ASK THE EXPERT

Tips and Tricks For Better Forecasting With SAS[®]

Gerhard Svolba

Advisory Presales Solutions Architect

Spiros Potamitis

Senior Product Marketing Manager

Gerhard Svolba Advisory Presales Solutions Architect, SAS

Gerhard is involved in numerous analytic and data science projects in different business and research domains, including demand forecasting, analytical CRM, risk modeling, fraud prediction and production quality. His project experience ranges from business and technical conceptual considerations to data preparation and analytic modeling across industries. He is the author of the SAS Press books Data Preparation for Analytics Using SAS, Data Quality for Analytics Using SAS and Applying Data Science: Business Case Studies Using SAS. As a part-time lecturer, Svolba teaches data science methods at the University of Vienna, the Medical University of Vienna and for business schools.

Spiros Potamitis Senior Product Marketing Manager, SAS

Spiros is a data scientist and a Global Product Marketing Manager of forecasting and optimization at SAS. He has extensive experience in the development and implementation of advanced analytics solutions across different industries and provides subject matter expertise in the areas of forecasting, machine learning and AI. Prior to joining SAS, Potamitis has worked on and led advanced analytics teams in various sectors such as credit risk, customer insights and CRM.

Motivation

"A 15% forecast accuracy improvement will deliver a 3% or higher pre-tax improvement to the bottom line" <u>IBF Study</u>

"Focusing on the quality of data fueling AI systems will help unlock its full power." <u>Andrew Ng</u>

As a rule, a data-centric approach will drive greater performance gains compared to a model-centric one

Data Preparation – a topic with many dimensions

Main Types of Analytic Data Sturctures

One-Row-per-Subject Data Mart

	B POLICYNO				(ii) AGE		
1	160	No	Private	Sedan	60	М	Highly Urban
2	24836	No	Commercial	Sedan	43	М	Highly Urban
3	28046	No	Private	Van	48	М	Urban
4	28960	No	Private	SUV	35	F	Highly Urban
5	40933	No	Private	Sedan	51	М	Highly Urban
6	55277	No	Private	SUV	50	F	Urban
7	63212	Yes	Commercial	Sports Car	34	F	Highly Urban
8	69651	No	Private	SUV	54	F	Highly Urban
9	88070	Yes	Private	Sedan	40	М	Urban
10	93553	No	Commercial	SUV	44	F	Rural

BY <analysis subject> BY CustID; BY AccountID; BY PatientID;

		III TIME				
Multiple Dow	0	0	hering			
Multiple-Row-	0	1	corned_b			(I) Product_ID
nor Subject	0	2	olives		2	2 10002
per-subject	0	3	ham		3	3 10002
Data Mart	0	4	turkev	4		10002
	0	5	bourbon	5		10002
	0			6		10002
	0	0	ice_crea	8		10002
	1	0	baguette	9		10003
Longitudinal	1	1	soda	10		10003
Longituumai	1	2	hering	11		10003
Data Mart	1	3	cracker	12		10003
Data iviai t	1	4	heineken	13		10003
	1	-	alterna i			

BY <timevar> <cross-sectional variables>; BY Date, Region; BY Date, Region, ProductGroup; BY Date, Region, SKU_ID;

$\bullet \bullet \bullet \bullet \bullet \bullet \bullet$

Transposing Data between One-Row-Per-Subject and Multiple-Row-Per-Subject

	⊞ id	⊕ weight	🏽 time
1	1	77	1
2	1	79	2
3	1	83	3
4	2	62	1
5	2	58	2
6	2	59	3
7	3	99	1
8	3	97	2
9	3	92	3

	⊕ id	⊕ weight1	⊕ weight2	⊕ weight3
1	1	77	79	83
2	2	62	58	59
3	3	99	97	92

Makewide

Makelong

Transposing from LONG to WIDE

Using the TRANSPOSE procedure

The following code shows how you can use the TRANSPOSE procedure to

Proc Transpose and/or %MAKEWIDE and %MAKELONG Macro

Transpose your analysis data with the %MAKELONG and %MAKEWIDE macro

Started	: 01-23-2022	Modified: 04-01-2022	Views	: 3,551	
	MAKEWIDE and	MAKELONG Examples.sas	*	Create_dogs_wide_data.sas 📥	Create_dogs_long_data.sas 📥
Mac	ro - MAKEWIDE	and MAKELONG.sas 📥			

This article introduces the macros %MAKEWIDE and %MAKELONG to transpose your data between different formats. The macros have been introduced

with the SAS Press Book <u>Data Preparation for Ana</u> Both macros are based on the TRANSPOSE proce

- you can transpose more than one variable in
- you can write shorter code, especially when n

Link

Transposing from WIDE to LONG

Using the TRANSPOSE procedure

You can also use the TRANSPOSE procedure to transpose the data from a WIDE to LONG structure.

