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1.1 Introduction to Hierarchical Linear
Models

Nested Data

« Multilevel models are used when you have nested data.
« Nested data typically comes in one of two forms: hierarchical or
longitudinal.

Gsas
Hierarchical Data Structures
- Hierarchical data structures are those in which multiple micro-level units
are sampled for each macro-level unit.
« A common hierarchical data structure is when individuals (micro-units)
are sampled from naturally occurring groups (macro-units).
Population
Group 1 Group 2 | Group J I
| Case 1 ” Case 2 || Case nq | | Case 1 ” Case 2 || Case n; |
Gsas
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1-4 Lesson 1 Introduction to Hierarchical Linear Models

Unintentional Sources of Nesting

« Nesting might alsooccur even when itis not an explicit part of the study
design and thus is unintentional.

- Consider the following examples:
+ respondents nested within an interviewer
« homeless adolescents nested within social service sectors

« multiple specimens nested within a laboratory

Gsas

Dependence in Hierarchical Data

« Because many micro-level observations come from the same macro-level
unit, this produces dependence in the data.

+ Students attending the same school might have more similar academic outcomes
than students attending different schools.

« Employees working with the same manager might have more similar problem-
solving strategies than employees working with different managers.

« Multilevel models provide a way to model this dependence, whereas more
traditional models do not.

Gsas
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Longitudinal Data Structures

- Longitudinal data structures arise when the same units are sampled
repeatedly over time.

- Longitudinal data are useful for tracking change in an outcome over time
(for example, response to adrug).

Population
Subject 1 Subject 2 | Subject J |
| Time 1 ” Time 2 | | Time nq | | Time 1 ” Time 2 | | Time n; |

Gsas

Dependence in Longitudinal Data

+ Because repeated measures are collected on the same unit, this produces
dependence in the data.

- Example: Employee job performance istracked over a period of four years.

+ Some employees perform at consistently higher levels compared to other
employees.

« Some employees increase in performance at a steeper rate over time compared
to other employees.

« Again, multilevel models provide a way to model this dependence, whereas
more traditional models do not.

Gsas
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The High School and Beyond Data Set

- To demonstrate hierarchical linear models, we will use the High School and
Beyond (hsb) survey data set.

« The sample consists of 7185 students from 160 schools.
« The continuous response variable is student’s mathematical ability.
- Level 1 predictors are student’s socioeconomic status, gender, and race.

- Level 2 predictors are school size, whether itis a public school, and the
disciplinary climate of the school.

Gsas

Assumptions of the OLS Regression Model

The ordinary regression model makes a number of assumptions, including
the following:

« The mean of errors is zero.

The predictors are uncorrelated with errors.

Predictor levels are fixed.

Errors are normally distributed (for inference).

Errors are homoscedastic (have constant variance).

- Errors are independent (uncorrelated).

Note: The last three are reflected in the term normal-iid. This means that
the errors are normal, independent, and identically distributed.

Gsas
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Potential Violations of Assumptions

- Of these assumptions, the assumption of independence is particularly
dubious given the nesting of students within schools.

- Homoscedasticity might also be violated, if the effect of socioeconomic
status (SES) actually varies among schools.

Gsas
Three Key Problems When Violating Independence
If the observations are positively correlated:
1.  Fstatisticstend to be too large.
» You are likely to overestimate thesignificance ofthe model as a whole.
2. Standard error estimates tend to be too small.
» You are likely to overestimate thesignificance of specific regression
coefficients.
3. Ignoring the hierarchical structure of data severely limits the ability to
model within and between group effects that might be of key interest.
Gsas
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Why Inferences Are Biased

- To get a better informal sense of why inferences are biased when the
independence assumption is wrong, consider the following scenario:

« You go to your regular physician. You think that you have a cold and she
diagnoses you with a serious disease. Which of these should you do?

- Seek a second opinion from her partner in the clinic, with whom she
potentially consulted.

- Seek a second opinion from a physician at another clinic.

+ In the latter case, you have two, truly independent opinions and can have
greater confidence if they converge.

