Package ‘discretization’

December 22, 2014

Type Package
Title Data preprocessing, discretization for classification.
Version 1.0-1
Date 2010-12-02
Author HyunJi Kim
Maintainer HyunJi Kim <polaris7867@gmail.com>
Description This package is a collection of supervised discretization
 algorithms. It can also be grouped in terms of top-down or
 bottom-up, implementing the discretization algorithms.
License GPL
LazyLoad yes
Repository CRAN
Date/Publication 2012-10-29 08:58:35
NeedsCompilation no

R topics documented:

 discretization-package .. 2
 ameva ... 3
 cacc ... 4
 caim ... 5
 chi2 .. 6
 chiM .. 8
 chiSq .. 9
 cutIndex ... 10
 cutPoints ... 11
 disc.Topdown ... 11
 ent .. 12
 extendChi2 ... 13
 findBest ... 14
 incon ... 15
 insert ... 16
Discretization-package

Data preprocessing, discretization for classification.

Description

This package is a collection of supervised discretization algorithms. It can also be grouped in terms of top-down or bottom-up, implementing the discretization algorithms.

Details

Package: discretization
Type: Package
Version: 1.0-1
Date: 2010-12-02
License: GPL LazyLoad: yes

Author(s)

Maintainer: HyunJi Kim <polaris7867@gmail.com>

References

ameva
Auxiliary function for Ameva algorithm

Description

This function is required to compute the ameva value for Ameva algorithm.

Usage

```r
ameva(tb)
```

Arguments

- `tb`: a vector of observed frequencies, $k \times l$

Details

This function implements the Ameva criterion proposed in Gonzalez-Abril, Cuberos, Velasco and Ortega (2009) for Discretization. An autonomous discretization algorithm(Ameva) implements in `disc.topdown(data,method=1)`. It uses a measure based on χ^2 as the criterion for the optimal discretization which has the minimum number of discrete intervals and minimum loss of class variable interdependence. The algorithm finds local maximum values of Ameva criterion and a stopping criterion.

Ameva coefficient is defined as follows:

$$Ameva(k) = \frac{\chi^2(k)}{k \times (l - 1)}$$
for $k, l \geq 2$, k is a number of intervals, l is a number of classes.
This value calculates in contingency table between class variable and discrete interval, row matrix
representing the class variable and each column of discrete interval.

Value

val numeric value of Ameva coefficient

Author(s)

HyunJi Kim <polaris7867@gmail.com>

References

See Also

disc.topdown, topdown, insert, findBest and chiSq.

Examples

```r
#--Ameva criterion value
a=c(2,5,1,1,3,3)
m=matrix(a,ncol=3,byrow=TRUE)
ameva(m)
```

cacc

Auxiliary function for CACC discretization algorithm

Description

This function is requied to compute the cacc value for CACC discretization algorithm.

Usage

cacc(tb)

Arguments

tb a vector of observed frequencies
Details

The Class-Attribute Contingency Coefficient (CACC) discretization algorithm implements in \texttt{disc.topdown(data,method=RI)}.

The \texttt{cacc} value is defined as

\[
\text{cacc} = \sqrt{\frac{y}{y + M}}
\]

for

\[
y = \frac{\chi^2}{\log(n)}
\]

\(M\) is the total number of samples, \(n\) is a number of discretized intervals. This value calculates in contingency table between class variable and discrete interval, row matrix representing the class variable and each column of discrete interval.

Value

\texttt{val} numeric of \texttt{cacc} value

Author(s)

HyunJi Kim <polaris7867@gmail.com>

References

See Also

\texttt{disc.topdown}, \texttt{topdown}, \texttt{insert}, \texttt{findBest} and \texttt{chisq}.

Examples

```r
#----Calculating cacc value (Tsai, Lee, and Yang (2008))
a=c(3,0,3,0,6,0,2,3,0)
m=matrix(a,ncol=3,byrow=TRUE)
cacc(m)
```

\texttt{caim} \hspace{1cm} \textit{Auxiliary function for caim discretization algorithm}

Description

This function is required to compute the CAIM value for CAIM discretization algorithm.