Data Model Deriving the time series data from a star-schema (relational model)

- Consider the tables: ORDERS, SHOPS, PRODUCTS
- Tables shall be joined to an ORDERMART table with monthly aggregats
- What steps are needed?
 - Merge tables based on the key columns
 - Aggregate data per BY-groupAggregate (accumulate) data per desired time interval
 - Improve and enhance data from an analytical point of view
 - Contiguity
 - Missing Values

Assemble your time series data

	ProductID	ProductGro	🔟 MonthYear	Quantity	AvgPrice
281	11350	26	2004.07	86	940.18
282	11350	26	2004.06	32	940.18
283	11350	26	2004.07	279	940.18
284	11350	26	2004.10	86	940.18
285	11350	26	2004.07	85	940.18
286	11350	26	2004.05	157	940.18
287	11350	26	2004.07	104	940.18
288	11350	26	2004.05	152	940.18
289	11350	26	2004.04	138	940.18
290	11350	26	2004.12	60	940.18
291	11350	26	2004.09	77	940.18
292	11350	26	2004.11	61	940.18
293	11350	26	2004.06	64	940.18

Frequent ways to Merge, Aggregate and Enhance your Timeseries Data in SAS

	Merge	Aggregate	Enhance	
PROC SQL/ PROC FEDSQL	YES	YES		Merge and aggregate in one step
SAS/Datastep	YES			Fast, requires sorted data.
PROC MEANS / PROC SUMMARY/ PROC MDSUMMARY		YES		Fast, requires data in one table
PROC TIMESERIES		YES	YES	Powerful in time series data preparation, Requires SAS/ETS or SAS Econometrics licencse

4 Methods How to Join a (Lookup) Table to a Master Table

	🗊 month		🗊 actual
18	01JUN1994	SOFA	\$431.00
19	01JUL1994	SOFA	\$511.00
20	01AUG1994	SOFA	\$157.00
21	01SEP1994	SOFA	\$520.00
22	01OCT1994	SOFA	\$114.00
23	01NOV1994	SOFA	\$277.00
24	01DEC1994	SOFA	\$561.00
25	01JAN1993	BED	\$220.00
26	01FEB1993	BED	\$444.00
27	01MAR1993	BED	\$178.00
28	01APR1993	BED	\$756.00
29	01MAY1993	BED	\$329.00

1	BED	FURNITURE
2	SOFA	FURNITURE
3	CHAIR	OFFICE
4	DESK	OFFICE
5	TABLE	OFFICE

╇

	🖬 month		🗊 actual	A PRODTYPE
284	01DEC1994	BED	\$630.00	FURNITURE
285	01DEC1994	BED	\$444.00	FURNITURE
286	01DEC1994	BED	\$638.00	FURNITURE
287	01DEC1994	BED	\$390.00	FURNITURE
288	01DEC1994	BED	\$804.00	FURNITURE
289	01JAN1993	CHAIR	\$468.00	OFFICE
290	01JAN1993	CHAIR	\$251.00	OFFICE
291	01JAN1993	CHAIR	\$35.00	OFFICE
292	01JAN1993	CHAIR	\$774.00	OFFICE
293	01JAN1993	CHAIR	\$401.00	OFFICE
294	01JAN1993	CHAIR	\$697.00	OFFICE
295	01JAN1993	CHAIR	\$292.00	OFFICE
296	01JAN1993	CHAIR	\$251.00	OFFICE

Joining the lookup table explicitly •Proc SQL •Datastep

"Applying" the lookup table to the source table•SAS Format•Hash Table

Method 1+2: Joining the Lookup Table Explicitly

PROC SQL; CREATE TABLE prdsale_sql_lj AS SELECT *

FROM prdeale AS a

LE T JOIN lookup AS b

ON a.product = b.product ORDER BY product, month;

QUIT;

• • • • • • • • • • • • • • • proc sort data = lookup; by product;run; proc sort data = prdsale; by product;run;

data prdsale_ds: merge prdsale(in=in1) lookup; hy product: if in1; run;

proc sort data = prdsale_ds; by product month;run;