Gsas
Classical Approach to Multilevel Data
A classical approach to modeling a multilevel problem, such as students
nested within schools, isto include schools as a fixed effectin the model.
This has two major disadvantages:
1. explosion in the number of parameters to estimate
2. narrow scope of inference
Gsas
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- Multilevel modeling does not incorporate schools as a fixed effects

Multilevel Modeling

predictor, but rather treats schools as randomly sampled from a population.

Effects are not estimated individually for each school, but are assumed to
have a particular distribution across the population of schools.

You can write the regression model as follows:
Math; =by; +BSES; +¢&;

where you assume a particular distribution for by, asyou customarily
do for g;.

Gsas

Multilevel models have the following advantages:

Advantages of Multilevel Models

are parsimonious
can make inferences to the population of groups

conform to the sampling design with the random selection of groups
followed by the random selection of individuals within groups

enable you to examine the effects of individual-level and group-level
influences simultaneously

enable you to estimate contextual effects

Gsas
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1.2 The Random-Effects ANOVA Model

The Random-Effects ANOVA Model

The simplest multilevel model is a random-effects ANOVA.
- There are no predictors in the model, only a random intercept.

« The random intercept captures mean differences among the groups.

Like the fixed-effects ANOVA, you can decompose the variance of the
observed variable into within-group and between-group components.

Gsas

MIXED Procedure

General form of the MIXED procedure:

PROC MIXED DATA=SAS-data-set <options>;
CLASS variables;
MODEL response = <fixed-effects> </options>;
RANDOM random-effects </options>;
REP EATED <repeated-effect></options>;
RUN;

Gsas
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The Random-Effects ANOVA Model

(micro) Level 1:
Vi =by; +4;

(macro) Level 2:

bOj :ﬂ00+b*0j

Reduced Form:
_ *
Yii = Py +b 0j TEij

Gsas

The Variance Components of the Model

« The reduced form equation is shown below:
— *
Yi = B +b 0j TEj
« Itincludes one fixed effect (the grand mean) and two random components
(the residual error at Level 1 and the error at Level 2).

« Assume that these errors are normally distributed and uncorrelated with
one another: ) « )
&; ~N(0,0%) b*;; ~N(0,0%,)
« This implies the following:
E(yij) = (ﬂoo)
V(yij) =V (b*oj +&jj ) ZV(b*oj) +V(5ij) = O'Zoo +0°

Gsas
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Lesson 1 Introduction to Hierarchical Linear Models

The Intraclass Correlation

- Because the total variance is decomposed into two additive components,
you can calculate the portion due to between-group mean differences as
follows:

2

O o

2 2
GOO+U

ICC=

- This value is referred to as the intraclass correlation because it also
represents the degree of correlation between individuals within a group
(or class).

- The intraclass correlation measures the degree of dependence in the data
or the strength of the nesting effect.

Note: The general linear model assumes ICC=0.

Gsas

Estimating Multilevel Models in SAS

+ Linear multilevel models, such as the random-effects ANOVA model,
can be estimated in SAS with the MIXED procedure.

« The reduced form equation is used to define the model in PROC MIXED.

- It is often more difficult to begin from the reduced form equation
compared to the Level 1 and 2 expressions.

« A good general strategy for specifying multilevel models in PROC MIXED
isto first write the Level 1 and Level 2 equations and then construct the
reduced form equation from these expressions.

Gsas
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Fitting a Random-effects ANOVA Model with PROC MIXED

3

)

This demonstration calculates the intraclass correlation between students within a school to determine the
degree of dependence that is present in the data. Examine the partial contents of the data set using
PROC PRINT.

proc print data=mixed.hsb (obs=15) ;
var school id student id student ses school disclim
student mathach;
run;

Line Listing of High School and Beyond Data Set

Obs school ID student ID  student ses school disclim | student mathach
1 1224 1 -1.528 1.597 5.876
2 1224 2 -0.588 1.597 19.708
3 1224 3 -0.528 1.597 20.349
4 1224 4 -0.668 1.597 8.781
5 1224 5 -0.158 1.597 17.898
6 1224 6 0.022 1.597 4583
7 1224 7 -0.618 1.597 -2.832
8 1224 2 -0.993 1.597 0.523
9 1224 9 -0.838 1.597 1.527

10 1224 10 -0.458 1.597 21.521
11 1224 1 -1.448 1.597 9.475
12 1224 12 -0.658 1.597 16.057
13 1224 13 -0.468 1.597 21.178
14 1224 14 -0.988 1.597 20.178
15 1224 15 0.332 1.597 20.349

These results show the inherent nesting of the data in that there are multiple students nested within
schools. Further, the student-level variables vary across both students and schools, but the school-level
variables are constant across students within a school, but vary across schools.

