. Create a logistic regression model in R. 

a. Load the HMEQ.csv file and count the number of missing values for each variable. 

# Load 

df <- read.csv(file="D:/Workshop/Winsas/UA19DMMM/hmeq.csv",  

          header=TRUE, sep=",") 

head(df) 

dim(df) 

 

# Missing 

sum(is.na(df) | df=="") # 5271 

 

# Interval 

sum(is.na(df$MORTDUE)) 

sum(is.na(df$VALUE)) 

sum(is.na(df$YOJ)) 

sum(is.na(df$DEROG)) 

sum(is.na(df$DELINQ)) 

sum(is.na(df$CLAGE)) 

sum(is.na(df$NINQ)) 

sum(is.na(df$CLNO)) 

sum(is.na(df$DEBTINC)) 

 

# Nominal 

sum(df$REASON=="") 

table(df$REASON) 

sum(df$JOB=="") 

table(df$JOB) 

b. Impute missing values with the mean for interval variables and the most frequent level for 
categorical variables. 

# Impute Interval 

df$MORTDUE[is.na(df$MORTDUE)] = mean(df$MORTDUE,na.rm=T) 

df$VALUE[is.na(df$VALUE)] = mean(df$VALUE,na.rm=T) 

df$YOJ[is.na(df$YOJ)] = mean(df$YOJ,na.rm=T) 

df$DEROG[is.na(df$DEROG)] = mean(df$DEROG,na.rm=T) 

df$DELINQ[is.na(df$DELINQ)] = mean(df$DELINQ,na.rm=T) 

df$CLAGE[is.na(df$CLAGE)] = mean(df$CLAGE,na.rm=T) 

df$NINQ[is.na(df$NINQ)] = mean(df$NINQ,na.rm=T) 

df$CLNO[is.na(df$CLNO)] = mean(df$CLNO,na.rm=T) 

df$DEBTINC[is.na(df$DEBTINC)] = mean(df$DEBTINC,na.rm=T) 
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# Impute Nominal 

df$REASON[df$REASON==""] = 

names(which(table(df$REASON)==max(table(df$REASON)))) 

df$JOB[df$JOB==""] = 

names(which(table(df$JOB)==max(table(df$JOB)))) 

 

# Missing? 

sum(is.na(df) | df=="") # 0 

c. Partition the data into training (60%), validation (30%), and test (10%) sets.  

# Partition Data 

nr = nrow(df) 

set.seed(802) 

rows = sample(c(rep(1,nr*.6), rep(0,nr*.3), rep(2, nr*.1))) 

train_rows = which(rows==1) 

valid_rows = which(rows==0) 

test_rows =  which(rows==2) 

 

df_train = df[train_rows,] 

df_valid = df[valid_rows,] 

df_test  = df[test_rows,] 

d. Create an open source logistic regression model. 

# Logistic Regression Model 

mymod = glm(BAD ~ LOAN + MORTDUE + VALUE + REASON + JOB + YOJ +  

            DEROG + DELINQ + CLAGE + NINQ + CLNO + DEBTINC,  

            data=df_train, family = "binomial") 

e. Convert the model to PMML and save as an XML file. 

# Markup 

library(pmml) 

saveXML(pmml(mymod),"D:/Workshop/Winsas/UA19DMMM 

                    /R_Logistic_Regression_Model.xml") 

Note: The pmml XML file is saved in 4.3. SAS Model Manager requires 4.2 to import the 
model. The version can be manually changed by opening the XML file and editing the 
heading to the appropriate version.  

3. Create a JSON file containing summary statistics for the model. 

a. Load the gradient boosting model dmcas_fitstat JSON file as a template. 

library(rjson) 

json = fromJSON(file = "D:/Workshop/Winsas/UA19DMMM 

                        /dmcas_fitstat_sas.json") 

b. Calculate the average squared error for the R model. 

