ASK THE EXPERT

Composite Al Using Forecasting and Optimization

Jay Laramore

Senior Analytical Training Consultant

Rob Pratt

Senior R&D Manager

Jay Laramore
Senior Analytical Training Consultant

Jay Laramore has worked at SAS since 2015. He currently develops and teaches education courses in econometrics, time series forecasting, network analysis and optimization. Previously, Jay worked in the analytical consulting division at SAS, where he built and deployed a variety of analytical solutions for customers. Prior to joining SAS, he worked as an analytical consultant in the marketing and retail fuel industries. He earned a master's degree in economics from the University of North Carolina at Greensboro and a bachelor's degree in economics from Roanoke College.

Rob Pratt
Senior R&D Manager

Rob Pratt has worked at SAS since 2000 and is a Senior Manager in the Scientific Computing department in the Analytics R&D division. He manages a team of developers responsible for the optimization modeling language and solvers for linear, mixed integer linear, quadratic, and conic optimization. He earned a B.S. in Mathematics (with a second major in English) from the University of Dayton and both an M.S. in Mathematics and a Ph.D. in Operations Research from The University of North Carolina at Chapel Hill.

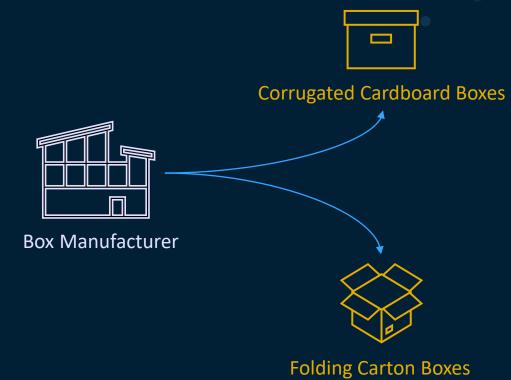
Composite AI Using Forecasting and Optimization

Introduction

- Composite Al problems combining forecasting and optimization can be used to satisfy several objectives:
 - Anticipate and satisfy customer demand
 - Maintain acceptable inventory balances
 - III. Minimize total operational cost across all suppliers
 - IV. Accommodate problem-specific business rules that influence decision making

- Examples:
 - Call center staffing
 - ATM replenishment
 - Retail fuel restocking

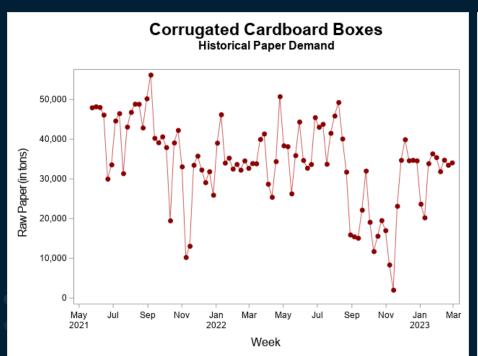
- Restaurant seating optimization
- Retail product restocking and replenishment
- Marketing revenue optimization

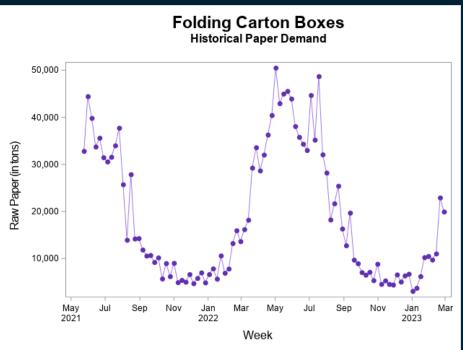


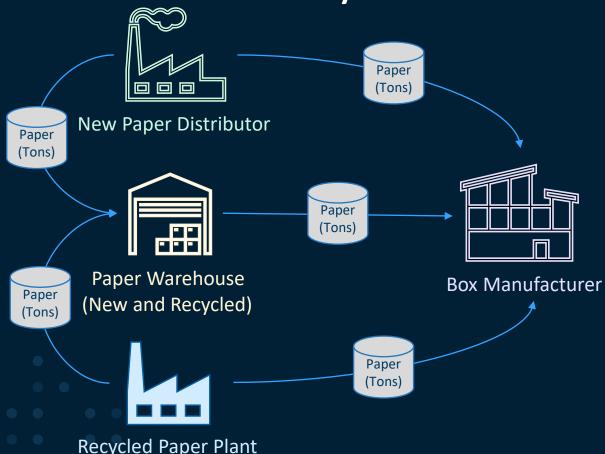
Composite AI Using Forecasting and Optimization

Business Case Study: A Box Manufacturer

- Every week, a **Box Manufacturer** produces and distributes two (2) types of boxes:
 - I. Corrugated Cardboard Boxes
 - II. Folding Carton Boxes

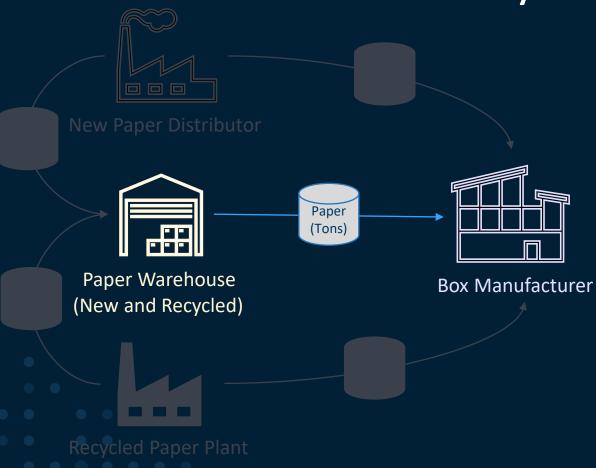

 The Box Manufacturer is responsible for satisfying customer demand each week for all box types