Copyright©2019, SAS Institute Inc., Cary, North Carolina, USA. ALLRIGHTSRESERVED.
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Next sort the data by school _id so that the data are ordered properly for the MIXED analyses. You do not
need to manually sort the data if you use a CLASS statement in PROC MIXED. However, each time that
PROC MIXED encounters the CLASS statement, the data are re-sorted. If the data are already sorted,
omitting the CLASS statement can increase computational efficiency.

proc sort data=mixed.hsb;
by school_id;
run;

Specify a random ANOVA model:

proc mixed data=mixed.hsb cl covtest;
model student mathach = / solution ddfm=bw;
random intercept/subject=school id v vcorr;
title 'Math Achievement: Random-effect ANOVA';
run;

The options selected for the PROC MIXED statement are ¢l and covtest. The first of these requests
confidence limits for the variance component estimates, and the second requests asymptotic standard
errors and Wald tests for covariance parameters. It is important to note that both of these are based on
large-sample approximations and require a fairly large sample (number of schools in this case) to be
considered useful. The hsb data set contains data for 160 schools. The covtest generally requires larger
samples than the cl option and might not be appropriate here.

The MODEL statement specifies the fixed effects for the model. In this case, there are no predictors
with fixed effects, only the default fixed intercept. Here are selected MODEL statement options:

SOLUTION  requests that the estimates, standard errors, ¢ statistics, degrees of freedom, and p-values
be displayed for all fixed-effects.

DDFM=BW  requests that the degrees of freedom for testing the fixed effects be computed using
the BETWEEN/WITHIN method. This method is what is typically used for multilevel
models, and it is appropriate in a large sample. Better methods are available for small
samples, including Satterthwaite (DDFM=SATTER) and improved Kenward-Roger
(DDFM=KR?2). KR2 is an updated version of KR that performs better for nonlinear
covariance structures.

The RANDOM statement specifies the random effects in the model. In this case, the INTERCEPT
keyword specifies that the intercept is to be a random effect. Selected options for the RANDOM
statement include the following:

SUBJECT= indicates the nesting structure of the data. Defining SUBJECT=school_id tells
PROC MIXED that the intercept is to vary randomly across schools. This variable
is typically also specified in the CLASS statement. However, if only one SUBJECT=
variable is used, and if the data are sorted by the SUBJECT= variable, then the
SUBJECT= variable can be omitted from the CLASS statement to improve
computational speed and memory usage.

v requests that the covariance matrix among observations (Level 1 observations)
be displayed.
VCORR requests that the correlation matrix among Level 1 observations be printed. (This is

the standardized V matrix.) For the random-effects ANOVA model, the off-diagonal
element is the intraclass correlation coefficient (ICC).

Copyright©2019, SAS Institute Inc., Cary, North Carolina, USA. ALLRIGHTSRESERVED.
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PROC MIXED Output

Model Information

Data Set MIXED.HEE
Dependent Variable student_mathach
Covariance Structure Yariance Compaonents
Subject Effect schoal_|D

Estimation Method REML

Residual Variance Method Profile
Fixed Effects SE Method Model-Based

Degrees of Freedom Method = Between-Yithin

The Model Information section is useful for making sure that you specified the model as intended.
Variance Components is the default structure for the covariance matrix of the random effects at Level 2.
It specifies that the random effects are independent. In this case, this assumption is acceptable because
you have one random effect (the intercept).