# Calculate ASE statistics 

train_probs = predict(mymod, df_train, type = "response") 

valid_probs = predict(mymod, df_valid, type = "response") 

test_probs =  predict(mymod, df_test,  type = "response") 
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train_ASE = mean((df_train$BAD - train_probs)^2) 

valid_ASE = mean((df_valid$BAD - valid_probs)^2) 

test_ASE  = mean((df_test$BAD  - test_probs)^2) 

c. Calculate the C-statistic for the R model. 

# Calculate C-statistics 

library(pROC) 

 

train_C = as.numeric(gsub("Area under the curve: ", "",  

                     auc(df_train$BAD, train_probs))) 

valid_C = as.numeric(gsub("Area under the curve: ", "",  

                     auc(df_valid$BAD, valid_probs))) 

test_C  = as.numeric(gsub("Area under the curve: ", "",  

                     auc(df_test$BAD,  test_probs))) 

d. Add the calculated summary statistics to the JSON template file. 

# Test 

json$data[[1]]$dataMap$`_RASE_` = paste0(round(sqrt(test_ASE),4)) 

json$data[[1]]$dataMap$`_ASE_` = paste0(round(test_ASE,4)) 

json$data[[1]]$dataMap$`_C_` = paste0(round(test_C,4)) 

 

#Train 

json$data[[2]]$dataMap$`_RASE_` = 

paste0(round(sqrt(train_ASE),4)) 

json$data[[2]]$dataMap$`_ASE_` = paste0(round(train_ASE,4)) 

json$data[[2]]$dataMap$`_C_` = paste0(round(train_C,4)) 

 

# Valid 

json$data[[3]]$dataMap$`_RASE_` = 

paste0(round(sqrt(valid_ASE),4)) 

json$data[[3]]$dataMap$`_ASE_` = paste0(round(valid_ASE,4)) 

json$data[[3]]$dataMap$`_C_` = paste0(round(valid_C,4)) 

e. Save the JSON file as dmcas_fitstat.json. 

# Export to json file 

export_json = rjson::toJSON(json, indent=1) 

write(export_json, "D:/Workshop/Winsas/UA19DMMM 

                    /dmcas_fitstat.json") 

4. Create a JSON file that contains ROC information for the model. 

a. Load the gradient boosting model dmcas_roc JSON file as a template. 

library(rjson) 

json = fromJSON(file = "D:/Workshop/Winsas/UA19DMMM 

                        /dmcas_roc_sas.json") 

b. Remove the validation and test ROC data from the JSON file. 

# Remove the Validation and test ROC data 

for(i in rev(23:length(json$data))){ 

  json$data[[i]]=NULL 
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} 

c. Create confusion matrices for the model.  

# Get Predictions 

preds = predict(mymod,df_train,type = "response") 

target = df_train$BAD 

 

# Create Confusion Matrices to get ROC curve information 

myseq = seq(.05,.95,.05) 

sens = NULL 

spec = NULL 

 

for(i in 1:length(myseq)){ 

  temp = (preds>myseq[i])*1 

  tab = table(target,temp) 

  sens = c(sens, tab[2,2]/(tab[2,2]+tab[2,1])) 

  spec = c(spec, tab[1,1]/(tab[1,1]+tab[1,2])) 

} 

 

myseq = c(0,myseq,1) 

sens = c(1,sens,0) 

spec = c(0,spec,1) 

plot(1-spec,sens) 

d. Add ROC information to the JSON template. 

for(i in 1:21){ 

  json$data[[i]]$dataMap$`_OneMinusSpecificity_` =  

           paste0(1-spec[i]) 

  json$data[[i]]$dataMap$`_Sensitivity_` = paste0(sens[i]) 

  json$data[[i]]$dataMap$`_Specificity_` = paste0(spec[i]) 

} 

e. Save the JSON file as dmcas_roc.json. 

# Export to json file 

export_json = rjson::toJSON(json, indent=1) 

write(export_json, "D:/Workshop/Winsas/UA19DMMM/dmcas_roc.json") 



 1.2  Building and Managing Models 1-25 

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. 