Method 3: Using a SAS Format

DATA FMT_PG(RENAME =(Product=start ProdType=label)); SET lookup end=last:

RETAIN fmtname 'PG' type 'c'; RUN;

PROC FORMAT LIBRARY=work CNTLIN=FMT_PG; RUN;

DATA prdsale_fmt; SET prdsale; FORMAT Prodtype \$12.; Prodtype = PUT(product,\$PG): RUN;

• • • • • • •

Convert the LOOKUP Table into a control table (with specific variable names)

Use PROC FORMAT to create a SAS Format based on that table

Use the SAS Format to retrieve the value from the lookup table

Method 4: Using a Hash-Table

DATA prdsale hash; length Product ProdType \$10.;

if n = 1 then do; declare hash h(dataset: "lookup"); h.definekey('Product'); h.definedata('ProdType'); h.definedone(); call missing(Product, ProdType); end:

Call the HASH to retrieve the Values based on the Key-Column

Define the HASH Table in

the SAS Datastep

RUN;

SET prdsale;

rc = h.find();

drop rc;

Are these two graphs based on the same data?

For some measurements (inventory data) this might be the appropriate view

	⊜ week	⊯ value
1	1	12
2	3	16
3	7	8
4	8	7
5	11	15

• • • • • • •

For other measurements (movement data) this might be the appropriate view

Be careful with line-charts and missing values!

	⊕ week	⊯ value
1	1	12
2	2	
3	3	16
4	4	
5	5	
6	6	
7	7	8
8	8	7
9	9	
10	10	
11	11	15
12	12	

Transactional Data or Timeseries Data?

Transactional one record per event/case/...

	Session Identifier	requested_file	
1	43d0a4da826149b5 2002-02-17 08:38:12	/Home.jsp	
2	43d0a4da826149b5 2002-02-17 08:38:12	/Cookie_Check.jsp	
3	43d0a4da826149b5 2002-02-17 08:38:12	/Home.jsp	
4	43d0a4da826149b5 2002-02-17 08:38:12	/Corporate_Relations.jsp	
5	43d0a4da826149b5 2002-02-17 08:38:12	/Retail_Store.jsp	
6	43d0a4da826149b5 2002-02-17 08:38:12	/Store/Store_Locations.jsp	
7	43d639ebce6c73d8 2002-02-17 23:43:16	/Home.jsp	
8	43d639ebce6c73d8 2002-02-17 23:43:16	/Cookie_Check.jsp	
9	43d639ebce6c73d8 2002-02-17 23:43:16	/Home.jsp	
10	43d639ebce6c73d8 2002-02-17 23:43:16	6 /Department.jsp	
11	43d639ebce6c73d8 2002-02-17 23:43:16	6 /Department.jsp	
12	43bb8704bb370e09 2002-02-17 13:44:04	4 /Home.jsp	
13	43bb8704bb370e09 2002-02-17 13:44:04	/Home.jsp	
14	43bb8704bb370e09 2002-02-17 13:44:04	/Subcategory.jsp	
15	43bb8704bb370e09 2002-02-17 13:44:04	/Product.jsp	
16	43bb8704bb370e09 2002-02-17 13:44:04	/Department.jsp	
17	43bb8704bb370e09 2002-02-17 13:44:04	/Product.jsp	
18	43bb8704bb370e09 2002-02-17 13:44:04	/Department.jsp	

Timeseries Data data accumulated to time intervals

	Time	NumberOfReqestedFiles
1	1:00:00	116
2	2:00:00	93
3	3:00:00	17
4	4:00:00	158
5	6:00:00	30
6	7:00:00	66
7	8:00:00	210
8	9:00:00	130
9	10:00:00	143
10	11:00:00	298
11	12:00:00	239
12	13:00:00	145

$\bullet \bullet \bullet \bullet \bullet \bullet \bullet$

Explicit or implicit missing values in longitudinal data

PNR	🔲 date	🔞 amount	
56	2004-02-01	48	
56	2004-03-01	51	
56	2004-04-01	42	
56	2004-05-01	36	
56	2004-06-01	6	
56	2004-07-01		Existing Record
56	2004-08-01	48	
56	2004-09-01	36	value iviissing
56	2004-10-01	66	
56	2004-11-01	15	
56	2004-12-01	33	
58	2005-06-01	39	
58	2005-07-01	63	
58	2005-08-01	84	
58	2005-09-01	18	Missing Record
58	2005-12-01	69	
58	2006-03-01	0	No Continuity
58	2006-07-01	90	
58	2006-10-01	57	
58	2007-01-01	48	