Historical Paper Demand By Box Type

 To anticipate future production levels, historical demand for each box type is used to forecast customer demand and raw material requirements for the next four weeks

Weekly Business Model Diagram



- To manufacture boxes, each week the Box Manufacturer sources its paper from two suppliers:
 - I. An external vendor namedNew Paper Distributor
 - II. Its company-owned Recycled Paper Plant

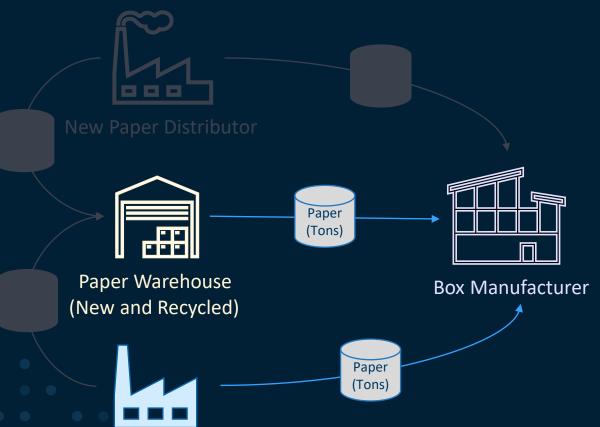
• The **Box Manufacturer** can also use paper currently stored in its **Paper Warehouse**

Current Inventory Balance

- Current inventory levels in the **Paper Warehouse**:
 - New Paper: 45,000 tons
 - Recycled Paper: 62,500 tons

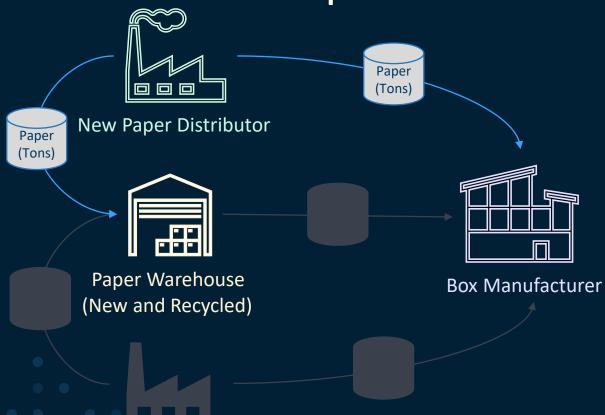
- For simplicity, assume no cost for storage, transfer, etc.
- Because the inventory was purchased in prior weeks, it can be used cost-free in current or future weeks to produce boxes

Copyright © SAS Institute Inc. All rights reserved.


Weekly Recycled Paper Production Schedule

- For the next four weeks, the Recycled Paper Plant has committed to the following production schedule:
 - **t+1**: 12,000 tons, \$0.10/ton
 - **t+2**: 18,000 tons, \$0.10/ton
 - **t+3**: 20,000 tons, \$0.18/ton
 - **t+4**: 22,000 tons, \$0.18/ton
- Recycled paper produced in the current week can be used for box production, or moved to the Paper Warehouse for storage

Environmental Business Requirement


Recycled Paper Plant

Each week, the Box
 Manufacturer must use at least 25% recycled paper to manufacture its boxes

 The recycled paper can either come directly from the Recycled Paper Plant or the Paper Warehouse

New Paper Distributor Contract Tiers

 The Box Manufacturer can purchase new paper each week at a contracted priceper-ton rate.

 Purchase contracts between the Box Manufacturer and the New Paper Distributor renew every four weeks, and it's time to renew the contract for the next four weeks

Recycled Paper Plant

New Paper Distributor Contract Tiers

Tier	Minimum Tons Purchased Per Week	Price Per Ton
Tier 1	≥ 10,000	\$0.15
Tier 2	≥ 25,000	\$0.12
Tier 3	≥ 35,000	\$0.09
Tier 4	≥ 50,000	\$0.07

 Based on the box demand forecasts, current new and recycled inventory levels, the Recycled Paper Plant production schedule, and the 25% recycled paper requirement each week, which tier minimizes total operational cost over the next four weeks?

SAS® Visual Forecasting

Key Capabilities

AUTOMATION

Automatically generate, manage, and deploy large numbers of trustworthy forecasts using a future-proof solution you can trust and configure.

EXTERNAL DRIVERS

Incorporate events, holidays, and external drivers and let the system automatically choose which are important.

BUSINESS KNOWLEDGE

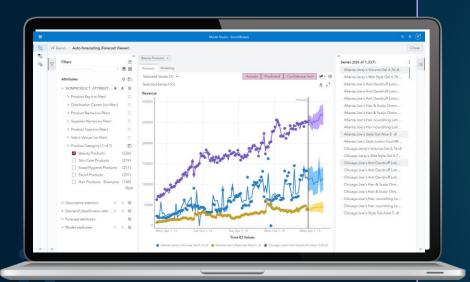
Using your business knowledge, apply overrides in a flexible manner.

CUTTING-EDGE TECHNIQUES

Employ time-series, machine-learning, hybrid (ML + time series), and deep learning techniques to improve your forecasting accuracy.