Import the Open Source Model 

1. From the Model Manager Workshop project Models tab, click the Import tab and then click 
Import. 

 

2. Open the R_Logistic_Regression_Model.xml file in the course folder and then click Import.  

 

3. Select the box next to the open source model in the project window. Then click the Actions icon 
and click Set as challenger. In the Map Output Variables window, map the 
EM_EVENTPROBABILITY project output variable to the model output variable Predicted_BAD 
and click OK. 
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4. To ensure that the open source model has been imported correctly, go to the Scoring tab of the 
project window and click New Test. In the New Test window, change the test name to Open 
Source Model Import Test, and in the Model field, select R_Logistic_Regression_Model. 
Next, open the Data source field and select the HMEQ data set. Click the Sample Data tab to 
test only a sample of 100 observations. Click OK  Run. 

 

 

Import the Open Source Model Summary Statistics and Compare Models 

1. Go to the Models tab of the project window and select the open source model.  
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Notice that the XML file was imported and the PMML code was converted to SAS DATA step 
score code using the PSCORE procedure and saved as the score.sas file. This file can now be 
used to score new data here in Model Manager or after deployment. The gradient boosting 
model contains Astore files for scoring new data as well as JSON files that contain model 
summary information.  

2. Click the Add button  on the Files tab and import the R_Logistic_Regression_Code.txt, 

dmcas_fitstat.json, and dmcas_roc.json files. Click Add. This imports summary information 
created in R in order to compare with other models within Model Manager.  

 

3. Scroll through the dmcas_fitstat.json file to view its contents. Notice that the ASE, RASE, and 
C fields were specified using the R model.  

 

4. Click the project window to return to the Model Manager Workshop project window.  
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5. Select the boxes next to both models and then click Compare in the top right. 

 

6.  Scroll through the Compare window to view numeric and graphical summaries.  
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The comparison of the ASE, RASE, and C-statistic for the Train, Validate, and Test partitions all 
show that the gradient boosting model outperforms the R model for this project.  

 

In conjunction with the C-statistic, the ROC curve for the gradient boosting model (left) seems to 
show more area under the curve than the R model (right).  

Note: The ROC plot compares the models for only the training data in this Model Manager 
comparison tool.   
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Monitoring Champion Model Performance 

 

Thus far, the models have been built on the HMEQ baseline data set. Five additional data sets were 
collected over subsequent quarters to monitor the champion model performance and look for 
possible degradation. Note that to monitor performance on multiple data sets, they must be named 
in one of the following ways: 

1: prefix_sequenceNumber_timeLabel 

2: prefix_sequenceNumber_timeLabel_modelIUUID 

3: prefix_sequenceNumber_timeLabel_modelIUUID_modelRole 

HMEQ Baseline Home Equity Data Set for Model Studio 

HMEQ_1_Q1 Home Equity Data Collected in Q1 of 2018 

HMEQ_2_Q2 Home Equity Data Collected in Q2 of 2018 

HMEQ_3_Q3 Home Equity Data Collected in Q3 of 2018 

HMEQ_4_Q4 Home Equity Data Collected in Q4 of 2018 

HMEQ_5_Q5 Home Equity Data Collected in Q1 of 2019 

1. Open the Show applications menu  in the top left and select Manage Data. 
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2. Click the Import tab and add a data source from a local file.  

 

3. Import hmeq_1_q1.sas7bdat, hmeq_2_q2.sas7bdat, hmeq_3_q3.sas7bdat,  
and hmeq_4_q4.sas7bdat. Click Import All. 

 

4. Open the Show applications menu  in the top left and select Manage Models. 

5. In the Model Manager Workshop project window, click Performance.  
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6. Click New Definition.  

 

7. From the New Performance Definition page, select Use a Library that contains tables with  
a specified prefix. Change the caslib (CAS library field) to Public and set the prefix to hmeq. 
Click OK.  

