SAS® Visual Data Mining and Machine Learning (VDMML)

Getting Started

Presenter: Melodie Rush, Principal Data Scientist

Q&A: Twanda Baker, Data Scientist

Host: Lauren Gray, Webinar Host

- Increase awareness of and comfort with capabilities in SAS[®] Visual Data Mining and Machine Learning™ (VDMML)
- Share resources for learning more

SAS® Visual Data Mining and Machine Learning

Presentation Content

- Introduction to SAS® Visual Data Mining and Machine Learning
- Value of SAS® Visual Data Mining and Machine Learning
- Included Algorithms
- Tour of the interfaces
 - Visual
 - Programming
 - Open Source

The volume of inquiry calls from Gartner clients about AI, advanced ML and related topics increased by 200% between 2015 and 2016. The data science platform segment grew 9.0% from 2015 to 2016

Source: Gartner, July 2017

Pitfalls of Machine Learning

Lack of architecture to support the analytics life cycle

Need for data science talent

Missing Data

Model performance deterioration

Long time to interactively build analytical models

The SAS Platform

Analytics Lifecycle

SAS® Visual Data
Mining and Machine
Learning is an end-to-end
machine learning solution
on the most advanced
analytics platform.

Collaboration and Personas

Data Scientists and Programmers

Machine Learning

Statisticians
and Citizen Data Scientists
Predictive Analytics

SAS® Visual Data Mining and Machine Learning

Key Benefits

Get answers fast through integrated advanced analytics workflows in single environment

Get accurate answers to your questions by applying modern machine learning and predictive analytics algorithms

SPEED

Boost productivity of your data scientists though access from open source

Scale environment with your growing needs

SCALABLE

EFFICIENCY SCA

End to end data preparation, analytics, machine learning and model scoring in a single inmemory, scalable environment

Visual Data Mining and Machine Learning

What does it include?

Visual Analytics

Requires Visual Analytics

Visual Statistics

Requires Visual Statistics

Visual Data Mining and Machine Learning

Visual Data Mining and Machine Learning

What do you get?

Visualizations

- Forest
- Gradient Boosting
- Neural Networks
- Support Vector
 Machines
- Factorization Machines
- Bayesian Networks

VDMML PROCS

- FOREST
- GRADBOOST
- NNET
- SVMACHINE
- FACTMAC
- TFXTMINF
- TMSCORE
- BOOLRULE
- ASTORE
- CAS
- NETWORK
- BNET
- FASTKNN
- more...

VDMML CAS action sets

- MLEARNING
- TEXTMINE
- DMMLVISSET
- CRSBOOLRULE
- CRSNEURALNET
- CRSSVM
- CRSTKFACTMAC
- TKCAS
- CRSNETSOC
- CSRNETCOMMON
- CRSASTORE
- CRSCMPTRVSN
- CRSDTREEADVN
- CRSTXTMINADV
- more...

SAS^{*} Visual Data Mining and Machine Learning 8.3

Visual Interface

Machine Learning Techniques

- Forest
- Factorization Machine
- Gradient Boosting
- Neural Network
- Support Vector Machine
- Bayesian Networks

Common Features

- Training-Validation
- Model Assessment
- Model Comparison
- Score Code or Astore Table
- Ability to export model statistics into Excel

SAS Visual Data Mining and Machine Learning 8.3 Programming Tasks in SAS Studio

Includes algorithms in the visual interface plus

- Unsupervised Learning
 - Moving Window PCA
 - Robust PCA
 - Support Vector Data Description
 - Text Parsing and Topic Discovery
- Supervised Learning
 - Quantile Regression
 - Partial Least Squares Regression

What's Included

SAS Visual Data Mining and Machine Learning

Visual "drag & drop" Interface

Programming Interface

Data Preparation

- Access to different data sources
- Training-Validation Data Partitioning
- Feature Engineering (e.g. parameters, interactions)
- Variable selection and missing values

Visual Exploration

- Interactively discover relationships, trends, outliers
- Smart autocharting
- Analytics driven visualizations
- Explore predicted outputs
- Variable transformation

Model Building

- Pipeline of activities
- Drag and drop and access to code
- Nodes are run asynchronously
- Reproducibility
- SAS best practice toolkit

Modern Machine Learning

- Forest
- Neural Network (including Deep Learning)
- Gradient Boosting
- Support Vector Machines
- Factorization Machines
- Bayesian Networks
- Autotuning

Comparison and Deploy

- Model comparison summaries
- Interactively assess models
- Assessment charts for partitioned data
- Publish score code; batch,
 API call, in-database

Visual Interface

SAS Visual Analytics

Objects Data Q Filter N Objects ▶ Tables := ▶ Graphs ▶ Controls ▶ Analytics Containers ▶ Content ▶ SAS Visual Statistics ▼ SAS Visual Data Mining and Machine Le... X Bayesian Network - Factorization Machine S. Forest 🖧 Gradient Boosting Neural Network Support Vector Machine

Forest: PROC FOREST

FOREST

A random forest is used primarily when building classification models on large datasets.