Replacing and interpolating missing values in longitudinal data with SAS

	Insert ı	missing	Replace	Replace with	Replace with	Interpolate
	reco	ords	with 0	ast known valu	e mean	on spin
	🗇 DATE	⊕ air_mv	⊜ air_mv_zero	# air_mv_previous	⊕ air_mv_mean	∉ air_expand
57	SEP53		0	264	284.54385965	246.26342876
58	OCT53	211	211	211	211	211
59	NOV53	180	180	180	180	180
60	DEC53	201	201	201	201	201
61	JAN54	204	204	204	204	204
62	FEB54	188	188	188	188	188
63	MAR54	235	235	235	235	235
64	APR54	227	227	227	227	227
65	MAY54		0	227	284.54385965	233.15157085
66	JUN54	264	264	264	264	264
67	JUL54		0	264	284.54385965	291.59030488
68	AUG54	293	293	293	293	293

 $\bullet \quad \bullet \quad \bullet$

 $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$

Use PROC TIMESERIES and PROC EXPAND for these tasks

Aggregation and Processing of Data in One Step with the TIMESERIES Procedure

run;

proc timeseries data = air_missing

```
id date interval =month setmiss=PREVIOUS;
```

var air_MV;

run;

proc timeseries data = air_missing out = air_setmissing mean;

id date interval =month setmiss=MEAN;

run;

Option value	Missing values are set to	
<number></number>	Any number. (for example, 0 to replace missing values with zero)	
MISSING	Missing	
MINIMUM	Minimum value of the time series	
FIRST	First non-missing value	
NEXT	Next non-missing value	

$\bullet \bullet \bullet \bullet \bullet \bullet \bullet$

Convert Leading and Trailing Zeros to Missing Values

	1 DATE	⊯ sales		
1	JAN49	0	1	JAN19
2	FEB49	0	2	FEB19
3	MAR49	0	3	MAR19
4	APR49	0	4	APR19
5	MAY49	0	5	MAY19
6	JUN49	0	6	JUN19
7	JUL49	148	7	JUL19
8	AUG49	148	8	AUG19
9	SEP49	136	9	SEP19
10	OCT49	119	10	OCT19
11	NOV49	104	11	NOV19
12	DEC49	118	12	DEC19

	🗂 DATE	∉ sales
1	JAN1949	
2	FEB1949	
3	MAR1949	
4	APR1949	
5	MAY1949	
6	JUN1949	
7	JUL1949	148
8	AUG1949	148
9	SEP1949	136
10	OCT1949	119
11	NOV1949	104
12	DEC1949	118

proc timeseries
 data=sales_original
 out=sales corrected;
id date interval=month
 zeromiss=both;
var sales;
run;

Ssas

Two related Articles at Communities.sas.com

Using the TIMESERIES procedure to check the continuity of your timeseries data

Posted a week ago (562 views)

PROC_TIMESERIES_INSERT_RECORDS.sas L
CHECK_TIMEID_Macro.sas L

This articles illustrates how you can use the TIMESERIES procedure to check whether your timeseries data contain a record for every time period and how to periods. The article illustrates the rationale for checking your timeseries data for missing records and introduces the %CHECK_TIMEID macro that automates time series data and inserting records.

Note that the TIMESERIES procedure is part of the SAS/ETS package, thus you only can run the code if you have SAS/ETS licensed. You could create a wor a SAS Datastep, however as soon as you have BY-groups in your data your SAS Datastep code gets complicated.

MISSING RECORDS or MISSING VALUES?

 PNR
 date
 amount

 56
 2004-02-01
 48

https://communities.sas.com/t5/SAS-Communities-Library/Using-the-TIMESERIESprocedure-to-check-the-continuity-of-your/tap/714678

Replace MISSING VALUES in TIMESERIES DATA using PROC EXPAND and PROC TIMESERIES

🛱 Posted yesterday (210 views

REPLACE_MV_with_PROC_EXPAND_and_TIMESERIES.sas 🛓

This article illustrates how you can use the EXPAND and the TIMESERIES procedure to replace missing values in timeseries data. A separate SAS Communities article " <u>TIMESERIES procedure to check the continuity of your timeseries data</u>" focuses on the problem of missing records in your analysis data. Note that in order to run PROC TIMESERIES and PROC EXPAND you need SAS/ETS.