 



 1.2  Building and Managing Models 1-33 

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. 

8. From the Definition page, set the name to Model Performance Test. In the Models section, 
select Use Referenced Models and then select the current champion, which is the gradient 
boosting model. The rest of the fields have been populated with project settings information. 
Click the Save icon in the top right.  
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9. Click Run on the Performance tab to run the new definition.  

 

10. In the Variable Distribution window, select MORTDUE. After viewing the graphic, select YOJ. 
View the rest of the plots. 

 

The Variable Distribution chart is a graphical representation of distributions over a period of time 
for the selected variable. Each line represents the data for a specified period of time. The Y axis 
is the percentage of observations in a bin that is proportional to the total count. As you can see, 
the MORTDUE variable distribution is relatively stable over the one-year period and unlikely 
contributing to any model degradation. The YOJ variable distribution on the other hand is much 
more erratic and therefore contributes more greatly to model degradation.  
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The Stability report evaluates changes in the distribution of scored output variable values as models 
score data over time, and it detects and quantifies shifts in the distribution of output variable values 
in the data that are produced by the models. If an output variable from the training data set and the 
output variable from the current data set have identical distributions, then that output variable's 
deviation index is equal to 0. An output variable with a deviation index value that is greater than 0.10 
and less than 0.25 is classified as having a mild deviation. A variable that has a deviation index value 
that is greater than 0.30 is classified as having a significant deviation. Too much deviation in 
predictive variable output can indicate that model tuning, retraining, or replacement might be 
necessary. 
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The Lift report provides a visual summary of the usefulness of the information that is provided by a 
model for predicting a binary outcome variable. Specifically, the report summarizes the utility that you 
can expect by using the champion model as compared to using baseline information only. Baseline 
information is the prediction accuracy performance of the initial performance monitoring definition or 
batch program using operational data. In this case, we can see clear degradation of the gradient 
boosting model over the one-year period as each lift curve over time becomes shallower.  
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The ROC plot shows similar degradation behavior of the model over time as the area under the 
curve is greatest in the first half of the year and lowest in the second half of the year.  

 

The Gini index is calculated for each ROC curve. The Gini coefficient is a benchmark statistic that 
can be used to summarize the predictive accuracy of a model and is directly related to the area 
under the ROC curve (2*AUC-1). Again, the Gini index is another tool that demonstrates model 
degradation.  
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The KS report contains the Kolmogorov-Smirnov (KS) test plots for models with a binary target. The 
KS statistic measures the maximum vertical separation, or deviation between the cumulative 
distributions of events and non-events. This trend report uses a summary data set that plots the KS 
statistic and the KS probability cutoff values over time. 
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Retraining the Champion Model and Deploying to MAS 

 

Given that the model has degraded across four data sets equating to one year of time, we can 
retrain the model and deploy the new and improved model.  

1. From the Models tab of the Model Manager Workshop project, select the box next to the 
champion model and then click the Actions icon in the top right. From the Actions list, click 
Retrain.  

 

2. From the Retrain Project window, select Retrain now with a new data source. From the 
Choose a Data Source window, select hmeq_4_q4.sas7bdat and click OK. Then click Send in 
the Retrain Project window to retrain the gradient boosting model in Model Studio.  

 

3. From the Model Manager Workshop project window, change the version view to All Versions, 

and then refresh the page . Note that the process of retraining the model takes a moment. 

Continue refreshing until it appears.  

 

The champion model has been retrained in Model Studio using the Q4 data and registered to 
Model Manager in a new project version.  

 



 1.2  Building and Managing Models 1-41 

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. 

4. From the Models tab of the project window, select the box next to the version 2 gradient boosting 
model. Then click Publish from the Actions list.  

 

5. In the Publish Models window, change the published name to GBT_HMEQ_CHAMP.  
Then click Publish.  

 

Models can be published to CAS, Hadoop, Teradata, and SAS Micro Analytic Services 
depending on the score code type. For the SAS gradient boosting model, by default, the score 
code type is DS2 multi-type, which uses DS2 to create and push an Astore file to the required 
location. If we publish the open source model instead, the SAS DATA step score code saved in 
score.sas would be published for scoring in the desired location.  