Dimensions
Covariance Parameters 2
Columns in X 1

Columns in Z Per Subject | 1
Subjects 160
Max Obs Per Subject 67

Mumber of Observations
Mumber of Observations Read 7185
Number of Observations Used 7185

Mumber of Observations Mot Used ]

The Dimensions table provides information about the size of the model and data set. The two covariance
parameters correspond to 6% and 2 In PROC MIXED, the X matrix is the design matrix for the fixed
effects. Because the model includes only one fixed effect, the intercept S, this is listed as one. The Z
matrix is the design matrix for the random effects at Level 2. There is a random intercept, so this is also

listed as one. Finally, PROC MIXED reports that there are 160 subjects (independent sampling units).
This is the number of unique values for school_id in the data. The maximum number of observations per

subject (students per school) is 67.

Copyright©2019, SAS Institute Inc., Cary, North Carolina, USA. ALLRIGHTSRESERVED.
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lteration History

Iteration Evaluations -2 Res Log Like  Criterion

0 1 4810291726234
1 2 471681230625 0.00000109
2 1 47116, 759350024 0.00000000

Convergence criteria met.

The Iteration History section describes the optimization of the model. The message “Convergence criteria
met” indicates that the model converged. If the model does not converge, do not interpret the model
estimates. You might need to increase the number of iterations that PROC MIXED performs, use
different start values (written by the PARMS statement), or there might be a problem with your model.

In this model, the V and VCORR options provide the estimate of the intraclass covariance and correlation
matrices for the first group, respectively. The Vand VCORR matrices are the same across all groups,
S0 you need to consider only one. Here are the estimates for the first subject (partial output):

Estimated \V Matrix for Subject 1

Row Coll Col2 Col3 Cold Col5 Colb Col7
477584 | 86097 | 86097 | B.6097 36097 86097 | 86097
86097 477634 86097 | 86097 86097 | 86097 36097
86097 B.B097 477534 8S.6097 86097 | 86097 36097
86097 B.B097 56097 477584 8B097 | 86097 36097
86097 B.B097  B6097 56097 477584 | 86097 36097
86097 | B8.B097 586097 56097 86097 477534 36097
86097  B8.B097 86097 8.6097 86097 8.B097 477534

—

= | 2h | N | Ll |
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Partial Output

Estimated V Correlation Matrix for Subject 1

Row Coll Col2 Col3 Cold Col5 Col6 Col7
1 1.0000 01803 01803 0.1803 01803 0.1803 0.1803
2 01803 1.0000 01803 0.1803 01803 0.1803 0.1803
3 01803 01803 1.0000 01803 01803 01803 0.1803
4 01803 01803 0.1803 1.0000 0.1803 0.1803 0.1803
5 0.1803 01803 0.1803 0.1803 1.0000 0.1803 0.1803
6 0.1803 0.1803 01803 0.1803 0.1803 1.0000 0.1803
7 01803 01803 01803 01803 0.1803 0.1803 1.0000

This reflects that the estimated ICC = 0.1803. Notice that not only is this correlation equal across all
individuals within the first group, but it is also equal across all groups. (Only the groups are assumed

to be independent of one another.) This single within-class correlation highlights the Level 1 correlation
structure that is imposed by the random intercept model (for example, compound symmetry).

Level 1 and Level 2 variance estimates and test statistics are shown here:

Covariance Parameter Estimates
Cov Parm | Subject | Estimate | Standard Error | Z Value | Pr=Z | Alpha  Lower| Upper
Intercept | school_ID 8.6097 1.0778 7.99 | <0001 0.05 | 58339 11.1843
Residual 39.1457 0.6607 8926 =<.0001 0.05 | 37.8855  40.4765

The Covariance Parameter Estimates section provides estimates of the variance components, which are
6%, =8.61and &% =39.15.

5 861
6t +6° 8.61+39.15

In other words, 18% of the variance in achievement scores is estimated to be due to between-school
differences and 82% is due to differences among students within schools. Put another way, the correlation
between the achievement scores of students attending the same school is 0.18. This is, of course, the same
value that was presented in the VCORR matrix.

In addition, you requested confidence limits and null hypothesis tests for the covariance parameter
estimates by including CL and COVTEST in the PROC MIXED statement. For variances, the confidence
limits take into account the lower boundary of zero and are computed based on a 2 distribution. From
these intervals, you can see that the precision is greater for the variance component at Level 1 than for the
variance component at Level 2. This result is quite typical for multilevel models. These confidence
intervals never include zero, so in practice, very small values for the lower bound might indicate that the
variance component is unnecessary. Alternatively, you can use the tests supplied by COVTEST to assess
the variance components. In this case, both are statistically significant.

