
Copyright © SAS Inst itute Inc. A l l r ights reserved.

Top 10 Ways to Optimize Your SAS Code

Presented by Jeff Simpson

SAS Customer Loyalty

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Writing efficient SAS programs means balancing the constraints of

TIME

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Writing efficient SAS programs means balancing Time and

SPACE

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Writing efficient SAS programs means balancing Time and Space.

Luckily, the SAS programming language offers a
wide assortment of efficiency techniques, intended
to help you balance these constraints.

+

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Agenda: Use Cases

#1—Minimizing Reads on INPUT

#2—KEEP and WHERE Data Set Options

#3—WHERE clause optimization

#4—Avoiding Multiple Passes of the Data

#5—Indexing Considerations

#6—Sorting Considerations

#7—Avoid Heterogeneous Joins

#8—Data Set Compression

#9 - SAS Dataset as a Table vs. a View

#10—Checkpoint/Restarting SAS Jobs

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Processing Environment

• Software

▪ SAS Release 9.3 & 9.4

▪ Windows 7 Enterprise Edition – 64 bit

• Hardware

▪ Intel Q720 @ 1.60GHz

▪ 8 cores

▪ 16 GB Physical Memory

▪ 24 GB Virtual Memory (Page File Size)

Copyright © SAS Inst itute Inc. A l l r ights reserved.

SAS Default Settings

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Processing Environment

• STIMER - Writes real-time and CPU time system performance statistics to the
SAS log

Statistic Description

Real-Time the amount of time spent to process the SAS job. Real-
time is also referred to as elapsed time.

CPU Time the total time spent to execute your SAS code and spent
to perform system overhead tasks on behalf of the SAS
process. This value is the combination of the user CPU
and system CPU statistics from FULLSTIMER

Note: Starting in SAS 9, some procedures use multiple threads.
On computers with multiple CPUs, the operating system can run
more than one thread simultaneously. Consequently, CPU time
might exceed real-time in your STIMER output

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Processing Environment

• FULLSTIMER - Specifies whether all the performance statistics of your
computer system that are available to SAS are written to the SAS log

Statistic Description

Real-Time the amount of time spent to process the SAS job.
Real-time is also referred to as elapsed time

User CPU Time the CPU time spent to execute SAS code

System CPU Time the CPU time spent to perform operating system
tasks (system overhead tasks) that support the
execution of SAS code

Memory the amount of memory required to run a step.

OS Memory the maximum amount of memory that a step
requested from the System

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #1: Minimizing Reads on INPUT

• Limit the columns read by using INPUT’s @ column pointer and # for line
pointer.

• Trailing ‘@’ is useful in conditional reads by evaluating conditions since we don’t
have to read the entire file into a SAS data set:

data this_year;

infile ‘ALL_Sales’;

input @24 year 4. @;

if year = 2005;

input ...;

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #1: Minimizing Reads on INPUT

• Limiting the columns

▪ Delimited
» Use dummy variables of length 1 to reduce size

filename csvin 'F:\LargeData\SummaryInfo.csv';

data work.SummaryInfo(keep=date cust_id balance);
infile csvin dsd;
input date :YYMMDD10. dummy :$1. cust_id :$15.

(dummy dummy dummy) (:$1.) balance :16.2;
run;

Copyright © SAS Inst itute Inc. A l l r ights reserved.

USE Case Data Model

Each Table contains 10,302,000 observations

Demographics
Table

POLICYNUM
Primary Key

FIRST_NAME

LAST_NAME

STREET_NO

STREET_NAME
.
.

POLICY_INFO
Table

POLICYNUM
Foreign Key

LST_CLM_DATE

LST_CLM_AMT

POLICY_COUNT
.
.

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #1: Minimizing Storage on INPUT

• Consider SAS formats since they behave as ‘look-up’ tables e.g.