EMPOWER OPEN-SOURCE

Scale open-source algorithms to run in parallel in the cloud, and in a consistent framework.



CUSTOMER SUPPORT

Get the support you need to succeed by taking SAS forecasting courses and joining a vibrant forecasting community.

SAS Visual Forecasting: Automatically Generate Trustworthy Forecasts at Scale

Supports full analytics life cycle

Performs automatic large-scale forecasting

Choice of **no/low code forecasting** via visual interface as well as the **programming option** via SAS or open APIs

Interactive forecasting viewers

Interactive modeling capabilities

Automatic outlier detection and treatment

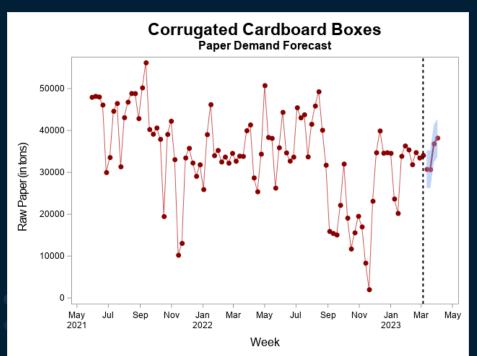
Create your own reusable components to share

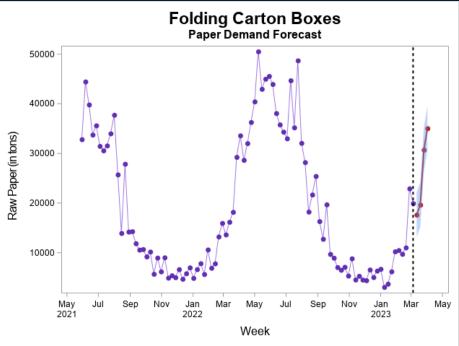
SAS® Visual Forecasting Screenshots

Obs	box_type	date	paper_demand
1	Folding Carton	Mon, 31 May 2021	32,842
2	Folding Carton	Mon, 7 Jun 2021	44,470
3	Folding Carton	Mon, 14 Jun 2021	39,841
4	Folding Carton	Mon, 21 Jun 2021	33,769
5	Folding Carton	Mon, 28 Jun 2021	35,640
6	Folding Carton	Mon, 5 Jul 2021	31,490
7	Folding Carton	Mon, 12 Jul 2021	30,596
8	Folding Carton	Mon, 19 Jul 2021	31,583
9	Folding Carton	Mon, 26 Jul 2021	34,026
10	Folding Carton	Mon, 2 Aug 2021	37,763
11	Folding Carton	Mon, 9 Aug 2021	25,751
12	Folding Carton	Mon, 16 Aug 2021	13,956
13	Folding Carton	Mon, 23 Aug 2021	27,897
• •••	•••	•••	•••

```
proc tsmodel data = mylib.atexpert outsum=mylib.tonssum
             outobj = (deptFor = mylib.tonsFor)
                       deptEst = mylib.tonsEst
                       deptStat = mylib.tonsStat);
  by box type;
  id date interval=week;
  var paper demand /acc = total;
  *use ATSM package;
   require atsm;
    submit;
     *declare ATSM objects;
      declare object dataFrame(tsdf);
      declare object myDiagnose(diagnose);
      declare object myDiagSpec(diagspec);
      declare object forecast(foreng);
      declare object deptFor(outfor);
      declare object deptEst(outest);
      declare object deptStat(outstat);
```


13


19


SAS® Visual Forecasting Screenshots

```
*set up dependent and independent variables;
21
               rc = dataFrame.initialize();
               rc = dataFrame.addY(tons);
23
24
               *set up time series diagnose specifications;
              rc = myDiagSpec.open();
               rc = myDiagSpec.setArimax;
27
               rc = myDiagSpec.setEsm('method', 'best');
               rc = myDiagSpec.close();
29
               *diagnose time series to generate candidate model list;
               rc = myDiagnose.initialize(dataFrame);
               rc = myDiagnose.setSpec(myDiagSpec);
33
               rc = myDiagnose.run();
35
               *run model selection and forecast;
              rc = forecast.initialize(myDiagnose);
37
              rc = forecast.setOption('lead', 4);
               rc = forecast.run();
               *collect forecast results;
               rc = deptFor.collect(forecast);
              rc = deptEst.collect(forecast);
               rc = deptStat.collect(forecast);
           endsubmit;
       run;
```

Historical Paper Demand By Box Type

	t+1	t+2	t+3	t+4
Total Raw Paper Forecasts (tons)	53,089	54,047	67,436	70,515

Copyright © SAS Institute Inc. All rights reserved

Business Problem Summary

	t	t+1	t+2	t+3	t+4
Total Raw Paper Forecasts (tons)	-	53,089	54,047	67,436	70,515
Recycled Paper Plant Production (tons)	-	12,000	18,000	20,000	22,000
Recycled Paper Plant Cost (per ton)	-	\$0.10	\$0.10	\$0.18	\$0.18
Current New Paper Inventory (tons)	45,000	-	-	-	-
Current Recycled Paper Inventory (tons)	62,500	-	-	-	-

Tier	Minimum Tons Purchased Per Week	Price Per Ton
Tier 1	≥ 10,000	\$0.15
Tier 2	≥ 25,000	\$0.12
Tier 3	≥ 35,000	\$0.09
Tier 4	≥ 50,000	\$0.07

