
Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

10 Ways to Optimize Your SAS Code
10 Quick Tips in 30 Minutes

Melodie Rush
Global Customer Success Principal Data Scientist

Connect with me
LinkedIn: https://www.linkedin.com/in/melodierush

https://www.linkedin.com/in/melodierush

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

Melodie Rush
Principal Data Scientist, SAS
Melodie works on the Customer Success Technical Team at SAS.
Since joining SAS, she has developed presentations and
methodology for doing many types of analysis, including data
mining, machine learning, forecasting, data exploration and
visualization, quality control and marketing. She has spent more
than 20 years helping companies identify and solve problems in
each of these analytical areas.

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

1.
Test your programs with the OBS= & FIRSTOBS= options

data complicated_program;
set sample_data(obs=50);
many, many, many more statements here;

run;

This technique may not adequately test all conditions but
will confirm the correctness of the overall program logic –
and save time and computer resources!

FIRSTOBS= option tells SAS which observation to start with

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

2.
Use IF-THEN-ELSE instead of IF-IF-IF

Do this:

data new;
set old;
if condition then

some action;
else if condition then

some other action;
else if condition then

some other action;
run;

Not this:

data new;
set old;
if condition then

some action;
if condition then

some other action;
if condition then

some other action;
run;

Please note that this general recommendation relates to conditions that are mutually exclusive. If the
conditions are not mutually exclusive, then further consideration is in order to see whether IF THEN ELSE is
appropriate.

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

2.
Order IF THEN conditions in descending order of probability

data new;
set old;
if condition occurring most often then

some action;
else if condition then

some other action;
else if condition then

some other action;
run;

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

3.
Minimize the number of times you read your data

Not this:

data a b c;
set old;
if condition then

output a;
else if condition then

output b;
else if condition then

output c;
run;

data a;
set old;
[more code]

run;
data b;

set old;
[more code]

run;
data c;

set old;
[more code]

run;

Do this:

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

3.
Minimize the number of times you read your data

Not this:

proc freq data = sashelp.shoes;
table region / list out=region_freq1;
table region*product/ list out=region_freq2;
table region*stores / list out=region_freq3;
run;

proc freq data = sashelp.shoes;
table region / list out=region_freq1;
run;

proc freq data = sashelp.shoes;
Table region*product/ list out=region_freq2;
run;

proc freq data = sashelp.shoes;
table region*stores / list out=region_freq3;
run;

Do this:

Not only use for
data processing,
also use for
procedures

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

4.
Limit the number of times you sort your data

If you think the incoming data is already sorted, use the presorted option
on your SORT statement; the sort order will be verified.

data new;
infile ‘rawdata.dat’;
input ID $ 1-4 name $ 5-25 salary 26-35;

run;

proc sort data=new out=new_sorted presorted;
by ID;

run;

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

4.
Limit the number of times you sort your data

The PROC PRINT or any other procedure/Data step that uses the view will execute the
stored SQL query, including the ORDER BY.

proc sql;
create view sql.new as
select *

from sql.old
order by firstvar;

proc print data=sql.new;
Run;

When creating an SQL view, avoid including an ORDER BY clause in the view, as the
data will need to be sorted every time the view is used.

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

4.
Overview of SQL views

A PROC SQL view contains a stored query that is executed when you use
the view in a SAS procedure or DATA step. Views are useful for the
following reasons:

• Often save space, because a view is frequently quite small compared with
the data that it accesses

• Shield sensitive or confidential columns from users while enabling the
same users to view other columns in the same table

• Ensure that input data sets are always current, because data is derived
from tables at execution time

• Hide complex joins or queries from users

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

4.
When is a sort required

Requires sorting

• DATA step with SET or MERGE
and BY statements

• By statement in PROC MEANS,
PROC FREQ, etc.

Does not require sorting

• PROC SQL joins (unless it includes
an ORDER BY statement)

• CLASS statements in PROC MEANS,
PROC FREQ, etc

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

5.
Select only the columns you need when working with SAS data

Not This:

data new;
set old (drop=category

type value ...);
more statements here;

run;

data new;
set old;
more statements here;

run;

Variations:
• Use the keep= option if you need to keep less variables than you need to drop!
• Use both keep= and drop= options to control variables on both the incoming and outgoing

sides!
• Keep= and drop= options can be used in PROC steps, too!

Do This:

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

6.
Select only the rows you need when working with SAS data

data new;
infile ‘old.dat’;
if city=‘CLEVELAND';
more statements here;

run;

data new;

infile ‘old.dat’;

more statements here;

run;

Not this:Do this:

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

6.
Consider the position of the subsetting IF

data new;
infile ‘old.dat’;
if city=‘CLEVELAND';
more statements here;

run;

data new;
infile ‘old.dat’;
more statements here;
if city=‘CLEVELAND';

run;

Not this:

Subset as soon as you have all necessary values in order to prevent unnecessary
creation of variables and additional processing.

Do this:

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

7.
If you are reading SAS data, use WHERE instead of subsetting IF

data new;
set old;
where condition;
more statements here;

run;

data new;
set old;
if condition;
more statements here;

run;

Instead of this:

Added efficiency: when using SAS/Access engines, SAS attempts to send the WHERE
clause to the RDBMS for evaluation rather than to SAS;

With the IF statement, SAS must do the processing.

Try this:

WHERE is a pre-processor. It subsets data before it is loaded into the
Program Data Vector (PDV).

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

The Program Data Vector

• The PDV is a place where SAS stores lines of data in memory before
writing an observation to a dataset on the disk.