▪ Rather than storing state names, store their FIPS value and create SAS
formats for state names

▪ In our case, we would need ~196MB of storage without a SAS format and
just ~29MB with a SAS format and 3 bytes for FIPS

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #1: Minimizing Reads on INPUT
28 proc format;
29 value statefmt 17 = "Illinois"
30 37 = "North Carolina";
NOTE: Format STATEFMT has been output.
31 run;

NOTE: PROCEDURE FORMAT used (Total process time):
real time 0.07 seconds
cpu time 0.01 seconds

32 data states;
33 attrib state_name length=3 label=‘Home State of Policy Holder’ format=statefmt.;

Alphabetic List of Variables and Attributes

Variable Type Len Format Label

1 state_name Num 3 STATEFMT. Home State of Policy Holder

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #1: Minimizing Reads on INPUT
Data work.statefmt(keep = fmtname start label);

attrib label length=$32 label="State Name";

/* Get the first value of each state */

set maps.us;

by state;

if first.state;

/* Rename the fields for Proc Format processing in next step

*/

Fmtname=“statefmt”;

Start= State;

Label=Statecode;

Run;

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #1: Minimizing Reads on INPUT

NOTE: There were 1551 observations read from the data set MAPS.US.
NOTE: The data set WORK.STATEFMT has 52 observations and 3 variables.
NOTE: DATA statement used (Total process time):

real time 0.02 seconds
cpu time 0.01 seconds

/* Create the Format Catalog from work.statefmt */

Proc format library = library

cntlin = work.statefmt;

NOTE: Format STATEFMT has been written to LIBRARY.FORMATS.

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #1: Minimizing Reads on INPUT

60 data _null_;
61 fipcode=37;
62 put fipcode statefmt.;
63 run;

North Carolina

NOTE: DATA statement used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

In our case, we would need ~196MB of storage without a SAS
format and just ~29MB with a SAS format and 3 bytes for FIPS

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Automatic Format Creation

proc sql;

create view statefmt as

select state as start,

statecode as label,

“$statefmt" as fmtname,

"C" as type

from maps.us;

quit;

proc format cntlin=statefmt;

run;

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #2: KEEP and WHERE Data Set Options

• KEEP and DROP Data Set options are used to limit columns

• WHERE limits rows read from SAS Data Sets

• KEEP statements in the DATA Step apply only to output tables

• Note the arrangement of the WHERE and KEEP data set options

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #2: KEEP and WHERE Data Set Options

• Use WHERE= data set options whenever possible
(where=(state_loc not in ("CA","NC") or car_use = "Commercial")

• With SAS/Access Engines, SAS makes an effort to send the clause to the RDBMS for
evaluation rather than to SAS

• IF statements force SAS to read all rows and keep only those where the condition is
TRUE

• KEEP options list must contain the WHERE filter column names
• Derived columns in the DATA Step are not listed in the KEEP option

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #2: KEEP and WHERE DATA Set Options

3 data use_case2;
4 set states.demographics;
5 if upcase(state)="CA" then output;
6 run;

NOTE: There were 10302000 observations read from the data set
STATES.DEMOGRAPHICS.
NOTE: The data set WORK.USE_CASE2 has 313280 observations and 20
variables.

NOTE: DATA statement used (Total process time):
real time 3.15 seconds
user cpu time 1.99 seconds
system cpu time 1.15 seconds

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #2: KEEP and WHERE DATA Set Options

9 data use_case2;
10 set states.demographics(where=(upcase(state)=("CA")));
11 run;

NOTE: There were 313280 observations read from the data set
STATES.DEMOGRAPHICS.

WHERE UPCASE(state)='CA';
NOTE: The data set WORK.USE_CASE2 has 313280 observations and 20
variables.

NOTE: DATA statement used (Total process time):
real time 3.89 seconds
user cpu time 2.52 seconds
system cpu time 1.12 seconds

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #2: KEEP and WHERE DATA Set Options
8 data use_case2;
9 set states.demographics(where=(upcase(state)=("CA"))
10 keep=state
11 density);
12 run;

NOTE: There were 313280 observations read from the data set
STATES.DEMOGRAPHICS.

WHERE UPCASE(state)='CA';

NOTE: The data set WORK.USE_CASE2 has 313280 observations and
2 variables.
NOTE: DATA statement used (Total process time):

real time 3.50 seconds
user cpu time 2.35 seconds
system cpu time 1.15 seconds

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #2: Behavior of WHERE Data Set Option and IF
Statements

• WHERE and IF processing are not always ‘interchangeable’

• IF processing must be used with:

▪ Accessing raw data using INPUT statements

▪ With Automatic Variables, e.g. first.variable, last.variable, _N_, etc.