Using this input data, along with the requirement that at least 25% of the paper used each week to make boxes must be recycled:

Which new paper contract tier allows the **Box Manufacturer** to meet forecasted demand at the lowest possible cost?

nt © SAS Institute Inc. All rights reserved

Solvers in SAS Optimization

- Linear Programming
- Mixed Integer Linear Programming
- Quadratic Programming
- Conic Optimization
- Nonlinear Programming
- Constraint Programming
- Network Algorithms
- Black-Box Optimization

PROC OPTMODEL: Major Features

- Algebraic modeling language with optimization-oriented syntax:
 - Variables, constraints, bounds, objectives
 - Algebraic expression of functions
 - Parameters, arrays, index sets
- Close integration with SAS programming environment
- Flexible input/output: read from and create data sets
- Separation between model structure and instance data
- Interactive environment
- Direct access to LP, MILP, QP, conic, NLP, CLP, network, and black-box solvers
- Support for customized algorithms
- Standard and user-defined functions

Input Data for Optimization

forecast_data

Obs	week	paper_demand	unit_cost	paper_production
1	1	53089	0.10	12000
2	2	54047	0.10	18000
3	3	67436	0.18	20000
4	4	70515	0.18	22000

contract_data

Obs	tier	price	purchase_lb
1	Tier1	0.15	10000
2	Tier2	0.12	25000
3	Tier3	0.09	35000
4	Tier4	0.07	50000

Declare Parameters and Read Data

```
55 (
      proc optmodel;
56
         set <num> WEEKS;
57
         num demand{WEEKS}; /* projected demand across all box types */
         num cost{WEEKS}; /* weekly unit cost for recycled paper */
58
59
         num production{WEEKS}; /* weekly recycled production amount from Recycled Paper Plant */
         num production cost{t in WEEKS} = cost[t]*production[t]; /* total weekly production cost for recycled paper */
60
61
62
         set <str> CONTRACTS:
63
         num price{CONTRACTS};  /* weekly unit cost for new paper for each contract tier */
64
         num purchase lb{CONTRACTS}; /* lower bound (i.e., minimum) purchase quantity of new paper for each contract tier */
65
66
         read data forecast data into WEEKS=[week] demand=paper demand cost=unit cost production=paper production;
67
         read data contract data into CONTRACTS=[tier] price purchase lb;
68
69
         str contract; /* ith contract tier */
```


Declare Decision Variables and Objective

```
71
          var Purchase{WEEKS} >= purchase_lb[contract];
72
          var UsePurchased{WEEKS} >= 0;
73
          var UseRecycled{WEEKS} >= 0;
          var PurchaseInventory{WEEKS} >= 0;
74
75
          var RecycledInventory{WEEKS} >= 0;
76
77
          impvar PurchaseCost{t in WEEKS} = price[contract]*Purchase[t];
          impvar PaperCost{t in WEEKS} = PurchaseCost[t] + production_cost[t];
78
79
          min TotalPaperCost = sum{t in WEEKS} PaperCost[t];
80
```


Declare Constraints

```
con MeetDemand{t in WEEKS}:
            UsePurchased[t] + UseRecycled[t] = demand[t];
83
84
         con PurchaseInventoryBalance{t in WEEKS}:
85
             PurchaseInventory[t] = (if t = 1 then 45000 else PurchaseInventory[t-1]) + Purchase[t] - UsePurchased[t];
86
87
         con RecycledInventoryBalance{t in WEEKS}:
88
89
             RecycledInventory[t] = (if t = 1 then 62500 else RecycledInventory[t-1]) + production[t] - UseRecycled[t];
90
91
         con RecycledPercent{t in WEEKS}:
            UseRecycled[t] >= 0.25*(UsePurchased[t] + UseRecycled[t]);
92
```


Call LP Solver in a Loop

```
103
          for {c in CONTRACTS} do;
104
              put c=;
105
              contract = c;
106
              solve;* with lp / algorithm=dual;
             print {t in WEEKS} (UseRecycled[t]/(UsePurchased[t]+UseRecycled[t]));
107
              create data (contract||'_Solution') from [Week]={t in WEEKS} contract Demand Price[contract] Purchase
108
                 UsePurchased PurchaseInventory Cost Production UseRecycled RecycledInventory PaperCost
109
                 production cost PurchaseCost;
110
111
             print contract TotalPaperCost;
112
          end;
```