6. Finally, click the History tab to view details of the project sequence.  
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1.3 Deploying Models 

 

SAS streamlines the model building, management, and deployment steps required to put an 
organization’s analytics into production. Depending on the model, SAS publishes the deployed 
model as an Analytical store or SAS DATA step score code to SAS Cloud Analytic Services (CAS), 
SAS Micro Analytic Service, or SAS Event Stream Processing.  

SAS Micro Analytic Service is a memory-resident, high-performance program execution service.  
As a SAS Platform service, it is not available for individual license, but it is included in selected SAS 
solutions. SAS Micro Analytic Service provides hosting for DS2 and Python programs and supports 
a “compile-once, execute-many-times” usage pattern. SAS Micro Analytic Service is multi-threaded 
and can be clustered for high availability. It can host multiple programs simultaneously, as well as 
multiple user or business contexts that are isolated from one another. 

SAS Event Stream Processing is a form of complex event processing technology that is often used 
in data and decision applications. It analyzes and processes large volumes of streaming data 
quickly, helping you analyze events in motion—even as they are generated. Instead of storing data 
and running queries against it, the SAS Event Stream Processing Engine stores the queries and 
streams data through them. In this way, continuous analysis of data occurs as the data are received, 
updating the intelligence as new events occur. Incoming data are read through adapters that are part 
of a publish-and-subscribe architecture used to read data feeds. Objects written in XML, DS2, 
Python, and C++ are used to model business logic within the engine. Data that pass through the 
engine is examined for patterns and can be filtered to more permanent storage. Prebuilt high-
performance adapters publish filtered data to other downstream applications. The SAS Event 
Stream Processing Engine uses a flexible threaded processing model for submillisecond response 
and high-volume throughput. 
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Models built in SAS Viya can also be deployed outside the SAS Platform to score data using 
websites, apps, or other devices. For example, to deploy SAS deep learning models to an IOS  
or Android app, models can be developed in DLPy and exported to an ONNX file, which can then be 
converted to readable score code by the app.  

DLPy is a high-level Python library for the SAS Deep Learning features available in SAS Viya. DLPy 
is designed to provide an efficient way to apply deep learning methods to image, text, and audio 
data. DLPy APIs are created following the Keras APIs with a touch of PyTorch flavor. That is, DLPy 
has the look and feel of Python programming but runs SAS Viya distributed algorithms.  

“Open Neural Network Exchange (ONNX) is an open format to represent deep learning models” 
(https://onnx.ai/). Models exported to ONNX are readable by a large community of AI developers, 
including Android and IOS technologies.  

 

SAS used the PASCAL data set to train a YOLO model to detect 20 different objects. The model 
was developed in DLPy and exported as an ONNX file. This was then converted to Core ML (Apple 
machine learning technology) to follow IOS format standards for model deployment. The app is then 
downloaded on the iPad where the model is used to score new data.   
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AI Object Detection 

 

In the last few years, the field of machine learning has made tremendous progress in the area  
of computer vision. Object detection answers the question of what is in the image and where  
it is located in the image (object detection = identification + coordinates). YOLO (you only look once) 
is a common method used in object detection, and it leverages deep learning. 

In this demonstration, we are using a YOLO model trained in SAS to detect any of 20 objects 
(PASCAL visual object classes data set) including person, bird, cat, cow, dog, horse, sheep, 
airplane, bicycle, boat, bus, car, motorbike, train, bottle, chair, dining table, potted plant, sofa,  
and TV/monitor. A bounding box is drawn around each identified object in the image. 

Below are two examples of the AI Object Detection demonstration from the iPad. As you can see, 
the picture on the left has a bounding box around the chair in my office and the picture on the right 
has a bounding box around my colleague Aurora.  
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