
1

Paper SAS2145-2018
Integrating SAS® Analytics into Your Web Page

James Kochuba and David Hare, SAS Institute Inc.
	
	

ABSTRACT
SAS® Viya® adds enhancements to the SAS® Platform that include the ability to access SAS® services
from other applications. Whether your application is in Python, Java, Lua, or R, you can now access SAS
analytics and integrate them directly in your application. You can even use REST APIs. In this session,
we look at using the REST APIs in SAS Viya to execute SAS® Cloud Analytic Services (CAS) actions and
embed them in an application, which in this case is a web page. Examples include uploading a table,
performing a SAS analytic procedure and displaying the output, and publishing a report. This method
provides you with much greater flexibility and customization for building dashboards and reporting
sites. Through this session, you will gain an understanding of how you can embed analytics from SAS
Viya into your very own application.	

INTRODUCTION
Companies have many pre-existing, web present forms that need enhancements like adding real-time or
interactive charts and analytics for adaptive response. The web present form can be a simple web page
or custom built web tool or even a chatbot. Adding these enhancements to the web present form can be
extremely costly, in technical expertise and time, or potentially not possible based on the technology used
to create them. Integrating SAS capabilities, like analytics, scoring, or charting, into the web present form
would address the enhancements commonly needed and wanted in the market. The integration between
the various technologies is done using APIs. Below are various examples of integration scenarios where
SAS APIs easily added the enhancements to the web present form.

WEB APPLICATION SHARING REPORTS
In SAS® Viya®, there is a single interface for exploring and visualizing data with SAS® Visual Analytics,
SAS® Visual Statistics, and SAS® Visual Data Mining and Machine Learning. This interface allows the
user to work with a data set, and perform visualizations ranging from forecasting, clustering, and
regressions to the most advanced machine learning algorithms such as neural networks and gradient
boosting. The results of the user’s work, including all visualizations, can be saved in a report, which can
be shared with other users and visualized in the SAS® Report Viewer. This is a common practice used by
many SAS Viya customers today.

However, each individual report object (decision tree, geospatial plot, correlation matrix, and so on) can
also be shared to access other applications besides the SAS Report Viewer. There are four main options
for sharing report objects:

• Email a link to the report to a coworker or colleague.

• Share a direct HTTP link to the object. This link can be added to another web page and then
redirect users to the SAS Report Viewer to view the object.

• Share a static image of the object. This is not an interactive view, however, so an example of this
use case might be for printed materials.

• Share the object as embeddable HTML code, allowing users to interact with that object wherever
that code is integrated.

2

The last option (embeddable interactive) is the most interesting, and it is what we will focus on in this
paper. It is important to note, that in all of these scenarios, the users with whom the report is being
shared must have Read permissions to access the report, and Read permissions on the data the report is
based on. You can also enable access for anyone to view the report objects. We’ll cover this in more
detail in the Guest Access section.
	

PROCESS TO SHARE A REPORT
The steps to share a report with other users are well documented and can be found in the Resources
section. At a high level, in the SAS Report Viewer with a report open, hold your pointer over an object in

the report and click the “overflow” icon, which some call the snowman icon.

From the Share Object menu, select the Embeddable link check box, and then customize using the
available link options.
	

	
Image	1.	Generate	a	Link	to	an	Interactive	Report	
	
Note, the Guest access link option is displayed only if Guest Access has been enabled in your
environment. For more information, see the Guest Access section.

The generated link is produced as HTML iframe code and can be embedded into a web page. This web
page can be hosted on the SAS Viya server as well, with no other steps needed to integrate the report
into the web page. If the web page is hosted on a different server, SAS Viya requires some extra
configuration steps. These steps are covered in the Embedding Externally section.
	

3

GUEST ACCESS
Guest Access is a new feature in SAS Visual Analytics 8.2 on SAS Viya that allows users to access
content without having to authenticate. This is commonly used for dashboards and reports that are
shared with executive teams or for embedding report content into other applications. By default, Guest
Access is disabled. There are three main steps to enabling Guest Access:

1. Enable Guest Access on the environment. This essentially means turning the Guest Access
feature on, but not enabling it across the environment.