Thus, the estimate of the ICC is

Note: For covariances and other parameters without a lower boundary, the confidence limits computed
using the CL option are based on a normal distribution.

Copyright©2019, SAS Institute Inc., Cary, North Carolina, USA. ALLRIGHTSRESERVED.
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Note: The COVTEST option produces Wald z-tests and p-values for all variance and covariance
parameter estimates. However, these tests assume an asymptotic (large-sample) normality of the
estimates. Given the lower boundary of zero for variance parameters, the sampling distributions
for these parameter estimates tend to be skewed unless samples are extremely large, which makes
these tests inaccurate.

It is important to recognize that because the p-values and confidence limits are based on different
assumptions about the sampling distributions of the variance components, they do not always agree.
(That is, the y? based confidence limits might exclude zero, but a normal-theory null hypothesis test
is not rejected by the p-value.)

There is no direct test of the ICC, but notice that the ICC is zero when G20 is zero, so typically the test
of &(2)0 is used as a proxy for a test of the estimated ICC.
Solution for Fixed Effects
Effect Estimate Standard Error | DF  t Value  Pr = |t
Intercept 126370 02443 1549 51.72 | <.0001

The fixed intercept estimate, which is the estimate of the average group mean, is ,5’00 =12.64 . This

value differs slightly from the grand mean. If the groups differ in size, as in this case, the average of
the estimated group means does not necessarily equal the grand mean estimate.

End of Demonstration
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1.3 Random-Effects Regression Model
One Predictor: Fixed Intercept and Fixed Slope
Level 1 Model: Fixed Intercept, Fixed Slope
Yi = bOj +bljxij + & Yii
Level 2 Model:
Bio
boj :ﬂoo Boo>,
blj =ﬂ10 /
Reduced-Form Model:
Vi = Boo + BoXi + & I — — T
0
Level 1 predictor x;
Gsas
One Predictor: Fixed Intercept and Fixed Slope
Level 1 Model: Level 2 Model:
Vi =Dy, 0% + & B = Foo
blj :ﬁlo
Reduced-Form Model:
Vi = Boo + Bk + & & ~ N(0,0?)
proc mixed data=mydata cl covtest;
model y = x / solution;
run;
Gsas
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One Predictor: Random Intercept and Fixed Slope

Level 1 Model: Random Intercept, Fixed Slope
Yi =Bo; +0,%; + & ) /
Level 2 Model: %
g Bi
b0j2ﬂ00+b*0j /
blj = 1810

Reduced-Form Model:
Yi = (ﬁoo +b*0j)+ﬁloxij &

0
— *
= (ﬁoo + ﬂloxij )+ b 0j T&i Level 1 predictor x;j

AN

Gsas
One Predictor: Random Intercept and Fixed Slope
Level 1 Model: Level 2 Model:
Y =by; +b,%; + & By; = oo +0%;
blj ::Bm
Reduced-Form Model:
Vi :(,800 +b*0j)+,810xij +& & ~N(0,0%)
:(1800 +ﬂloxij)+b*oj & b*Oj - N(O'O-Zoo)
proc mixed data=mydata cl covtest;
model y=x / solution;
random intercept / subject=L2_ID;
run;
Gsas
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Level 1 Model:

Vi =0o; 0%+

Level 2 Model:
bOj zﬂoo+b*0j
blj ::B10+b*1j

Reduced-Form Model:
Yii :(:800 +b*0j )+(ﬂ10 +b*1j)xij + &

DA

Yij

00

A\

One Predictor: Random Intercept and Random Slope

Random Intercept, Random Slope

']