It is an ensemble model of many decision trees from slightly different samples of the training data. Specifically:

- Each tree is built on subset of observations (rows)
- The features (variables) available to each splitting node are subset

Forest Business Use Cases:

- Customer Churn. Determining the factors that can cause churn.
- Loan Default. Predicting who will default on their loan using customer behavior patterns.

Forest Competitive Differentiators

- Distributed and massively parallel
- Faster, more memory-efficient, and more scalable algorithm
- Truly deployable

Forest

Gradient Boosting: PROC GRADBOOST

Gradient Boosting

Gradient boosting is used primarily when building classification models on large datasets.

It generates many decision trees sequentially from slightly different subsamples of the training data. In the end, all models are given a weight depending on their accuracy, and the model results are combined into one consolidated result.

GB Business Use Cases:

- Customer Churn. Determining the factors that can cause churn.
- Loan Default. Predicting who will default on their loan using customer behavior patterns.

GB Competitive Differentiators

- Distributed and massively parallel
- Faster, more memory-efficient, and more scalable algorithm
- Truly deployable

Gradient Boosting

Neural Network: PROC NNET

Neural Network

Neural networks are used to solve a wide variety of tasks that are hard to solve using other methods.

The goal of the neural network is to solve problems in the same way that the human brain would. They are comprised of processing elements called units or neurons.

NNET Business Use Cases:

- Computer vision.
- Speech recognition.

NNET Competitive Differentiators

- Distributed and massively parallel
- Faster, more memory-efficient, and more scalable algorithm
- Can be auto-tuned

Neural Networks

Support Vector Machine: PROC SVMACHINE

Support Vector Machine

Support vector machine is used to separate or classify data into groups.

The standard SVM model solves binary classification problems that produce non-probability output (only sign +1/-1) by constructing a set of hyperplanes that maximize the margin between two classes.

SVM Business Use Cases:

- Customer survey. Predicting which product a customer might buy next based on previous behavior and survey results.
- Predicting bad debt or loan default.

SVM Competitive Differentiators

- Distributed and massively parallel
- Faster, more memory-efficient, and more scalable algorithm
- Truly deployable

Support Vector Machines

Factorization Machine: PROC FACTMAC

Factorization Machine

Factorization machines are used when data has high dimensionality and sparse data.

The most common use case is in recommender engines.

"If you like item A, you may also like item B".

FM Business Use Cases:

- Customer survey. Predicting which product a customer might buy next based on previous behavior and survey results.
- Online real-time recommendations. Surfacing relevant recommendations based on products that the customer views.

FM Competitive Differentiators

- Distributed and massively parallel
- Faster, more memory-efficient, and more scalable algorithm
- Truly deployable

Factorization Machine

Bayesian Network: PROC BNET

Bayesian Network

A Bayesian network is a directed, acyclic graphical model in which the nodes represent random variables and the links between the nodes represent conditional dependency between two random variables.

BNFT Business Use Cases:

 They can be used for a wide range of tasks including prediction, anomaly detection, diagnostics, automated insight, reasoning, time series prediction and decision making under uncertainty.

BNET Competitive Differentiators

- When you have a lot of missing data, e.g. in medicine, BN's can be very effective since modeling the joint reduces your dependency in having a fully observed dataset.
- When you want to model a domain in a way that is visually transparent, and also aims to capture cause→effect relationships, BN's can be very powerful. Note that the causality assumption in BN's is open to debate though.

Bayesian Network

SAS® Drive

Explore and Visualize Data

Click on applications menu and select Explore and Visualize Data

SAS® Drive Explore and Visualize Data

Click on Blue Box and Select New Report

Classification

Our example today

- The dataset is from a financial institution with customer demographics and loan/credit behavior.
- The goal of this modeling exercise is to predict which people are likely to default on a home equity loan.
- The data are at the customer-level (subject-level).
- n=5960
- columns = 13