▪ Using newly created variables in the same DATA Step

▪ In combination with data set options such as OBS =, POINT = , FIRSTOBS =

▪ To conditionally execute a statement

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #2: Behavior of WHERE Data Set Option and IF
Statements

• WHERE and IF processing are not always ‘interchangeable’

• WHERE processing must be used to:

▪ Utilize special operators such as LIKE or CONTAINS

▪ Filter rows for input to SAS Procedures

▪ Trigger use of indexes*, if available

▪ When sub-setting as data set option

▪ When sub-setting using PROC SQL

*The presence of an index column on a SAS data set does not always

guarantee its use in a query

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #2: Behavior of WHERE Data Set Option and IF
Statements

• WHERE and IF processing are applied differently in MERGE operations:

• With WHERE processing the sub-setting takes place before the MERGE
operation.

• With IF processing the sub-setting takes place after the MERGE operation.

Be careful!

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #3: WHERE Clause Optimization

• Avoid the NOT operator if you can use an equivalent form

Inefficient: where SALARY not>48000

Efficient: where SALARY<=48000

• Avoid LIKE predicates that begin with % or _ .

Inefficient: where COUNTRY like '%INA'

Efficient: where COUNTRY like 'A%INA'

• Avoid arithmetic expressions in a predicate.

Inefficient: where SALARY>12*4000.00

Efficient: where SALARY>48000.00

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #4: Avoiding Multiple Passes Through the Data

• Plan ahead by making all calculations/derivations in a single step

• Some PROC options force a second pass through the data. E.g. UNIFORM
option for PROC PRINT

• Consider PROC SQL for querying and modifying tables in a single step

• Consider creating a permanent SAS data set in those cases where the data is
static and access is frequent

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #4: Avoiding Multiple Passes Through the Data

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #4: Avoiding Multiple Passes Through the Data

4 data usecase4;
5 set states.all_customers(where=(upcase(state)="CA" and
6 clm_amt > 0 and
7 clm_freq > 1)
8 keep = car_use
9 clm_freq
10 state
11 clm_amt);
12 risk_factor = (log2(clm_amt*clm_freq)**clm_freq)/100;
13
NOTE: There were 33676 observations read from the data set STATES.ALL_CUSTOMERS.

WHERE (UPCASE(state)='CA') and (clm_amt>0) and (clm_freq>1);
NOTE: The data set WORK.USECASE4 has 33676 observations and 5 variables.

14 proc sort data = usecase4;
15 by descending risk_factor; run;

NOTE: There were 33676 observations read from the data set WORK.USECASE4.
NOTE: The data set WORK.USECASE4 has 33676 observations and 5 variables.

/* Next example illustrates re-writing this code to make a single pass */

/* through the data set */

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #4: Re-written multi-pass DATA Step using PROC SQL

3 proc sql;
4 create table usecase4 as
5 select car_use, clm_freq,
6 state, clm_amt,
7 (log2(clm_amt*clm_freq)**clm_freq)/100 as risk_factor
8
9 from states.all_customers
10 where upcase(state) = "CA" and
11 clm_amt > 0 and
12 clm_freq > 1
13 order by risk_factor desc;
NOTE: Table WORK.USECASE4 created, with 33676 rows and 5 columns.

14 quit;
NOTE: PROCEDURE SQL used (Total process time):

real time 4.64 seconds
user cpu time 2.82 seconds
system cpu time 1.82 seconds

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #5: Indexing Considerations
• SAS can use either simple or compound indexes

• Generally, SAS will use an index if the WHERE clause returns ~30% or less of the
rows in the data set

• SAS will always use an index if the WHERE clause returns 3% or less of the rows
without doing a cost estimation

• Factors influencing index utilization:

▪ Size of sub-setted rows relative to the size of the data set

▪ data file value order (that is, sorted in ascending index value

order or not)

▪ data file page size

▪ number of allocated buffers

▪ cost of uncompressing data file for a sequential read

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #5: Indexing Considerations

• General rules for candidate keys:

• If your data file is small, sequential processing is usually just as fast or faster.

• If your page count (available from the CONTENTS procedure) is less than three
pages, do not use an index.

• Frequently changing data is not a candidate for indexing. An index is
automatically updated when the data file is updated, requiring additional
resources.

• If the subset of data for the index is not small, it may require more resources to
access the data than sequential access.