0
:(ﬂoo + Lo )+(b*oj +b*; X; )+8ij Level 1 predictor x;
§sas
Covariance Matrices of Residuals
and Random Effects
Val’(é‘ij) =0’ } Level 1
2 )
var(b*;;) = oy,
var(b*,;) =o°y | Level 2
COV(b*Oj ) b*lj) =0,y =0y
2 A
G _ o 00 601 [ Covariance
o 2 matrix
Op .0 11)] gsas
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Level 1 Model: Level 2 Model:
Yii :b0j+bljxij+gij bOJ' :'300+b*01
blj =ﬁ10+b*1j

Reduced-Form Model:
Yij :(ﬂOO+b*0j)+(ﬂ10+b*1j)xij T & &~ N(0,0°)

b*, 0

Oy

One Predictor: Random Intercept and Random Slope

=(Boo By )+ (0%, +07%, % )+ 4 {b*oj} N HO} {GZOO

proc mixed data=mydata cl covtest;
model y=x / solution;

run;

random intercept x / subject=L2_ ID type=un gcorr;

Gsas
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Fitting a Random-Effects Regression with PROC MIXED

For this demonstration, use the hsb data set to fit the three regression models described in the slides and
compare their substantive implications. For these analyses, the dependent variable is math achievement,
student_mathach, and the predictor is the socioeconomic status of the student’s family, student_ses.
The nesting of students within schools is indicated by school_ID.

Simple Regression Model
Begin with the simple regression model with a fixed intercept and slope:
Level 1 Equation:

Math; =b,; +b, SES; +&; & ~N(0,0%)

Level 2 Equations:

bo i~ ﬂoo
b, i Puo
Reduced-Form Equation:
Math; = B, + B,SES;; + ¢

H_J
Fixed-Effects

To enter this model into the MIXED procedure, write the following code:

proc mixed data=mixed.hsb cl covtest;
model student mathach = student_ses / solution;
title 'Math Achievement: Regression Model, SES';
run;

The results from this model provide a useful baseline for judging subsequent models.

Model Information

Data Set MIXED HSE
Dependent Variable student_mathach
Covariance Structure Diaganal
Estimation Method REML

Residual Variance Method Profile
Fixed Effects SE Method Model-Based

Degrees of Freedom Methed | Hesidual

Notice that the covariance structure is diagonal. This indicates that you are assuming independence
of observations. This indicates that the model reduces to an ordinary least squares model.

Copyright©2019, SAS Institute Inc., Cary, North Carolina, USA. ALLRIGHTSRESERVED.




1-24 Lesson 1 Introduction to Hierarchical Linear Models

Dimensions
Covariance Parameters 1
Columns in X 2
Columns in Z 0

Subjects 1
Max Obs Per Subject 7185

There is one covariance parameter, o2. Recall that X is the design matrix of the fixed effects, including,
in this case, a column for the intercept and a column for student_ses. Z is the design matrix for the
random effects, which in this case is empty, because there are no random effects. Due to the lack

of random effects in this model, all 7185 observations are assumed to be independent.

Covariance Parameter Estimates
Cov Parm | Estimate | Standard Error | Z Value | Pr=2Z Alpha | Lower Upper
Residual 41,1585 0.6365 8993 <0001 | 005 395452 425385

The estimate of the Level 1 residual error variance is 4% =41.16.

Solution for Fixed Effects

Effect Estimate Standard Error DF  t Value  Pr = |t
Intercept 127474 0.0756% 7183 | 163.42  <.0001
student_ses 3.1839 0.09712 | 7183 32.78  <.0001

Because student_ses is mean-centered (has a mean of zero), you can interpret these estimates as follows:
The estimate /%00 =12.75 is the expected math achievement of a student from an average SES family; and

the estimate f3,, = 3.18 indicates the expected increase in math achievement per one-unit increase
on the SES index.

One important feature of this model is that it assumes independence of observations. Further, it allows
for no random effects. That is, there is only one intercept and one slope estimate, and these estimates
apply equally to all students no matter what school they come from.

The Random Intercepts Model

The mixed model assumes that these school-specific intercepts are normally distributed around the
average regression line. Further, it assumes that the residual errors for the students are independently
and normally distributed around their group regression line. These seem to be much more reasonable
assumptions. The model equations are shown here.