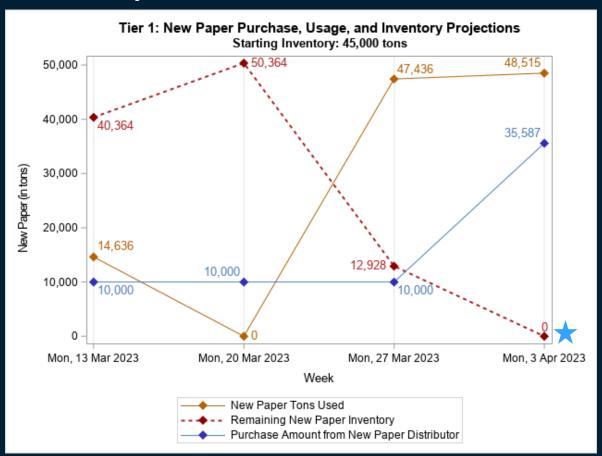

Call LP Solver in a Loop

```
c=Tier1
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 20 variables (0 free, 0 fixed).
NOTE: The problem uses 8 implicit variables.
NOTE: The problem has 16 linear constraints (0 LE, 12 EQ, 4 GE, 0 range).
NOTE: The problem has 42 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The OPTMODEL presolver is disabled for linear problems.
NOTE: The LP presolver value AUTOMATIC is applied.
NOTE: The LP presolver time is 0.00 seconds.
NOTE: The LP presolver removed 12 variables and 10 constraints.
NOTE: The LP presolver removed 27 constraint coefficients.
NOTE: The presolved problem has 8 variables, 6 constraints, and 15 constraint coefficients.
NOTE: The LP solver is called.
NOTE: The Dual Simplex algorithm is used.
                           Objective
                             Value
                                           Time
      Phase Iteration
       D 2
                   1 3.810000E+03
       P 2
                 11 2.039805E+04
NOTE: Optimal.
NOTE: Objective = 20398.05.
NOTE: The Dual Simplex solve time is 0.00 seconds.
NOTE: The data set WORK.TIER1 SOLUTION has 4 observations and 14 variables.
c=Tier2
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 20 variables (0 free 0 fixed)
```

Optimization Results

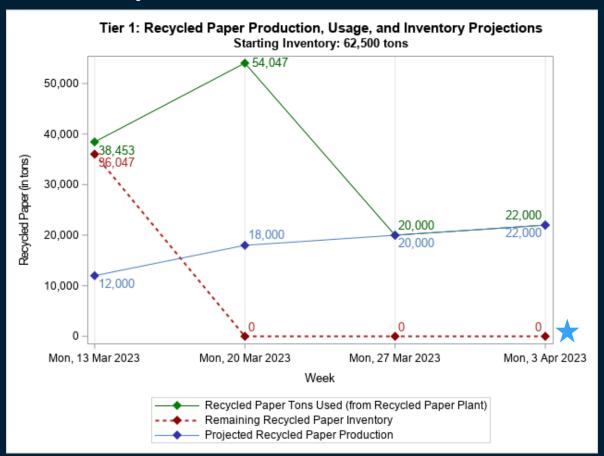
The OPTMODEL Procedure				
Problem Summ	ary			
Objective Sense	Minimization			
Objective Function	TotalPaperCost			
Objective Type	Linear			
Number of Variables	20			
Bounded Above	0			
Bounded Below	20			
Bounded Below and Above	0			
Free	0			
Fixed	0			
Number of Constraints	16			
Linear LE (<=)	0			
Linear EQ (=)	12			
Linear GE (>=)	4			
Linear Range	0			
Constraint Coefficients	42			

Solution Summary					
Solver	Solver				LP
Algorithm			Du	ual Sim	plex
Objective F	unc	tion	TotalPaperCost		Cost
Solution Sta	atus		Optimal		imal
Objective V	/alu	е		2039	8.05
Primal Infe	asib	ility			0
Dual Infeas	ibili	ty			0
Bound Infe	asib	ility			0
Iterations					11
Presolve Tir	me				0.00
Solution Tir	me				0.01
	[1]				
	1	0.53	3917		
	2	0.25	5000		
3 0.47		7228			
4 0.8		0.85	5819		
contra	act	Tota	l P ape	rCost	
Tier1		2039			



Optimization Results

Contract	Total Paper Cost
Tier 1*	\$20,398*
Tier 2	\$22,560
Tier 3	\$23,160
Tier 4	\$24,560



Optimization Results: Tier 1

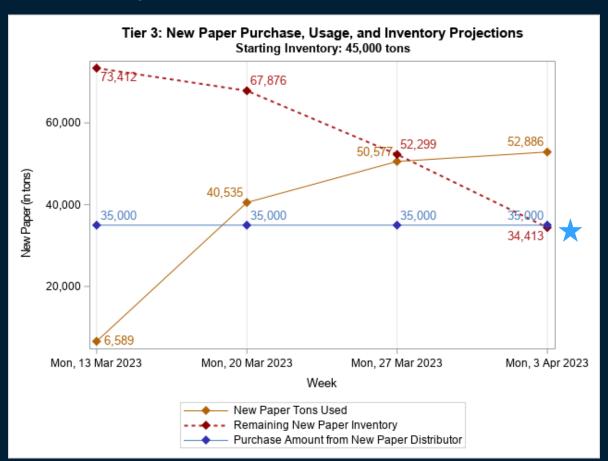
Optimization Results: Tier 1

Modify the Problem

- New business rule: final inventory must be ≥ 30000 tons of new paper and ≥ 40000 tons of recycled paper
- Add explicit constraint or modify the .LB variable suffix

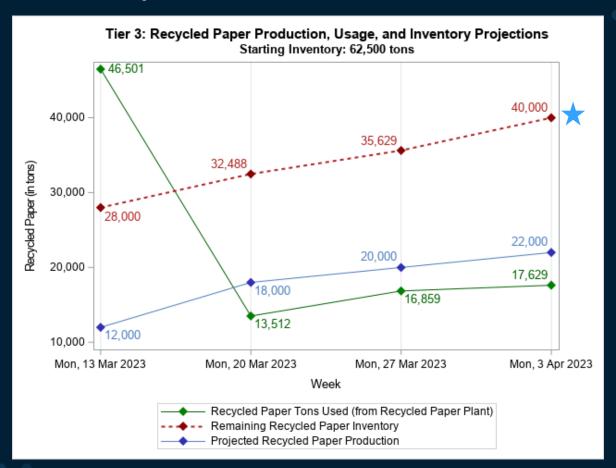
```
/* con EndingPurchaseInventory:*/
/* PurchaseInventory[4] >= 30000;*/
PurchaseInventory[4].lb = 30000;

/* con EndingRecycledInventory:*/
/* RecycledInventory[4] >= 40000;*/
RecycledInventory[4].lb = 40000;
```