Alphabetic List of Variables and Attributes				
#	Variable	Туре	Len	Label
1	BAD	Num	8	Default or seriously delinquent
10	CLAGE	Num	8	Age of oldest credit line in months
12	CLNO	Num	8	No. of trade credit lines
13	DEBTINC	Num	8	Debt to income ratio
9	DELINQ	Num	8	No. of deliquent credit lines
8	DEROG	Num	8	No. of major derogatory reports
6	JOB	Char	7	Prof/Exec/Office/Self/Other
2	LOAN	Num	8	Amount of current loan request
3	MORTDUE	Num	8	Amount due on existing mortgage
11	NINQ	Num	8	No. of recent credit inquiries
5	REASON	Char	7	Home improvement or Debt Consolidation
4	VALUE	Num	8	Value of current property
7	YOJ	Num	8	Years on current job

Visual Interface Demo

SAS Visual Analytics

Visual Interface

Pipelines

SAS® Visual Data Mining and Machine Learning 8.3 Pipelines

- Drag-and-drop pipelines including preprocessing and machine learning techniques
- Customizable and portable nodes and SAS best practice pipelines (Toolbox)
- Support for SAS coding (macro, data step, procs, batch Enterprise Miner) within pipelines
- Collaboration through the use of the "Toolbox" – a collection of SAS Best Practice Pipelines, in addition to usergenerated templates

Example Code for Pipeline

SAS® Visual Data Mining and Machine Learning 8.3

Pipelines

▼ Data Mining Preprocessing

▼ Supervised Learning

▼ ■ Postprocessing

Anomaly Detection

Ei Batch Code

Ensemble

Clustering

W- Bayesian Network

W. Feature Extraction

Decision Tree

■ Data Exploration

P Filtering

S. Forest

Den Source Code

Inputation

Ju GLM

SAS Code

■ Manage Variables

🕰 Gradient Boosting

- Save Data

Replacement

1. Linear Regression III Logistic Regression

T Text Mining

Neural Network

 f_{\odot} Transformations

2 Quantile Regression

₩ Variable Clustering

Score Code Import

■ Variable Selection

SVM

SAS® Visual Data Mining and Machine Learning 8.3 Pipelines

SAS® Visual Data Mining and Machine Learning 8.3

- Automated API generation for retraining and scoring
- Ability to deploy models in to databases directly
- Assessment against imported Test datasets
- Integration with Model Manager for versioning, tracking and deployment
- Integration with SAS 9.4
 Enterprise Miner score code & Batch Code
- Integration with Open Source (R and Python

Pipelines

Visual Interface Demo

Pipelines

SAS Programming Interface

SAS Studio

SAS[®] Visual Data Mining and Machine Learning Openness for a Non-SAS Programmer

SAS Language Python, R, Lua & Java REST APIs

SAS Visual Data Mining and Machine Learning

Analytical Capabilities

Data Manipulation

In-Memory Data Step Frequency / Crosstab Data Transpose Variable Binning

Variable Cardinality Analysis

Variable Summary

Sampling and Partitioning

Missing Value Imputation

Variable Selection

Model Assessment

DS2

FedSQL

Statistics

Cox Proportional Hazards

Decision Trees

Design Matrix

General Additive Models

Generalized Linear Models

K-means and K-modes Clustering

Linear Regression

Logistic Regression

Nonlinear Regression

Ordinary Least Squares Regression

Partial Least Squares Regression

Pearson Correlation

Principal Component Analysis

Quantile Regression

Shewhart Control Chart Analysis

Machine Learning

Bayesian Networks

Boolean Rules

Factorization Machines

Frequent Item Set Mining

Gradient Boosting

K Nearest Neighbor

Image Processing

Market Basket Analysis

Moving Windows PCA

Network Analytics/Community Detection

Neural Networks / Deep Learning

Random Forest

Robust PCA

Support Vector Data Description

Support Vector Machines

Text Mining

Variable Clustering

SAS Programming Interface Demo

SAS Studio

Autotuning

Automating

Autotuning: Hyperparameters

- <u>Training a model</u> involves using an algorithm to determine model parameters or other logic to map inputs to a target
- <u>Tuning a model</u> involves determining the <u>algorithm hyperparameters</u> (tuning options) that result in the model which maximizes predictability on an independent data set

Autotuning

Methods

- SAS Visual Data Mining and Machine Learning offers:
 - Random search (highly parallelizable)
 - Latin Hypercube (highly parallelizable)
 - LH + proprietary SAS/OR algorithm (sequential in nature named Genetic in Options)
- All 5 VDMML procs as well as Decision Trees can be autotuned via SAS Visual interface and SAS Studio interface

Autotune Statement

How SAS proprietary tuning is done

Decision tree: PROC TREESPLIT

- · Depth of tree
- · Splitting criterion
- Number of bins for interval variables

Forest: PROC FOREST

- Number of trees
- · Number of levels in each tree
- Bootstrap sampling rate
- Number of inputs used for splitting a node