Usage

\texttt{caim(tb)}
Arguments

- `tb`: a vector of observed frequencies

Details

The Class-Attribute Interdependence Maximization (CAIM) discretization algorithm implements in `disc.topdown(data, method=1)`. The CAIM criterion measures the dependency between the class variable and the discretization variable for attribute, and is defined as:

$$CAIM = \frac{\sum_{r=1}^{n} \frac{\text{max}_r}{M_{+r}}}{n}$$

for $r = 1, 2, ..., n$, max_r is the maximum value within the rth column of the quanta matrix. M_{+r} is the total number of continuous values of attribute that are within the interval (Kurgan and Cios (2004)).

Author(s)

HyunJi Kim <polaris7867@gmail.com>

References

See Also

- `disc.Topdown`, `topdown`, `insert`, `findBest`

Examples

```r
# Calculating caim value
a=c(3,0,3,0,6,0,0,3,0)
m=matrix(a,ncol=3,byrow=TRUE)
caim(m)
```

Description

This function performs Chi2 discretization algorithm. Chi2 algorithm automatically determines a proper Chi-sqaure(χ^2) threshold that keeps the fidelity of the original numeric dataset.

Usage

```r
chi2(data, alp = 0.5, del = 0.05)
```
Arguments

data the dataset to be discretize
alp significance level; α
del $Inconsistency(data) < \delta$, (Liu and Setiono(1995))

Details

The Chi2 algorithm is based on the χ^2 statistic, and consists of two phases. In the first phase, it begins with a high significance level(sigLevel), for all numeric attributes for discretization. Each attribute is sorted according to its values. Then the following is performed: phase 1. calculate the χ^2 value for every pair of adjacent intervals (at the beginning, each pattern is put into its own interval that contains only one value of an attribute); phase 2. merge the pair of adjacent intervals with the lowest χ^2 value. Merging continues until all pairs of intervals have χ^2 values exceeding the parameter determined by sigLevel. The above process is repeated with a decreased sigLevel until an inconsistency rate(δ), incon(), is exceeded in the discretized data(Liu and Setiono (1995)).

Value

cutp list of cut-points for each variable
Disc.data discretized data matrix

Author(s)

HyunJi Kim <polaris7867@gmail.com>

References

See Also

value, incon and chim.

Examples

data(iris)
#---cut-points
chi2(iris,0.5,0.05)$cutp

#--discretized dataset using Chi2 algorithm
chi2(iris,0.5,0.05)$Disc.data
Discretization using ChiMerge algorithm

Description
This function implements ChiMerge discretization algorithm.

Usage
\texttt{chim(data, alpha = 0.05)}

Arguments
\texttt{data} numeric data matrix to discretized dataset
\texttt{alpha} significance level; α

Details
The ChiMerge algorithm follows the axis of bottom-up. It uses the χ^2 statistic to determine if the relative class frequencies of adjacent intervals are distinctly different or if they are similar enough to justify merging them into a single interval(Kerber, R. (1992)).

Value
\texttt{cutp} list of cut-points for each variable
\texttt{disc.data} discretized data matrix

Author(s)
HyunJi Kim <polaris7867@gmail.com>

References

See Also
\texttt{chisq, value}.

Examples
\texttt{#--Discretization using the ChiMerge method}
\texttt{data(iris)}
\texttt{disc=chim(iris, alpha=0.05)}

\texttt{#--cut-points}
\texttt{disc$cutp}
chiSq

Auxiliary function for discretization using Chi-square statistic

Description
This function is required to perform the discretization based on Chi-square statistic (CACC, Ameva, ChiMerge, Chi2, Modified Chi2, Extended Chi2).