Optimization Results

Contract	TotalPaperCost	TotalPaperCost with .lb
Tier 1	\$20,398	\$30,898
Tier 2	\$22,560	\$26,830
Tier 3*	\$23,160	\$23,160*
Tier 4	\$24,560	\$24,560



Optimization Results: Tier 3

Optimization Results: Tier 3

Use COFOR Loop to Solve Concurrently

OPTMODEL code

```
cofor {c in CONTRACTS} do;
put c=;
contract = c;
solve;* with lp / algorithm=dual;
print {t in WEEKS} (UseRecycled[t]/(UsePurchased[t]+UseRecycled[t]));
create data (contract||'_Solution') from [Week]={t in WEEKS} contract Demand Price[contract] Purchase
    UsePurchased PurchaseInventory Cost Production UseRecycled RecycledInventory PaperCost
    production_cost PurchaseCost;
print contract TotalPaperCost;
end;
```


Use COFOR Loop to Solve Concurrently

```
NOTE: The COFOR statement is executing in single-machine mode.
c=Tier1
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 20 variables (0 free, 0 fixed).
NOTE: The problem uses 8 implicit variables.
NOTE: The problem has 16 linear constraints (0 LE, 12 EQ, 4 GE, 0 range).
NOTE: The problem has 42 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The OPTMODEL presolver is disabled for linear problems.
NOTE: The LP presolver value AUTOMATIC is applied.
NOTE: The LP presolver time is 0.00 seconds.
NOTE: The LP presolver removed 18 variables and 15 constraints.
NOTE: The LP presolver removed 40 constraint coefficients.
NOTE: The presolved problem has 2 variables, 1 constraints, and 2 constraint coefficients.
NOTE: The LP solver is called.
NOTE: The Network Simplex algorithm is used.
NOTE: The Network Simplex algorithm was not run because the number of constraints (after presolve) is less than or equal to 1.
NOTE: The Dual Simplex algorithm is used.
                           Objective
                           Value
      Phase Iteration
                                           Time
       D 2
                        3.089805E+04
NOTE: Optimal.
NOTE: Objective = 30898.05.
NOTE: The Simplex solve time is 0.00 seconds.
NOTE: The data set WORK.TIER1 SOLUTION has 4 observations and 14 variables.
c=Tier2
NOTE: Problem generation will use 3 threads.
NOTE: The problem has 20 variables (0 free, 0 fixed)
```


Input Data for Optimization

forecast_data

Obs	week	paper_demand	unit_cost	paper_production
1	1	53089	0.10	12000
2	2	54047	0.10	18000
3	3	67436	0.18	20000
4	4	70515	0.18	22000

contract_data

Obs	tier	price	purchase_lb
1	Tier1	0.15	10000
2	Tier2	0.12	25000
3	Tier3	0.09	35000
4	Tier4	0.07	50000


```
57 (
      proc cas noqueue;
58
         source pgm;
59
         put BY LINE;
         set <num> WEEKS;
60
61
         num demand{WEEKS}; /* projected demand across all box types */
62
         num cost{WEEKS}; /* weekly unit cost for recycled paper */
63
         num production{WEEKS}; /* weekly recycled production amount from Recycled Paper Plant */
         num production cost{t in WEEKS} = cost[t]*production[t]; /* total weekly production cost for recycled paper */
64
65
                          /* weekly unit cost for new paper for each contract tier */
66
         num price:
         num purchase lb; /* lower bound (i.e., minimum) purchase quantity of new paper for each contract tier */
67
68
         read data forecast_data nogroupby into WEEKS=[week] demand=paper_demand cost=unit_cost production=paper_production;
69
         read data contract_data into price purchase_lb;
70
71
         var Purchase{WEEKS} >= purchase_lb;
72
         var UsePurchased{WEEKS} >= 0;
73
         var UseRecycled(WEEKS) >= 0.
74
```