• Created during compile phase, filled in with one line of data at a time
during execution.

_N
_

_ERROR
_

ID Nam
e

Addres
s

Height Weight Age

.

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

7.
If you’re going to run a procedure on the data, use

the “where” statement in the procedure

data new;
set old;
where condition;

run;
proc means data=new;

more statements
here;
Run;

proc means data=old;
where condition;

more statements here;
run;

Try this:Instead of this:

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

8.
Consider declaring variables as character when there is a storage savings.

data new;

input ID 1-4;
▪ ID is numeric requiring 8 bytes of storage

1015
2034
5543
6793
...

Consider Employee ID values like the following:

data new;

input ID $ 1-4;

▪ ID is character requiring 4 bytes of storage

A savings of 4 bytes per observation adds up when dealing with large data!

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

9.
Use Built in Features and Functions

Better:

if (upcase(a) = 'YES') then x = 1;

Works:

if (a = 'YES' or
a = 'YEs' or
a = 'YeS' or
a = 'yES' or
a = 'yeS' or
a = 'yEs' or
a = 'Yes' or
a = 'yes') then x = 1;

When testing for all possible combinations

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

9.
Use Built in Features and Functions

Types of Functions

– Character (SUBSTR, LEFT, RIGHT, UPCASE)

– Arithmetic (ABS, SUM, SQRT)

– Array (DIM)

– Date and Time (TODAY, YRDIFF, MDY, TIMEPART)

– Financial (MORT, NPV, SAVINGS)

– Mathematical (LOG, EXP)

– Probability (POISSON, PROBCHI)

– Quantile, Random Number (NOMINAL, UNIFORM)

– Sample Statistics (MEAN, MIN, MAX, STD, NMISS)

– Special (LAG, PUT, INPUT)
Introduction to SAS Functions Paper

SAS 9.4 Language Reference Documentation

http://www2.sas.com/proceedings/sugi24/Begtutor/p57-24.pdf
http://support.sas.com/documentation/cdl/en/lrcon/68089/PDF/default/lrcon.pdf

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

10.
Use the Correct Tools

• NOT a DATA STEP
– Must process each row in the table

– Creates another copy of the table

• Use DATASETS to assign
column attributes

– Formats

– Labels

proc datasets lib=sasdata nolist;

modify ManyColumns;

format date weekdate18.

balance dollar 12.2;

label cust_id = 'Customer ID';

quit;

data sasdata.ManyColumns;

set sasdata.ManyColumns;

format date weekdate18.

balance dollar 12.2;

label cust_id = 'Customer ID';

run;

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

10.
Use the Correct Tools

Do not recode

value agerange

Low - <18 = ‘Minor’

18 - <30 = ‘Young Adult’

30 - <45 = ‘Early Family’

45 - <60 = ‘Middle Age’

60 - high = ‘Aged to Perfection’;

data two;

set one;

if age lt 18 then

age_group='Minor’;

else if age lt 30 then

age_group='Young Adult’;

else if age lt 45 then

age_group='Early Family’;

else if age lt 60 then

age_group='Middle Age’;

else age_group=‘Aged to Perfection’;

Use Formats

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

10.
Use the Correct Tools

Use SAS Date Values

• Valid from 1582 A.D. to 19900 A.D.

• Many formats available for grouping/reporting

date. 11JUL18

date9. 11JUL2018

worddate. July 11, 2018

weekdate. Wednesday, July 11, 2018

month. 7

monname. July

monname3. Jul

monyy7. JUL2018

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

SAS Dates
What are they?

• The SAS System represents dates as the number of days since a
reference date.

• The reference date, or date zero, used for SAS date values is 1 January
1960.

• For Example

January 1, 1960 0

December 31, 1959 -1

February 3, 1960 33

October 17, 1991 11612

March 30, 2022 22734

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

Where to learn more?

Resources

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

20 Ways to run your SAS Programs Faster
Video and Paper

SAS Global Forum 2020 – Video

SAS Global Forum 2020 - Paper

https://video.sas.com/detail/videos/programming-sessions/video/6145597366001/twenty-ways-to-run-your-sas-program-faster-and-use-less-space?autoStart=true
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2019/3684-2019.pdf

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

Resources
Online

SAS Tutorials
on

Programming

http://support.sas.com/training/tutorial/

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

Resources
SAS Global Forum Papers

• Leave Your Bad Code Behind: 50 Ways to Make Your SAS®
Code Execute More Efficiently William E Benjamin Jr, Owl
Computer Consultancy, LLC

• SAS® Shorts: Valuable Tips for Everyday Programming Jeff
McCartney and Raymond Hu, Social and Scientific Systems,
Inc., Bethesda, MD

• Productivity Tips for SAS® Enterprise Guide® Users Jennifer
First and Steven First, Systems Seminar Consultants, Madison,
WI, United States

• Tips and Techniques for the SAS® Programmer Helen Carey,
Carey Consulting, Kaneohe, HI, Ginger Carey, Carey Consulting,
Kaneohe, HI

To search past papers
click here

http://support.sas.com/resources/papers/proceedings12/257-2012.pdf
http://www.nesug.org/proceedings/nesug01/at/at1013.pdf
http://support.sas.com/resources/papers/proceedings12/301-2012.pdf
http://support.sas.com/resources/papers/proceedings11/272-2011.pdf
http://www.lexjansen.com/

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

Q&A

Please submit your questions using the Q&A icon
located in the menu at the bottom of your screen