Level 1 Equation:
Math; =by; +b;SES; +&; & ~N(0,07)
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Level 2 Equations:
By; = Boo +b*;
blj = 1310

Reduced-Form Equation:
Mathy; =, +b*; )+ B,SES; +¢;

= (/oo + BuSES; ) +b%; +2
M

Fixed- Random-
Effects Effect

b*,; ~ N 0,6%,)

In PROC MIXED, specify the following:

proc mixed data=mixed.hsb cl covtest;
model student mathach = student ses / solution ddfm=bw;
random intercept / subject=school id;
title 'Math Achievement: Random-effect ANOVA';
run;

PROC MIXED Output

Model Information

Data Set MIXED.HSE
Dependent Variable student_mathach
Covariance Structure “ariance Components
Subject Effect school 1D

Estimation Method REML

Residual Variance Method Profile
Fixed Effects SE Method Model-Based

Degrees of Freedom Method  Betweean-YWithin

Dimensions
Covariance Parameters 2
Columns in X 2

Columns in £ Per Subject 1
Subjects 160
Max Obs Per Subject &7
Note: The covariance structure is variance components, and you now have two covariance parameters,

o2 and 62¢0. There are still two fixed-effects predictors, so the columns in X are unchanged, but
the number of columns in Z is now one, which reflects the random intercept.
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The Subjects line now lists 160 schools as the independent sampling units.

Covariance Parameter Estimates
Cov Parm | Subject | Estimate | Standard Error | Z Value | Pr=Z Alpha | Lower Upper
Intercept | school_|D 47665 0.6549 728 <0001 005 37045 B.3636
Residual 37 0346 0.6254 A8.27 <0001 005 358388 382916

The estimates of the variance components are &go =4.77 and 4% =37.03, and the lower bounds of both

confidence intervals are quite far from zero. Of note, the addition of the Level 2 variance component
resulted in a reduction in the Level 1 residual variance (from 41 to 37). This is to be expected, because
allowing the school intercepts to vary necessarily decreases the distance between the students’
observations and the regression lines for their schools.

Itis also interesting to compare these estimates to the Level 1 and Level 2 variance components from the
random-effects ANOVA from the last demonstration. In the random-effects ANOVA, 6-(2)0 =8.61 and

6% =39.15. Recall that the random-effects ANOVA includes no Level 1 predictors, so these are
unconditional variances, whereas in the random-effects regression, they are conditional on SES.
Intuitively, you would expect that adding a predictor at Level 1 would decrease the variance at that level,
and indeed, this variance decreases from 39 to 37 through the inclusion of SES.

However, it is more interesting that the variance of the intercept parameter in the random-effects
regression model (4.77) is only about half as large as the variance of the intercept in the random-effects
ANOVA model (8.61). The reason for this is that even though SES is a student-level predictor, it also
carries information about differences among schools. That is, the average SES within some schools is
higher than others. This variation in the average SES of students from different schools accounts for a

great deal of variation in the school means; hence, the much lower value of &2, in the random-effects
regression.

Solution for Fixed Effects

Effect Estimate Standard Error DF  tValue Pr = |
Intercept 12 6575 01880 | 159 E7.34 <0001
student_ses 2.3903 01057 | 7024 22651 <0001

The average intercept across schools is estimated to be 3 -12.66 . However, the significant variance

component for the intercept indicates that this value varies considerably across schools. The effect of
student SES is now estimated as 3 = 2.39. This value is somewhat smaller than the one estimated

in the fixed-effects regression model, again related to the confounding of within-school and between-
school differences on SES in the multilevel analysis.

Random Slopes

The SES effect estimated in the preceding model is assumed to be constant across all schools because
there is no corresponding random effect associated with SES. However, you might have reason to believe
that the effect of SES varies across schools. Recenteducational policy emphasized the need to promote
equity within schools to bring the achievement level of underprivileged students to the same high level
often observed for more affluent students. Some schools might emphasize this more than others, which
can lead to differences in the effect of SES. In general, more equitable schools are those showing weaker
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SES effects. For example, the observations added to the plot belong to a school showing high equity. To
accommodate such differences between schools in the effect of SES, you need to incorporate random
slopes into the mixed model.

Random Slopes Model

Level 1 Equation:
Math; =b,; +b;SES; +&; & ~ N(0,0?)