Replacing Missing Values with PROC TIMESERIES

This section discusses using the TIMESERIES procedure to replace missing values in time series data. Missing values in this context mean that the missing values occur time series data where the value for a certain time period is missing.

PROC TIMESERIES allows you to replace missing values by using one of the replacement methods listed in the table below. These methods are controlled with the option SETMISS. For details, refer to the documentation of PROC TIMESERIES, section ID statement, SETMISS option.

Option	value	Missing values are set to		
<numb< th=""><th>91></th><th>Any number. (for example, 0 to replace missing values with zero)</th></numb<>	91>	Any number. (for example, 0 to replace missing values with zero)		

https://communities.sas.com/t5/SAS-Communities-Library/Replace-MISSING-VALUES-in-TIMESERIES-DATA-using-PROC-EXPAND-and/ta-p/714806

SGF-Paper: Want an Early Picture of the Data Quality Status of Your Analysis Data? SAS[®] Visual Analytics Shows You How

Feature Engineering 1 - Indicating a Promotional Period

	ProductID	# ProductGro	🗊 MonthYear	Quantity	AvgPrice
281	11350	26	2004.07	86	940.18
282	11350	26	2004.06	32	940.18
283	11350	26	2004.07	279	940.18
284	11350	26	2004.10	86	940.18
285	11350	26	2004.07	85	940.18
286	11350	26	2004.05	157	940.18
287	11350	26	2004.07	104	940.18
288	11350	26	2004.05	152	940.18
289	11350	26	2004.04	138	940.18
290	11350	26	2004.12	60	940.18
291	11350	26	2004.09	77	940.18
292	11350	26	2004.11	61	940.18
293	11350	26	2004.06	64	940.18

DATA SALES.ORDERMART; SET SALES.ORDERMART; IF '01SEP2004'd <= monthyear <= '30NOV2004'd THEN Promotion =1; ELSE Promotion = 0;

Copyright © SAS Institute Inc. All rights reserved.

erved. RUN;

Feature Engineering 2 - Aggregating a derived variable from the data

	ProductID	# ProductGro	🗂 MonthYear	Quantity	AvgPrice
281	11350	26	2004.07	86	940.18
282	11350	26	2004.06	32	940.18
283	11350	26	2004.07	279	940.18
284	11350	26	2004.10	86	940.18
285	11350	26	2004.07	85	940.18
286	11350	26	2004.05	157	940.18
287	11350	26	2004.07	104	940.18
288	11350	26	2004.05	152	940.18
289	11350	26	2004.04	138	940.18
290	11350	26	2004.12	60	940.18
291	11350	26	2004.09	77	940.18
292	11350	26	2004.11	61	940.18
293	11350	26	2004.06	64	940.18

PROC sql; create table sales.nr_shops as select productid, mdy(1,1,year(monthyear)) as Year format = year4., count(distinct shopid) as Nr_Shops from sales.ordermart group by productid, calculated Year;

1	11350	2003	14
2	11350	2004	13
3	11350	2005	9
4	13101	2003	15
5	13101	2004	15
6	13101	2005	15
7	13105	2003	13
8	13105	2004	12
9	13105	2005	9

T Year

Image: Mr Shops

ProductID

quit;

Feature Engineering 2 – Joining variable "#Shops" to the data

	ProductID	🔟 Year	In Nr_Shops
1	11350	2003	14
2	11350	2004	13
3	11350	2005	9
4	13101	2003	15
5	13101	2004	15
6	13101	2005	15
7	13105	2003	13
8	13105	2004	12
9	13105	2005	9

PROC sql;

create table sales.ordermart_enh as select o.*, n.Nr_Shops from sales.ordermart as o, left join sales.nr_shops as n on o.productid = n.productid and year(o.monthyear) = year(n.year);

Copyright

quit;

	Troductib			Cuantity	. Avgi nee	I Tomoton	
281	11350	26	2004.07	86	940.18	0	13
282	11350	26	2004.06	32	940.18	0	13
283	11350	26	2004.07	279	940.18	0	13
284	11350	26	2004.10	86	940.18	1	13
285	11350	26	2004.07	85	940.18	0	13
286	11350	26	2004.05	157	940.18	0	13
287	11350	26	2004.07	104	940.18	0	13
288	11350	26	2004.05	152	940.18	0	13
289	11350	26	2004.04	138	940.18	0	13
290	11350	26	2004.12	60	940.18	0	13
291	11350	26	2004.09	77	940.18	1	13
292	11350	26	2004.11	61	940.18	1	13
293	11350	26	2004.06	64	940.18	0	13