• Options MSGLEVEL=i is also useful option to receive feedback on whether or not
an index is used.

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #5: Indexing Considerations

• Consider your data access needs. An index must be used often in order to make
up for the resources consumed when creating and maintaining it.

• Do not use more indexes than you actually need. Find the most discriminating
variables in commonly used queries and use them as your key variables.

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #5: Indexing Considerations

1 /* policynum is not sorted and not indexed */
2 /* Note that SAS needed to perform a sort for the equi-join */
3

4 proc sql;
5 create table usecase5 as
6 select d.income,
7 d.density,
8 p.car_use,
10 p.bluebook
11 from states.demographics as d,
12 states.policy_info as p
13 where p.policynum = d.policynum;

NOTE: SAS threaded sort was used.
NOTE: Table WORK.USECASE5 created, with 10302000 rows and 5 columns.

11 quit;
NOTE: PROCEDURE SQL used (Total process time):

real time 45.64 seconds
user cpu time 27.69 seconds
system cpu time 10.59 seconds

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #5: Indexing Considerations

4 /* policynum is sorted and indexed */

5 proc sql;
6 create table usecase5 as
7 select d.income,
8 d.gender,
9 d.density,
10 p.car_use,
11 p.bluebook
12 from states.demographics as d,
13 states.policy_info as p
14 where p.policynum = d.policynum;
NOTE: Table WORK.USECASE5 created, with 10302000 rows and 5 columns.

15 quit;
NOTE: PROCEDURE SQL used (Total process time):

real time 16.70 seconds
user cpu time 12.29 seconds
system cpu time 4.18 seconds

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #5: Indexing Considerations

• For better index performance, sort the data into ascending order on the key
variable before indexing the data file

• The more sorted your key variable data is, the better the index performance

• If appending data to an indexed file, sort the data you are appending before
executing the APPEND procedure.

• Sorting an indexed data set with a different key than the index results in an
ERROR. The FORCE option is used to override the ERROR, but drops the index.

• A sorted data set may be a better performer than an indexed one where many
users are reading the data set

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #6: Sorting Considerations

• If the input data to be read by SAS is sorted already, then use the SORTEDBY data
set option to assert a sort key.

▪ Follow this by a PROC SORT using the PRESORTED option for validation

▪ This sets the sort-verified flag on the SAS data set

▪ Some parts of SAS may choose to implement a sequence check regardless of
the strength of the assertion

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #6: Sorting Considerations

4 data read_sorted;
5 infile "C:\Users\sastrb\Desktop\Customers\States\Data\input.dat";
6
7 input @1 policynum $12.
8 @35 gender $1.
9 @37 income ;
10 run;

NOTE: The infile "C:\Users\sastrb\Desktop\Customers\States\Data\input.dat" is:
Filename=C:\Users\sastrb\Desktop\Customers\States\Data\input.dat <…snip…>
NOTE: The data set WORK.READ_SORTED has 100000 observations and 3 variables.

11 proc sort data=read_sorted presorted ;
12 by policynum;
13 run;

NOTE: Sort order of input data set has been verified.
NOTE: There were 100000 observations read from the data set WORK.READ_SORTED.
NOTE: Input data set is already sorted, no sorting done.

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #6: Sorting Considerations

Although still supported, the NODUPLICATES option for Proc Sort is no longer documented.

The same results can be generated using

Proc SQL;
select DISTINCT <list_of_variables>…

And is more efficient.

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #7: Multi-Threading

• Threaded enabled processes include

▪ Base SAS engine indexing

▪ Base SAS procedures: SORT, SUMMARY, MEANS, REPORT, TABULATE, and
SQL

▪ SAS/STAT procedures: GLM, LOESS, REG, ROBUSTREG

▪ EM procedures: DMREG, DMINE

▪ Eligible RDBMS Access Reads

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #7: Multi-Threading

• Use the CLASS statements in procedures that support them to avoid the
need for sorting:

▪ PROC MEANS

▪ PROC SUMMARY

▪ PROC UNIVARIATE

▪ PROC TABULATE

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #7: Multi-Threading

• Beginning with SAS 9.4:

• DS2 and FedSQL now enable the data step to be multi-threaded

Copyright © SAS Inst itute Inc. A l l r ights reserved.