98 99

100

101

102

103

104

105

106 107

108

109

110

```
RECYCLEULIIVEIILOFY | 4 | .10 = 40000,
   solve;* with lp / algorithm=dual;
   print {t in WEEKS} (UseRecycled[t]/(UsePurchased[t]+UseRecycled[t]));
   create data Solution from [Week]={t in WEEKS} Demand Price Purchase
      UsePurchased PurchaseInventory Cost Production UseRecycled RecycledInventory PaperCost
      production cost PurchaseCost;
   print TotalPaperCost;
  endsource;
  /* solve a separate problem for each contract tier */
   action optimization.runOptmodel / code=pgm groupBy='tier' statusOut={name='statusOut',replace=true};
   run:
quit;
```



```
tier=Tier1
NOTE: There were 4 rows read from table 'FORECAST DATA' in caslib 'CASUSER(robpra)'.
NOTE: There were 1 rows read from table 'CONTRACT DATA' in caslib 'CASUSER(robpra)'
NOTE: Problem generation will use 8 threads.
NOTE: The problem has 20 variables (0 free, 0 fixed).
NOTE: The problem uses 8 implicit variables.
NOTE: The problem has 16 linear constraints (0 LE, 12 EO, 4 GE, 0 range).
NOTE: The problem has 42 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EO, 0 GE, 0 range).
NOTE: The OPTMODEL presolver is disabled for linear problems.
NOTE: The LP presolver value AUTOMATIC is applied.
NOTE: The LP presolver time is 0.00 seconds.
NOTE: The LP presolver removed 18 variables and 15 constraints.
NOTE: The LP presolver removed 40 constraint coefficients.
NOTE: The presolved problem has 2 variables, 1 constraints, and 2 constraint coefficients.
NOTE: The LP solver is called.
NOTE: The Network Simplex algorithm is used.
NOTE: The Network Simplex algorithm was not run because the number of constraints (after presolve) is less than or equal to 1.
NOTE: The Dual Simplex algorithm is used.
                           Objective
      Phase Iteration
                             Value
                                           Time
       D 2
                        3.089805E+04
NOTE: Optimal.
NOTE: Objective = 30898.05.
NOTE: The Simplex solve time is 0.00 seconds.
NOTE: The output table 'SOLUTION' in caslib 'CASUSER(robpra)' added 4 rows for the current BY group.
tier=Tier2
NOTE: There were 4 rows read from table 'FORECAST DATA' in caslib 'CASUSER(robpra)'.
NOTE: There were 1 rows read from table 'CONTRACT DATA' in caslib 'CASUSER(robpra)'.
NOTE: Problem generation will use & threads
```

Solution Table

Obs	tier	Week	demand	price	Purchase	UsePurchased	PurchaseInventory	cost	production	UseRecycled	RecycledInventory	PaperCost	production_cost	PurchaseCost
1	Tier1	2	54047	0.15	105587	40535.25	113463.25	0.10	18000	13511.75	32487.75	17638.05	1800	15838.05
2	Tier1	3	67436	0.15	10000	50577.00	72886.25	0.18	20000	16859.00	35628.75	5100.00	3600	1500.00
3	Tier1	4	70515	0.15	10000	52886.25	30000.00	0.18	22000	17628.75	40000.00	5460.00	3960	1500.00
4	Tier1	1	53089	0.15	10000	6588.50	48411.50	0.10	12000	46500.50	27999.50	2700.00	1200	1500.00
5	Tier2	2	54047	0.12	25000	40535.25	47876.25	0.10	18000	13511.75	32487.75	4800.00	1800	3000.00
6	Tier2	3	67436	0.12	60587	50577.00	57886.25	0.18	20000	16859.00	35628.75	10870.44	3600	7270.44
7	Tier2	4	70515	0.12	25000	52886.25	30000.00	0.18	22000	17628.75	40000.00	6960.00	3960	3000.00
8	Tier2	1	53089	0.12	25000	6588.50	63411.50	0.10	12000	46500.50	27999.50	4200.00	1200	3000.00
9	Tier3	2	54047	0.09	35000	40535.25	67876.25	0.10	18000	13511.75	32487.75	4950.00	1800	3150.00
10	Tier3	3	67436	0.09	35000	50577.00	52299.25	0.18	20000	16859.00	35628.75	6750.00	3600	3150.00
11	Tier3	4	70515	0.09	35000	52886.25	34413.00	0.18	22000	17628.75	40000.00	7110.00	3960	3150.00
12	Tier3	1	53089	0.09	35000	6588.50	73411.50	0.10	12000	46500.50	27999.50	4350.00	1200	3150.00
13	Tier4	2	54047	0.07	50000	40535.25	64648.00	0.10	18000	13511.75	65716.00	5300.00	1800	3500.00
14	Tier4	3	67436	0.07	50000	50577.00	64071.00	0.18	20000	16859.00	68857.00	7100.00	3600	3500.00
15	Tier4	4	70515	0.07	50000	52886.25	61184.75	0.18	22000	17628.75	73228.25	7460.00	3960	3500.00
16	Tier4	1	53089	0.07	50000	39816.75	55183.25	0.10	12000	13272.25	61227.75	4700.00	1200	3500.00

statusOut Table

Obs	tier	status	algorithm	solutionStatus	objective	numlterations	presolveTime	solutionTime	numlterations2	primalInf	dualInf	boundInf
1	Tier1	OK	NS	OPTIMAL	30898.05	0	.004929066	.005860806	1	1.819E-16	0	0
2	Tier2	OK	NS	OPTIMAL	26830.44	0	.000683069	.001243830	1	1.819E-16	0	0
3	Tier3	OK	NS	OPTIMAL	23160.00	0	.000551939	.001891136	2	1.819E-16	0	0
4	Tier4	OK	SPX	OPTIMAL	24560.00	0	.000469208	.000495195		0	0	0

Indicator Constraints

- New business rule: purchase 0 or at least purchase_lb[contract]
- Use binary decision variables and indicator constraints

```
/* var Purchase{WEEKS} >= purchase_lb[contract]; */
var Purchase{t in WEEKS} >= 0 <= demand[t];</pre>
```

```
var IfPurchase{WEEKS} binary;
con Indicator0{t in WEEKS}:
    IfPurchase[t] = 0 implies Purchase[t] = 0;
con Indicator1{t in WEEKS}:
    IfPurchase[t] = 1 implies Purchase[t] >= purchase_lb[contract];
```