MonthVoa

Feature Engineering 3 – Complex aggregations along the time axis

How many skiing weekends fall between the end of the winter term at the University and Easter?

data ski:	ing_weekends	;	
format	Year		8.
	FirstFullSa	tInFeb	weekdatx.
	EasterMonda	y	date9.;
do Year	= 2015 to 2	025;	
FirstFu	ullSatInFeb	= intnx	('week.7', mdy (1,31,year),1);
Easter	Monday	= holid	ay('EASTER',year)+1;
NumSki	Weekends	= intck	('week.1',FirstFullSatInFeb,EasterMonday)
output	;		
end;			
run;			

Link

Year	FirstFullSatInFeb	EasterMonday	NumSkiWeekends
2015	Saturday, 7 February 2015	06APR2015	9
2016	Saturday, 6 February 2016	28MAR2016	8
2017	Saturday, 4 February 2017	17APR2017	11
2018	Saturday, 3 February 2018	02APR2018	9
2019	Saturday, 2 February 2019	22APR2019	12
2020	Saturday, 1 February 2020	13APR2020	11
2021	Saturday, 6 February 2021	05APR2021	9
2022	Saturday, 5 February 2022	18APR2022	11
2023	Saturday, 4 February 2023	10APR2023	10
2024	Saturday, 3 February 2024	01APR2024	9
2025	Saturday, 1 February 2025	21APR2025	12

Data Preparation in SAS Visual Forecasting

Time Interval

Your data can already be in the time series form you require but you can also handle it in SAS Visual Forecasting UI

DATE		E
Role:		
Time		•
Time interval:		
Weekday		•
	Weekend	
Multiplier:		
× 1	^	
Shift:		
× 1	^	
	length:	
Seasonal cycle	longun	

Multiplier: affects the length of the interval Shift: affects the starting point of the interval

»	DATE	E
F	Role:	
	Time •	
1	Fime interval:	
[Weekday 🔹	
ĺ	Second	
	Minute	
	Hour	
	Day	
	Weekday	
	Week	
	ISO 8601 week	
	Ten-day	
	Semimonth	
	Month	
	Retail 4-4-5 month	
	Retail 4-5-4 month	
	Retail 5-4-4 month	
	Quarter	
	Retail 4-4-5 quarter	
	Retail 4-5-4 quarter	
	Retail 5-4-4 quarter	
	Semiyear	
	Year	
	ISO 8601 Year	

Weekend		
Select the days to be defined as Weekend days:		
Sunday		
🗌 Monday		
🗌 Tuesday		
🗌 Wednesday		
Thursday		
🗌 Friday		
Saturday		
	OK	Cancel

Click here to find out more about time intervals

Time Series Accumulation

Accumulation combines data within the same time interval into a summary value for that time interval.

Time Series Hierarchical Aggregation

Select the aggregation method that you want to use for all the time series in each level of the hierarchy.

Sales per region, store and item

Region	Store	Item Date		Price	Sales	
USA	1	1	Mar-23	30	100	
USA	2	1	Mar-23	35	200	
Europe	3	1	Mar-23	20	500	
Europe	4	1	Mar-23	40	250	
Asia	5	1	Mar-23	30	100	
Asia	6	1	Mar-23	50	80	

Aggregate to Region

- Sum of Sales
- Average Price

Region	Date	Sum Sales	Average Price
USA	Mar-23	300	32.5
Europe	Mar-23	750	30
Asia	Mar-23	180	40

Missing Value Interpretation

Select how you want to treat missing values

Sales per region, store and item

Region	Store	Item	Date	Price	Sales
USA	1	1	Mar-23	30	
USA	2	1	Mar-23	35	200
Europe	3	1	Mar-23	•	500
Europe	4	1	Mar-23	40	
Asia	5	1	Mar-23		
Asia	6	1	Mar-23	50	80

- The correct imputation is based on the business problem.
- When value is set to missing, the data will be automatically treated in the modeling phase based on the algorithm used.