Level 2 Equations:
v Rl )
b, =B +b*; b*; 0) o, Oy
Reduced-Form Equation:
Math;; = (,BOO +b*oj)+(ﬂ10 +b*, )SESij +&;
= (B + BSES; )+ (b*,; +b*, SES; )+

& J . _J
Y~ '
Fixed- Random-
Effects Effects

The PROC MIXED code for this model is specified as follows:

proc mixed data=mixed.hsb cl covtest;

model student mathach = student ses / solution ddfm=bw;
random intercept student ses / subject=school id type=un g
gcorr;

title 'Math Achievement: Random Intercept and Slope';
run;

Notice that student_ses was added to the RANDOM statement. Further, the TYPE=UN option enables
the random intercepts and slopes to covary (so that o1 is estimated and not fixed to zero).

Copyright©2019, SAS Institute Inc., Cary, North Carolina, USA. ALLRIGHTSRESERVED.




1-28 Lesson 1 Introduction to Hierarchical Linear Models

PROC MIXED Output

The covariance matrix of random effects (G) is unstructured. There are two columns in Z (two random
effects: the intercept and the slope). In total, there are four covariance parameters to estimate: o2, 6%y,

c10, and o211,

Model Information

Data Set b[<ED.HSE
Dependent Variable student_mathach
Covariance Structure Lnstructured
Subject Effect schoal_|D
Estimation Method REML

Residual Variance Method Profile

Fixed Effects SE Method Model-Based

Degrees of Freedom Method @ Between-YYithin

Row

Row

Dimensions
Covariance Parameters 4
Columns in X 2
Columns in Z Per Subject 2
Subjects 160
Max Obs Per Subject B7

Estimated G Matrix

Effect Subject Coll Col2
Intercept 1 48278 | -0.1547
student_ses | 1 01547 D.A2Y
Estimated G Correlation Matrix

Effect Subject Coll Col2
Intercept 1 1.0000 | -0.1096
student_ses | 1 -0.1096  1.0000
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Covariance Parameter Estimates

Cov Parm  Subject | Estimate Standard Error Z Value PrZ Alpha | Lower Upper

UN(1,1) schaol_|D 48278 06714 78 <0001 005 37406 BA71B
UN(2,1) school |0 -0.1547 0.2988 052 06046 005 074053 0.4308
UN(2,2) schaol_|D 04127 0.2350 176 00395 005 01730 1.9418
Residual 36,5504 06253 352 <0001 | 005 3568274 350956

The Level 2 covariance parameter estimates are listed by the row and column position in the unstructured
covariance matrix for the random effects. The estimated G matrix is as follows:

G [ _(un@@y (48278
oy, o%) un21) un(2,2)) |-0.1547 0.4127
The row 1, column 1 position, UN(1,1), is &2, ; the row 2, column 1 position, UN(2,1), is &,,; and the
row 2, column 2 position, UN(2,2), is ‘5'121-
Examining the estimates, the slope variance is statistically significant, which indicates that there are

differences in equity across schools. In some schools, SES is a weaker predictor of math achievement
scores than in others.

Is it the case that schools with weak SES effects are also high-performing, which is consistent with the
notion that the scores of impoverished students are raised to the level of affluent students? The correlation
of -0.11 between the random intercepts and slopes indicates that schools with higher intercepts do indeed
have lower (less positive) slopes for SES. However, the confidence interval for the corresponding
covariance estimate runs from -0.74 to 0.43, which indicates that this relationship is not significant.

Solution for Fixed Effects

Effect Estimate Standard Error  DF | t Value Pr = |t
Intercept 12.6651 01898 159 BE.7Z | =<.0001
student_ses 2.3938 0.1181 7024 2027 | =.0007

The solution for the fixed effects is interpreted as before, with the caveat that the estimate given here for
student_ses is an average effect. From the significance of the variance component for this variable,
it is evident that the SES effect varies significantly across schools.

End of Demonstration
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Wrap-Up

Thank you for attending our SAS seminar.
Instructor email: Mike.Patetta@sas.com

Course links:

https://support.sas.com/edu/schedules.html?ctry=us&crs=BHLN M

Gsas
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