It depends

Implicit SQL = DBMS options on libname statement
• SAS creates a connection to the DBMS
• SAS translates your code into implicit SQL
+ you don’t have to know DB-specific SQL
- can be inefficient; all or portions may not translate

Explicit SQL = DBMS options on CONNECT statement + DB-specific SQL
• SAS creates a connection to the DBMS
• You submit DBMS-specific explicit SQL to the DBMS
- you have to know DB-specific SQL
+ guarantees in-DB efficiency / no translation

Distinguishing Implicit and Explicit / Pass-Through SQL

Copyright © SAS Inst itute Inc. A l l r ights reserved.

SAS/ACCESS Interface

data

SAS

Use Case #7: Avoid heterogeneous joins

ODBC
Oracle

Teradata
SAS dataset

program interface

Join takes place on SAS server

ALL data moves to SAS first

SAS extracts, queries, summarizes…

Your results may cause more data
movement…

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Homogeneous

LIBNAME MTG ‘/sas/data/mortgage/’;

LIBNAME HPI

‘/sas/data/housing_data/’;

PROC SQL;

CREATE TABLE MTG.MYDATA AS

SELECT M.LTV, H.CURR_PROP_AMT

FROM MTG.MORTGAGE_DATA AS M

JOIN HPI.HOUSING_INDEX AS H

ON M.ACCT_NUM = H.ACCT_NUM;

QUIT;

Heterogeneous

LIBNAME MTG ‘/sas/data/mortgage/’;

LIBNAME DRI_DBO Teradata

Datasrc=DRI_CITY SCHEMA=dbo

USER=&userid PASSWORD=&pwd;

PROC SQL;

CREATE TABLE MTG.MYDATA AS

SELECT M.LTV, D.REO_DATE

FROM MTG.MORTGAGE_DATA AS M

JOIN DRI_DBO.FLAT_REO AS D

ON M.ACCT_NUM = D.ACCT_NUM; QUIT;

• Use Case #7: Avoid heterogeneous joins

• Minimize Data Returned to SAS for Processing

Copyright © SAS Inst itute Inc. A l l r ights reserved.

To merge SAS (or other) data with DBMS

• use pass-through SQL queries to process only the data you need on DBMS
• save the results to a SAS dataset
• merge all other SAS datasets to the newly copied dataset

To filter large amounts of DBMS data based on a smaller SAS (or other) dataset

• load the smaller SAS (or other) dataset into DBMS
• use pass-through SQL queries to process in-database (filter before join)

• Use Case #7: Avoid heterogeneous joins

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #8: Data Set Compression

• Compression trades reductions in I/O for increased memory utilization

• COMPRESS = YES and COMPRESS = CHAR are equivalent

▪ Uses Run Length Encoding to reduce record lengths

• COMPRESS = BINARY is effective on records with numeric record lengths of
100 or more

• Compression is a permanent attribute of the data set specified on DATA
statements and OUT= statements

▪ Uncompressing a data set requires creating a new copy

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #8: Data Set Compression
COMPRESS=CHAR

2 proc sort data=polstate.demographics details
3 out=polstate.demographics_compressed (index=(policynum)
4 compress=char);
5 by policynum ;run;

NOTE: Input data set is already sorted; it has been copied to the output data set.
NOTE: There were 10302000 observations read from the data set POLSTATE.DEMOGRAPHICS.
NOTE: The data set POLSTATE.DEMOGRAPHICS_COMPRESSED has 10302000 observations and

20 variables.
NOTE: Simple index policynum has been defined.

NOTE: Compressing data set POLSTATE.DEMOGRAPHICS_COMPRESSED decreased size by
44.39 percent.
Compressed is 112326 pages; un-compressed would require 202003 pages.

NOTE: PROCEDURE SORT used (Total process time):
real time 40.31 seconds
user cpu time 33.71 seconds
system cpu time 6.56 seconds

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #8: Data Set Compression
COMPRESS=BINARY

4 proc sort data=polstate.policy_info details
5 out=polstate.policy_info_compressed (index=(policynum)
6 compress=binary);
7 by policynum ;run;

NOTE: Input data set is already sorted; it has been copied to the output data set.
NOTE: There were 10302000 observations read from the data set POLSTATE.POLICY_INFO.
NOTE: The data set POLSTATE.POLICY_INFO_COMPRESSED has 10302000 observations and 15

variables.
NOTE: Simple index policynum has been defined.