Imputation methods

Missing	•
First	
Last	
Maximum	
Median	
Minimum	
Average of values	
Missing	
Next	
Previous	
0	

Outlier Detection to Use as Inputs in Forecasting

Automatic in Hierarchical Forecasting Node

 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

>>

Add one line of code to include in other nodes such as Auto-Forecasting

diagSpec.setARIMAXOutlier('detect', 'YES');

>>

Getting the data ML ready

Data Preparation for Machine Learning

Data Example for Machine Learning

oproductName	📩 date	🌐 sale	sale_lag3	sale_lag2	sale_lag1	(III) price	price_lag3	price_lag2	(#) price_lag1	discount	discount_lag3	discount_lag2	discount_lag1	(#) price_movave_3m	sale_movave_3m
Product1	JAN98	355	-			52.3				0				52.3	355
Product1	FEB98	398			355	52.3			52.3	0			0	52.3	376.5
Product1	MAR98	387	-	355	398	52.3		52.3	52.3	0		0	0	52.3	380
Product1	APR98	380	355	398	387	52.3	52.3	52.3	52.3	0	0	0	0	52.3	388.33333333
Product1	MAY98	555	398	387	380	44.455	52.3	52.3	52.3	0.15	0	0	0	49.685	440.666666667
Product1	JUN98	385	387	380	555	52.3	52.3	52.3	44.455	0	0	0	0.15	49.685	440
Product1	JUL98	390	380	555	385	52.3	52.3	44.455	52.3	0	0	0.15	0	49.685	443.33333333
Product1	AUG98	377	555	385	390	52.3	44.455	52.3	52.3	0	0.15	0	0	52.3	384

Dependent Variable

Independent Variable

Independent Variable

Tips & Tricks

1. This is automatically handled in VF hybrid nodes that use Neural Networks

2. This is automatically handled in VF Gradient Boosting Node that can be downloaded from this SAS repo: <u>https://github.com/sassoftware/sas-viya-forecasting-pipelines</u>

3. If you want to create your own ML nodes use the Gradient Boosting Node as a basis and amend the algorithm with the algorithm of choice

4. If you want to easily develop lags, moving averages etc. for all your variables and try your own experiments then Proc Expand is your ally!

$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$

Proc Expand: Creating 3 month lags and moving averages

```
proc expand data=pricedata transform out=out method=none;
  id date;
  by region productline productname;
  convert sale = sale lag3 / transformout=(lag 3);
  convert sale = sale lag2 / transformout=(lag 2);
  convert sale = sale lag1 / transformout=(lag 1);
  convert sale:
  convert price = price lag3 / transformout=(lag 3);
  convert price = price lag2 / transformout=(lag 2);
  convert price = price lag1 / transformout=(lag 1);
  convert price;
  convert discount = discount lag3
                                     / transformout=(lag 3);
  convert discount = discount lag2
                                     / transformout=(lag 2);
  convert discount = discount lag1
                                     / transformout=(lag 1);
  convert discount;
  convert price = price movave 3m / transformout=(movave 3);
  convert sale = sale movave 3m / transformout=(movave 3);
```

run;

RNNs in SAS Visual Forecasting

Automatic Data Prep for Forecasting with RNNs

Table 9: Training, Validation, and Forecast Regions

Training							Valio	lation	F	oreca	st	
y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	y_9	y_{10}	${\hat y}_{11}$	${\hat y}_{12}$	${\hat y}_{13}$

Parameter settings

- number of holdout samples is 2
- input window size is 3
- forecast lead is 3

Available in TNF and TSM packages using SAS Visual Forecasting

Read the documentation to find out more

Table 10: Training Data Structure for RNN Forecasting

Input			Target	Forecast
Training				
y_1	y_2	y_3	y_4	${\hat y}_4$
y_2	y_3	y_4	y_5	${\hat y}_5$
y_3	y_4	y_5	y_6	${\hat y}_6$
y_4	y_5	y_6	y_7	${\hat y}_7$
y_5	y_6	y_7	y_8	${\hat y}_8$
Validation				
y_6	y_7	y_8	y_9	${\hat y}_9$
y_7	y_8	y_9	y_{10}	${\hat y}_{10}$
Forecast in future time period				
y_8	y_9	y_{10}	$y_{11} = \cdot$	${\hat y}_{11}$
y_9	y_{10}	${\hat y}_{11}$	$y_{12}=\cdot$	${\hat y}_{12}$
y_{10}	${\hat y}_{11}$	${\hat y}_{12}$	$y_{13}=\cdot$	${\hat y}_{13}$

Demand Segmentation

Automatic Time Series Segmentation

- Groups data in 11 segments that can be modelled independently
- Based on demand classification attributes
- Can enhance accuracy and optimize computational cost
- ML models perform better in interrelated series
- Experiment with advanced modeling techniques in the most demanding segments
- <u>Read this blog for more info</u>