Indicator Constraints

- Expand original and automatically linearized constraints
- Call MILP solver

53 54

55

56

57

58

60

61

62

63

64 65

66

```
cofor {c in CONTRACTS} do;
  put c=;
   contract = c;
  expand Indicator0;
  expand Indicator1;
  expand Indicator0 / linearize;
  expand Indicator1 / linearize;
   solve;* with milp;
  print {t in WEEKS} (UseRecycled[t]/(UsePurchased[t]+UseRecycled[t]));
  create data (contract||'_Solution') from [Week]={t in WEEKS} contract Demand Price[contract] Purchase
     UsePurchased PurchaseInventory Cost Production UseRecycled RecycledInventory PaperCost
     production cost PurchaseCost;
  print contract TotalPaperCost;
end;
```


Indicator Constraints

Output from EXPAND Statements

```
Constraint Indicator0[1]: IfPurchase[1] = 0 IMPLIES Purchase[1] = 0 Constraint Indicator0[2]: IfPurchase[2] = 0 IMPLIES Purchase[2] = 0 Constraint Indicator0[3]: IfPurchase[3] = 0 IMPLIES Purchase[3] = 0 Constraint Indicator0[4]: IfPurchase[4] = 0 IMPLIES Purchase[4] = 0

Constraint Indicator1[1]: IfPurchase[1] = 1 IMPLIES Purchase[1] >= 10000 Constraint Indicator1[2]: IfPurchase[2] = 1 IMPLIES Purchase[2] >= 10000 Constraint Indicator1[3]: IfPurchase[3] = 1 IMPLIES Purchase[3] >= 10000 Constraint Indicator1[4]: IfPurchase[4] = 1 IMPLIES Purchase[4] >= 10000
```

```
Constraint Indicator0[1]: Purchase[1]
                                      - 53089*IfPurchase[1] <= 0
Constraint Indicator0[2]: Purchase[2]
                                      - 54047*IfPurchase[2] <= 0
                                      - 67436*IfPurchase[3] <= 0
Constraint Indicator0[3]: Purchase[3]
                                       70515*IfPurchase[4] <= 0
Constraint Indicator0[4]: Purchase[4]
Constraint Indicator1[1]: Purchase[1]
                                        10000*IfPurchase[1] >= 0
                                        10000*IfPurchase[2] >= 0
Constraint Indicator1[2]: Purchase[2]
Constraint Indicator1[3]: Purchase[3]
                                        10000*IfPurchase[3] >= 0
Constraint Indicator1[4]: Purchase[4] -
                                        10000*IfPurchase[4] >= 0
```

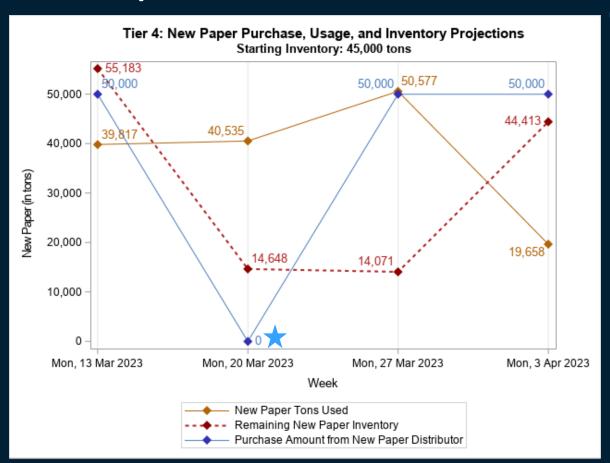
EXPAND

EXPAND / LINEARIZE

Optimization Results

Problem Summary					
Objective Sense	Minimization				
Objective Function	TotalPaperCost				
Objective Type	Linear				
Number of Variables	24				
Bounded Above	0				
Bounded Below	16				
Bounded Below and Above	8				
Free	0				
Fixed	0				
Binary	4				
Integer	0				
Number of Constraints	24				
Linear LE (<=)	0				
Linear EQ (=)	16				
Linear GE (>=)	8				
Linear Range	0				
Constraint Coefficients	50				

Solution Summary					
Solver	MILP				
Algorithm	Branch and Cut				
Objective Function	TotalPaperCost				
Solution Status	Optimal				
Objective Value	30898.05				
Relative Gap	0				
Absolute Gap	0				
Primal Infeasibility	0				
Bound Infeasibility	0				
Integer Infeasibility	0				
Best Bound	30898.05				
Nodes	1				
Solutions Found	1				
Iterations	7				
Presolve Time	0.00				
Solution Time	0.01				



Optimization Results

Contract	TotalPaperCost	TotalPaperCost with .lb	TotalPaperCost with .lb and Indicator Cons
Tier 1	\$20,398	\$30,898	\$30,898
Tier 2	\$22,560	\$26,830	\$26,830
Tier 3	\$23,160	\$23,160	\$22,763
Tier 4*	\$24,560	\$24,560	\$21,060*

Optimization Results: Tier 4

Summary

- Forecasting and optimization play well together
- SAS Visual Forecasting automatically generates, manages, and deploys large numbers of trustworthy forecasts
 - Champion models are chosen from time series, ML, hybrid (ML + time series), and deep learning forecasting algorithms
 - Output forecast tables are effortlessly read into SAS Optimization procedures
- SAS Optimization contains modeling language, broad range of solvers
 - IF-THEN/ELSE expression
 - FOR loop, COFOR loop, runOptmodel groupBy
 - Indicator constraints, automated linearization
 - EXPAND original or linearized model