Usage
chiSq(tb)

Arguments
- tb: a vector of observed frequencies

Details
The formula for computing the χ^2 value is

$$\chi^2 = \sum_{i=1}^{2} \sum_{j=1}^{k} \frac{(A_{ij} - E_{ij})^2}{E_{ij}}$$

$k =$ number of (no.) classes, $A_{ij} =$ no. patterns in the ith interval, jth class, $R_i =$ no. patterns in the jth class = $\sum_{j=1}^{k} A_{ij}$, $C_j =$ no. patterns in the jth class = $\sum_{i=1}^{2} A_{ij}$, $N =$ total no. patterns = $\sum_{i=1}^{2} R_i$, $E_{ij} =$ expected frequency of $A_{ij} = R_i \times C_j / N$. If either R_i or C_j is 0, E_{ij} is set to 0.1. The degree of freedom of the χ^2 statistic is on less the number of classes.

Value
- val: χ^2 value

Author(s)
HyunJi Kim <polaris7867@gmail.com>

References

See Also
cacc, ameva, chiM, chi2, modChi2 and extendChi2.
Examples

--- Calulate Chi-Square
b=c(2,4,1,2,5,3)
m=matrix(b,ncol=3)
chiSq(m)
chisq.test(m)$statistic

cutIndex

Auxiliary function for the MDLP

Description

This function is required to perform the Minimum Description Length Principle mdi.

Usage

cutIndex(x, y)

Arguments

- x: a vector of numeric value
- y: class variable vector

Details

This function computes the best cut index using entropy

Author(s)

HyunJi Kim <polaris7867@gmail.com>

See Also

cutPoints, ent, mergeCols, mdlStop, mylog, mdlp.
cutPoints

Auxiliary function for the MDLP

Description
This function is required to perform the Minimum Description Length Principle (MDLP).

Usage
cutPoints(x, y)

Arguments
- **x**: a vector of numeric value
- **y**: class variable vector

Author(s)
HyunJi Kim <polaris7867@gmail.com>

See Also
cutIndex, ent, mergeCols, mdlStop, mylog, mdlp.

disc.topdown

Top-down discretization

Description
This function implements three top-down discretization algorithms (CAIM, CACC, Ameva).

Usage
disc.topdown(data, method = 1)

Arguments
- **data**: numeric data matrix to discretized dataset

Value
- **cutp**: list of cut-points for each variable (minimum value, cut-points and maximum value)
- **Disc.data**: discretized data matrix
Author(s)

HyunJi Kim <polaris7867@gmail.com>

References

See Also

topdown, insert, findBest, findInterval, caim, cacc, ameva

Examples

```r
##----- CAIM discretization ----
##-----cut-potins
cm=disc.Topdown(irisL method=1)
cm$cutp
##-----discretized data matrix
cm$Disc.data

##----- CACC discretization----
disc.Topdown(irisL method=2)

##----- Ameva discretization ----
disc.Topdown(irisL method=3)
```

ent

Auxiliary function for the MDLP

Description

This function is required to perform the Minimum Description Length Principle. mdp

Usage

`ent(y)`

Arguments

y class variable vector
extendChi2

Description
This function implements Extended Chi2 discretization algorithm.

Usage
extendChi2(data, alp = 0.5)

Arguments
data: data matrix to discretized dataset
alp: significance level; \(\alpha \)

Details
In the extended Chi2 algorithm, inconsistency checking \(\text{InConCheck}(data) < \delta \) of the Chi2 algorithm is replaced by the lease upper bound \(\xi(X_i) \) after each step of discretization \(\xi_{\text{discretized}} < \xi_{\text{original}} \). It uses as the stopping criterion.

Value
cutp: list of cut-points for each variable
Disc.data: discretized data matrix

Author(s)
HyunJi Kim <polaris7867@gmail.com>

References

See Also
chiM, Xi

See Also
cutPoints, ent, mergeCols, mdlStop, mylog, mdlp.
findBest

Examples

data(iris)
ext=extendChi2(iris,0.5)
ext$cutp
ext$Disc.data

Description

This function is required to perform the disc.topdown().

Usage

findBest(x, y, bd, di, method)

Arguments

x a vector of numeric value
y class variable vector
bd current cut points
di candidate cut-points
method each method number indicates three top-down discretization. 1 for CAIM algorithm, 2 for CACC algorithm, 3 for Ameva algorithm.