Demand Segments Details

1. SHORT: Time series with a short record of historical data. This could be a new series with only a few observations.

2. LOW_VOLUME: Time series with low volumes. The Naive Forecasting pipeline is selected for this segment.

3. INSEASON_INTERMITTENT: Short time span series with intermittent patterns.

4. INSEASON_NON_INTERMITTENT: Short time span series without intermittent patterns.

5. YEAR_ROUND_INTERMITTENT: Long time span series with intermittent patterns.

6. YEAR_ROUND_SEASONAL: Long time span series with seasonal patterns.

7. YEAR_ROUND_NON_SEASONAL: Long time span series without seasonal patterns.

8. YEAR_ROUND_SEASONAL_INTERMITTENT: Long time span series with seasonal and intermittent patterns.

9. YEAR_ROUND_OTHER: Long time span series with no patterns that can be classified.

10. OTHER: Time series that do not span long time periods and cannot be classified.

11. RETIRED: Time series that are retired or are no longer active. The Retired Series model is selected for this segment.

Conclusion

Data Preparation is all over the analytic lifecycle!

 Data Preparation is much more than just coding! All you need to prepare your data for data science is available in the integrated SAS Viya platform

 Data Preparation / Data Quality / Feature Engineering / Variety of Analytical Methods / Visualizing Relationships / Comparing Models / What-If Scenarios / Access for different Persona Roles / Model Ops / ...

Thank you

sas.com

Selected SAS Training Courses

- <u>https://support.sas.com/edu/schedules.html?crs=STSM&ctry=US</u> Time Series Modeling Essentials
- This course discusses the fundamentals of modeling time series data. The course focuses on the applied use of the three main model types used to analyze
 univariate time series: exponential smoothin...
- <u>https://support.sas.com/edu/schedules.html?crs=FVVF&ctry=US</u> Forecasting Using Model Studio in SAS® Viya®
- This course provides a hands-on tour of the forecasting functionality in Model Studio, a component of SAS Viya. The course begins by showing how to load the data into memory and visualize the time ...
- <u>https://support.sas.com/edu/schedules.html?crs=VFSP&ctry=US</u> Large-Scale Forecasting Using SAS® Viya®: A Programming Approach
- This course teaches students to develop and maintain a large-scale forecasting project using SAS Visual Forecasting tools. For the course project, students
 build and then refine a large-scale forec...
- <u>https://support.sas.com/edu/schedules.html?crs=MTSS&ctry=US</u> Models for Time Series and Sequential Data
- This course teaches students to build, refine, extrapolate, and, in some cases, interpret models designed for a single, sequential series. There are three modeling approaches presented. The traditi...
- https://support.sas.com/edu/schedules.html?crs=TSFM&ctry=US Time Series Feature Mining and Creation
- In this course, you learn about data exploration, feature creation, and feature selection for time sequences. The topics discussed include binning, smoothing, transformations, and data set operatio...

Useful Resources 1

- Webinar: Data Preparation for Data Science" im SAS DACH Youtube Channel
- SAS Communities: Data Science and Data Preparation Article Overview by Gerhard
- Transpose your analysis data with the %MAKELONG and %MAKEWIDE macro
- <u>3 ways to consider movable holidays in SAS</u>
- <u>Replace MISSING VALUES in TIMESERIES DATA using PROC EXPAND and PROC TIMESERIES</u>
- Using the TIMESERIES procedure to check the continuity of your timeseries data
- Have a look at your TIMESERIES data from a bird's-eye view Profile their missing value structure
- Book: Data Preparation for Analytics Using SAS
- Book: Data Quality for Analytics Using SAS
- • •

Useful Resources 2

SAS Communities Library Articles

- How to incorporate RNNs in your SAS VF pipelines
- How to create a custom TensorFlow node in SAS VF with GUI parameters
- Modernizing Scenario Analysis with SAS Viya and SAS Visual Analytics
- Free SAS Sample Data Sets for Forecasting
- Step by step guide for using open-source models in SAS VF

SAS Papers

- <u>Neural Network–Based Forecasting Strategies in SAS® Viya®</u>
- Writing a Gradient Boosting Model Node for SAS® Visual Forecasting
- <u>Scalable Cloud-Based Time Series Analysis and Forecasting Using Open-Source Software</u>

SAS Forecasting E-Book

Forecasting with SAS: Special Collection