NOTE: Compressing data set POLSTATE.POLICY_INFO_COMPRESSED decreased size by 34.25
percent.
Compressed is 120956 pages; un-compressed would require 183967 pages.

NOTE: PROCEDURE SORT used (Total process time):
real time 45.74 seconds
user cpu time 29.01 seconds
system cpu time 4.46 seconds

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #8: Data Set Compression

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #9: SAS Dataset as a Table vs. a View

• SAS Table contain descriptor portion and data portion

• SAS View contain descriptor portion and compiled instructions portion (rules
describing how to retrieve the data from external sources)

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #9: SAS Dataset as a Table vs. a View

• The descriptor portion for both of them contains information on what is the
dataset name, what columns it has and etc.

• The data portion for the table contains the actual data.

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #9: SAS Dataset as a Table vs. a View

• In summary, data tables requires more disk space, than view

• Operations with data tables are usually faster than with view

• If you want to manipulate data relevant to certain point in time you will
probably want to use tables

• If you want to always use latest data then you will probably consider using a
view

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #9: SAS Dataset as a Table vs. a View

• Data tables contain actual data (static) and view contains no data (dynamic)!

• If source tables from which the data table is created are modified the data
table data will not be updated

• For the view, if the source data is changed, you will see the latest data
(because the view contains instructions how to retrieve the data, not the
data).

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #10: Checkpoint/Restarting SAS Jobs

• Batch SAS jobs can now set checkpoints and recover without starting the job from
the beginning

• Provides a more robust error/handling and recovery

• SAS batch jobs tend to have dependencies that may not be available causing the
SAS job to fail even when the program is syntactically correct. e.g.

▪ Offline database table

▪ Failed network access

▪ Disk full condition

▪ and so on…

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #10: Checkpoint/Restarting SAS jobs

• For checkpoint-restart data that is saved in the WORK library, start a batch SAS
session that specifies these system options:

▪ SYSIN, if required in your operating environment, names the batch program

▪ STEPCHKPT enables checkpoint mode

▪ NOWORKTERM saves the WORK library when SAS ends

▪ NOWORKINIT does not initialize (clean up) the WORK library when SAS starts

▪ ERRORCHECK STRICT puts SAS in syntax-check mode when an error occurs in
the LIBNAME, FILENAME, %INCLUDE, and LOCK statements

▪ ERRORABEND specifies whether SAS terminates for most errors

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #10: Checkpoint/Restarting SAS jobs

Starting in Checkpoint mode

The following SAS command starts a batch program in checkpoint mode using a user-
specified checkpoint-restart library:

sas -sysin 'c:\mysas\myprogram.sas‘ –work mywork–noworkterm –noworkinit
-stepchkpt -errorcheck strict –errorabend –log test.log

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #10: Checkpoint/Restarting SAS jobs
NOTE: Begin CHECKPOINT execution mode.
NOTE: Checkpoint library: C:\Program
Files\SASHome\SASFoundation\9.4\mywork.
NOTE: WORK library: C:\Program Files\SASHome\SASFoundation\9.4\mywork.

NOTE: CHECKPOINT 1.

1 data a;
2 do n=1 to 10;
3 x=n;
4 output;
5 end;
6 run;
2 The SAS System 10:58 Thursday, July 24,
2014

NOTE: The data set WORK.A has 10 observations and 2 variables.
NOTE: DATA statement used (Total process time):

real time 0.00 seconds
cpu time 0.00 seconds

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #10: Checkpoint/Restarting SAS jobs
NOTE: CHECKPOINT 2.

8 data b;
9 set a;
10 if x=5 then abort abend;
11 else y=3*x;
12 run;

ERROR: Execution terminated by an ABORT statement at line 10 column 14, it specified the ABEND option.
n=5 x=5 y=. _ERROR_=1 _N_=5
NOTE: The SAS System stopped processing this step because of errors.
NOTE: There were 5 observations read from the data set WORK.A.
WARNING: The data set WORK.B may be incomplete. When this step was stopped there were 4 observations
and 3

variables.
WARNING: Data set WORK.B was not replaced because this step was stopped.
NOTE: DATA statement used (Total process time):

real time 0.00 seconds
cpu time 0.00 seconds

ERROR: SAS ended due to errors.
You specified: OPTIONS ERRORABEND;.