Author(s)

HyunJi Kim <polaris7867@gmail.com>

See Also

topdown, insert and disc.Topdown.
incon

Computing the inconsistency rate for Chi2 discretization algorithm

Description

This function computes the inconsistency rate of dataset.

Usage

incon(data)

Arguments

data dataset matrix

Details

The inconsistency rate of dataset is calculated as follows: (1) two instances are considered inconsistent if they match except for their class labels; (2) for all the matching instances (without considering their class labels), the inconsistency count is the number of the instances minus the largest number of instances of class labels; (3) the inconsistency rate is the sum of all the inconsistency counts divided by the total number of instances.

Value

inConRate the inconsistency rate of the dataset

Author(s)

HyunJi Kim <polaris7867@gmail.com>

References

See Also

chi2

Examples

#-- Calculating Inconsistency ----
data(iris)
disiris=chim(iris, alpha=0.05)$Disc.data
incon(disiris)
insert
Auxiliary function for Top-down discretization

Description

This function is required to perform the `disc.topdown()`.

Usage

`insert(x, a)`

Arguments

- `x`: cut-point
- `a`: a vector of minimum, maximum value

Author(s)

HyunJi Kim <polaris7867@gmail.com>

See Also

`topdown`, `findBest` and `disc.topdown`.

LevCon
Auxiliary function for the Modified Chi2 discretization algorithm

Description

This function computes the level of consistency, is required to perform the Modified Chi2 discretization algorithm.

Usage

`LevCon(data)`

Arguments

- `data`: discretized data matrix

Value

`LevelConsis`: Level of Consistency value

Author(s)

HyunJi Kim <polaris7867@gmail.com>
References

See Also

modChi2

Description

This function discretizes the continuous attributes of data matrix using entropy criterion with the Minimum Description Length as stopping rule.

Usage

mdlp(data)

Arguments

- **data**
 data matrix to be discretized dataset

Details

Minimum Description Length Principle

Value

- **cutp**
 list of cut-points for each variable
- **Disc.data**
 discretized data matrix

Author(s)

HyunJi Kim <polaris7867@gmail.com>

References

mdlStop

See Also

cutIndex, cutPoints, ent, mergeCols, mdlStop, mylog.

Examples

data(iris)
mdlp(iris)$Disc.data

mdlStop

Auxiliary function for performing discretization using MDLP

Description

This function determines cut criterion based on Fayyad and Irani Criterion, is required to perform the minimum description length principle.

Usage

mdlStop(ci, y, entropy)

Arguments

- **ci**: cut index
- **y**: class variable
- **entropy**: this value is calculated by cutIndex()

Details

Minimum description Length Principle Criterion

Value

- **gain**: numeric value

Author(s)

HyunJi Kim <polaris7867@gmail.com>

References

See Also

cutPoints, ent, mergeCols, cutIndex, mylog, mdlp.
mergeCols

Auxiliary function for performing discretization using MDLP

Description

This function merges the columns having observation numbers equal to 0, required to perform the minimum description length principle.

Usage

```
mergeCols(n, minimum = 2)
```

Arguments

- `n` table, column: intervals, row: variables
- `minimum` min # observations in col or row to merge

Author(s)

HyunJi Kim <polaris7867@gmail.com>

See Also

`cutPoints`, `ent`, `cutIndex`, `mdlStop`, `mylog`, `mdlp`.

modChi2

Discretization of Numeric Attributes using the Modified Chi2 method

Description

This function implements the Modified Chi2 discretization algorithm.