Gradient Boosting: PROC GRADBOOST

- Number of iterations (trees)
- Sampling proportion
- LASSO (L1) regularization
- Ridge (L2) regularization
- Number of inputs used for splitting a node
- Learning Rate

Neural Networks: PROC NNET

- Number of hidden layers
- Number of neurons in each hidden layer
- L1 regularization
- L2 regularization
- SGD options (annealing rate, learning rate)

Support Vector Machines: PROC SVMACHINE

- Polynomial degree
- Penalty value

Factorization Machine: PROC FACTMAC

- Number of factors
- Step size (learning rate)
- Number of iterations

Uses Standard Grid, Random Search or Latin Hypercube to seed the Genetic algorithm

LOOP until stop criterion (e.g max time, max models, max iterations, population size etc.)

SAS Programming Interface - AutoTuning Demo

SAS Visual Analytics & SAS Studio

Open Source Interface

Juypter Notebooks

Open Access

Other programming languages - R, Lua Python and Java

Developer & user communities

Ask the Expert

The New Languages of SAS 9.4 and SAS Viya: A SAS **Programmer's Primer**

CAS Actions Hierarchies


```
table.attribute <result =results> <status=rc> /

attributes={{

column="string",

* key="string",

value="string" | 64-bit-integer | integer | double | binary-large-object
}, {...}}
```


PROC versus CAS Action

```
proc cas;
    action factmac result=R / table={name="movlens"},
    outModel={name="factors_out", replace=true},
    inputs={"userid", "itemid"},
    nominals={"userid", "itemid"},
    target="rating",
    maxIter=20, nFactors=10, learnStep=0.15,
    output={casout={name="score_out", replace="TRUE"},
    copyvars={"userid","itemid","rating"}};
run;
```


Open Source Interface Demo

Jupyter Notebooks

Additional Capabilities

Integrating Viya and SAS Enterprise Miner Viya Code Node

Other Features in SAS VDMML 8.3

Additional Analytical Algorithms and Options

- Tensor Factorization
- Neural Network Autoencoders
- Clustering mixed variables
- Deep forward neural networks (DNNs), convolutional neural networks (CNNs) and recurrent neural networks (RNNs)
- Bayesian Network
- Market Basket Analysis
- Image Processing (only CAS Actions currently)
 - Load images recursively & at random
 - Retrieve Image labels across all folders when importing
 - Convert image table action (wide format)
 - Support image processing with Deep Learning

What's New in VDMML 8.3

In case you have an earlier version

- SAS Drive replaces SAS Home
- Visual Interface
 - Bayesian Network in Visual Interface
 - Model Interpretability Charts
 - Variable Importance
 - Partial Dependence
 - ICF
 - LIME
 - Create Pipelines or Add Pipelines to existing projects
 - Registering models from Visual Interface

- Model Studio
 - Remembers where you were
 - Added to Pipelines
 - Feature Engineering Template
 - Supervised Learning
 - Batch Code
 - Quantile Regression
 - Score Code Import
 - Miscellaneous Open Source Code
 - Transformation Node Best Transformation

Resources

Where can I learn more?

SAS® Visual Data Mining and Machine Learning

Try it before you buy!

SAS[®] Visual Data Mining and Machine Learning Visual Interface – SAS Visual Analytics

SAS Visual Data Mining and Machine Learning on Visual Interface

https://goo.gl/qDNdCS

SAS® Visual Data Mining and Machine Learning Programmatic Interface - SAS Studio

SAS Visual Data Mining and Machine Learning on SAS Studio

https://youtu.be/X0AU4gDUc Y

SAS® Visual Data Mining and Machine Learning Programming with Open Source

SAS Visual Data Mining and Machine Learning with Python Demo

https://youtu.be/LXoikPWQJ3d

SAS® Visual Data Mining and Machine Learning

Where to learn more?

Video Resources

Video Tutorials

SAS Visual Data Mining and Machine Learning https://youtu.be/X0AU4gDUc_Y

SAS Visual Data Mining and Machine Learning with Python

https://youtu.be/LXoikPWQJ3o

'How do I' videos

http://support.sas.com/training/tutorial/viya/index.html

SAS® Visual Data Mining and Machine Learning

Where to learn more?

Key Resources

- SAS VDMML Product Web Page
- <u>Factsheet</u>
- SAS Viya Brochure
- Documentation
- VDMML SAS Community

Communities

Questions?

Thank you for your time and attention!

Connect with me:

LinkedIn: https://www.linkedin.com/in/melodierush

Twitter: @Melodie_Rush

sas.com