ERROR: Errors printed on page 2.

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #10: Checkpoint/Restarting SAS jobs

Restarting the job

The following SAS command restarts starts a batch program using a user-specified
checkpoint-restart library:

sas -sysin 'c:\mysas\myprogram.sas‘ –work mywork–noworkterm –noworkinit
-steprestart -errorcheck strict –errorabend

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #10: Checkpoint/Restarting SAS jobs

NOTE: Begin CHECKPOINT-RESTART(2) execution mode.
NOTE: Checkpoint library: C:\Program
Files\SASHome\SASFoundation\9.4\mywork.

1 data a;
2 do n=1 to 10;
3 x=n;
4 output;
5 end;
6 run;
7

NOTE: End CHECKPOINT-RESTART(2) draining and resume normal
execution.

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Use Case #10: Checkpoint/Restarting SAS jobs
8 data b;
9 set a;
10 /* X is never > 10 */
11 if x >10 then abort abend;
12 else y=3*x;
13 run;

NOTE: There were 10 observations read from the data set WORK.A.
NOTE: The data set WORK.B has 10 observations and 3 variables.
NOTE: DATA statement used (Total process time):

real time 0.00 seconds
cpu time 0.00 seconds

14
15

NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414
NOTE: The SAS System used:

real time 0.18 seconds
cpu time 0.18 seconds

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Other new features

•The Work library data sets and catalogs, and the values of
global statements, macro variables, and system options
can be preserved between SAS sessions.

•The PRESENV Procedure

• The PRESENV procedure preserves all global statements
and macro variables in your SAS code from one SAS
session to another.

PRESERVE THE SAS ENVIRONMENT

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Other new features
PRESERVE THE SAS ENVIRONMENT

Set SAS System Option

options presenv;

Creates data to be used in subsequent session- submitted
before exiting SAS

proc presenv save permdir=permdir

sascode=sascode;

run;

Restore

%include 'restore-file';

run;

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Agenda: Use Cases

#1—Minimizing Reads on INPUT

#2—KEEP and WHERE Data Set Options

#3—WHERE clause optimization

#4—Avoiding Multiple Passes of the Data

#5—Indexing Considerations

#6—Sorting Considerations

#7—Avoid Heterogeneous Joins

#8—Data Set Compression

#9 - SAS Dataset as a Table vs. a View

#10—Checkpoint/Restarting SAS Jobs

Copyright © SAS Inst itute Inc. A l l r ights reserved.

References
Dear Miss SAS Answers: A Guide to Sorting Your Data, Stroupe and Jolley, SAS Institute
Inc. at:

http://support.sas.com/resources/papers/proceedings10/140-2010.pdf

SAS Performance Tuning Strategies and Techniques, Kirk Paul Lafler, Software
Intelligence Corporation, Spring Valley, CA

http://www.google.com/url?sa=t&source=web&cd=2&ved=0CCcQFjAB&url=http%3A
%2F%2Fwww.scsug.org%2FSCSUGProceedings%2F2003%2FLafler%2520-
%2520SAS%2520Performance%2520Tuning%2520Techniques.pdf&ei=JM7GTbPuGM
PL0QH509yLCA&usg=AFQjCNF3bT6XxEvRIIqzpatMhknr23gacQ

Power Indexing: A Guide to Using Indexes Effectively in Nashville Releases at:

http://www2.sas.com/proceedings/sugi25/25/dw/25p124.pdf

SAS 9.2 Language Reference: Dictionary, Fourth Edition at:

http://support.sas.com/documentation/cdl/en/allprodslang/63337/HTML/default/vie
wer.htm#titlepage.htm

Ten Ways to Optimize Your SAS Code, Ron Coleman,

Internal Presentation

http://support.sas.com/resources/papers/proceedings10/140-2010.pdf
http://www.scsug.org/SCSUGProceedings/2003/Lafler - SAS Performance Tuning Techniques.pdf
http://www2.sas.com/proceedings/sugi25/25/dw/25p124.pdf
http://support.sas.com/documentation/cdl/en/allprodslang/63337/HTML/default/viewer.htm#titlepage.htm

Copyright © SAS Inst itute Inc. A l l r ights reserved.

Top 10 Ways to Optimize Your SAS Code

Thank you!