Usage

```
modChi2(data, alp = 0.5)
```

Arguments

- `data` numeric data matrix to discretized dataset
- `alp` significance level, α

Details

In the modified Chi2 algorithm, inconsistency checking($InConCheck(data) < \delta$) of the Chi2 algorithm is replaced by maintaining the level of consistency L_c after each step of discretization ($L_{c-discretized} < L_{c-original}$), this inconsistency rate as the stopping criterion.
mylog

Value

- cutp: list of cut-points for each variable
- Disc.data: discretized data matrix

Author(s)

HyunJi Kim <polaris7867@gmail.com>

References

See Also

- LevCon

Examples

```r
data(iris)
modChi2(iris, alp=0.5)$Disc.data
```

mylog: *Auxiliary function for performing discretization using MDLP*

Description

This function is required to perform the minimum description length principle, `mdlp()`.

Usage

```r
mylog(x)
```

Arguments

- `x`: a vector of numeric value

Author(s)

HyunJi Kim <polaris7867@gmail.com>

References

See Also

- `mergeCols`, `ent`, `cutIndex`, `cutPoints`, `md1Stop` and `mdlp`.
topdown

Auxiliary function for performing top-down discretization algorithm

Description
This function is required to perform the disc.topdown().

Usage
```
topdown(data, method = 1)
```

Arguments
- **data**: numeric data matrix to discretized dataset

Author(s)
HyunJi Kim <polaris7867@gmail.com>

References

See Also
`insert`, `findBest` and `disc.topdown`.

value

Auxiliary function for performing the ChiMerge discretization

Description
This function is called by ChiMerge diacretization function, chiM().

Usage
```
value(i, data, alpha)
```
Arguments

- **i**: \(i \)th variable in data matrix to discretized
- **data**: numeric data matrix
- **alpha**: significance level; \(\alpha \)

Value

- **cuts**: list of cut-points for any variable
- **disc**: discretized \(i \)th variable and data matrix of other variables

Author(s)

HyunJi Kim <polaris7867@gmail.com>

References

See Also

chiM.

Examples

```r
data(iris)
value(1, iris, 0.05)
```

Xi

Auxiliary function for performing the Extended Chi2 discretization algorithm

Description

This function is the \(\xi \), required to perform the Extended Chi2 discretization algorithm.

Usage

```r
Xi(data)
```

Arguments

- **data**: data matrix
Details

The following equality is used for calculating the least upper bound(\(\xi\)) of the data set(Chao and Jyh-Hwa (2005)).

\[\xi(C, D) = \max(m_1, m_2) \]

where \(C\) is the equivalence relation set, \(D\) is the decision set, and \(C^* = \{E_1, E_2, \ldots, E_n\}\) is the equivalence classes. \(m_1 = 1 - \min\{c(E, D) | E \in C^* \text{ and } 0.5 < c(E, D)\}\), \(m_2 = 1 - \max\{c(E, D) | E \in C^* \text{ and } c(E, D) < 0.5\}\).

\[c(E, D) = 1 - \frac{\text{card}(E \cap D)}{\text{card}(E)} \]

\(\text{card}\) denotes set cardinality.

Value

Xi numeric value, \(\xi\)

Author(s)

HyunJi Kim <polaris7867@gmail.com>

References

See Also

extendChi2
Index

∗Topic package
 discretization-package, 2

ameva, 3, 9, 12

cacc, 4, 9, 12
caim, 5, 12
chi2, 6, 9, 15
chiM, 7, 8, 9, 13, 22
chiSq, 4, 5, 8, 9
cutIndex, 10, 11, 18–20
cutPoints, 10, 11, 13, 18–20
disc.Topdown, 4–6, 11, 14, 16, 21
discretization
 (discretization-package), 2
discretization-package, 2
ent, 10, 11, 12, 13, 18–20
extendChi2, 9, 13, 23

findBest, 4–6, 12, 14, 16, 21
findInterval, 12

incon, 7, 15
insert, 4–6, 12, 14, 16, 21

LevCon, 16, 20

mdl, 10, 11, 13, 17, 18–20
mdlStop, 10, 11, 13, 18, 19, 20
mergeCols, 10, 11, 13, 18, 19, 20
modChi2, 9, 17, 19
mylog, 10, 11, 13, 18, 19, 20

topdown, 4–6, 12, 14, 16, 21

value, 7, 8, 21

Xi, 13, 22