2. Enable Guest Access on a specific report.
3. Enable Guest Access on the data in the report.

The process for completing these steps is fully documented in the Resources at the end of this paper, but
we’ll summarize the steps below.

1. In SAS® Environment Manager, create a new configuration instance for
sas.logon.provider.guest and enable the Guest Access option.

	
	

	
	

2. Modify the Authorization rules to allow Guest Access. This can be done via the command line
using the sas-admin scripting utility. If you have not used this tool before, you must first
authenticate to create a token:

[root@viya123 ~]# sas-admin auth login
Enter credentials for http://viya123.unx.sas.com:

Userid> joeuser

Password>
Login succeeded. Token saved.

[root@viya123 ~]# sas-admin authorization facilitate-guest
Guest access is enabled.

3. At this point, configuring Guest Access on the data backing the report can be performed via the
same sas-admin command line tool, or in SAS Environment Manager.

4. In	SAS	Environment	Manager,	simply	find	the	table	in	question,	and	under	the	Edit	Authorization	
options,	select	Add	Guest.	

4

	
	
	
That will add Guest with no permissions. You then need to slide the access level to Read so that
guest users can read the data from that table.
	

	

	
Now you can enable Guest Access on the report that you want to share. Again, we can do this in SAS
Environment Manager, following the steps in the Process to Share a Report section. Be sure to enable
the Guest Access slider under Link Options:
	

5

	
Image	2.	Enabling	Guest	Access	on	a	Report	link	
	
At this point, an anonymous user should be able to access the report in question directly, without being
prompted to authenticate.

Note, if the report is using any views with maps, the data on the maps will not be displayed. This is
because the maps use an additional data source, as evidenced by the Maps server log:
	
2017-12-05 10:03:42.768 WARN 19233 --- [o-auto-1-exec-3]
com.sas.maps.MapsService : guest(f1569adf)
[b727d8a84002797e] Error running query for map regions - - Cannot
find the requested data source.

	
To resolve this problem, Guest Access must be granted on the AppData CAS Library. Currently, this
cannot be configured in SAS Environment Manager. However, we can use the CAS Server Monitor tool
to edit the authorization for the AppData CAS Library.

Under Global Caslibs, find the AppData library, click the overflow icon, and select Edit Access Controls.

6

	
Image	3.	Edit	Access	Controls	for	the	AppData	library	
	
Then add two new rows for Guest to have Read Info, and select Activity.
	

	
Image	4.	Enable	Guest	Access	on	the	AppData	library	
	
After completion, any reports with map views should be rendered successfully to guest users.

EMBEDDING EXTERNALLY
The information above will help you embed reports into web pages, as long as the web page is hosted on
the same machine (same host name) as the SAS Report Viewer is running. If you try to embed the report
into a web page running on an HTTP server on a different host, the attempt will fail, and nothing will be
displayed. When you go to a debugger like Firebug, or in Chrome -> Developer Tools -> Console, the
following error will be displayed:
		
Refused	to	display	
'http://viya123.unx.sas.com/SASReportViewer/?reportUri=%2Freports%2Freports%2Fc3e0efbc-15a3-
4bf2-b5c3-3af93858b264&page=vi7348&objectName=ve9828&appSwitcherDisabled=true'	in	a	frame	
because	it	set	'X-Frame-Options'	to	'sameorigin'.	
		
This is because SAS has prevented embedding SAS Viya content into other sources for security
protection. However, this can be controlled if you know and trust the host in which the content will be
embedded.

In SAS Environment Manager, under Configuration, select the Definitions menu, and
select sas.commons.web.security. If a definition hasn’t already been created, you must create a new
one, and configure it for the SAS Report Viewer only. Find and disable the
x-frame-options-enabled setting:

7

	
	Image	5.	Disabling	the	x-frame-options-enabled	setting	
	
This will allow any SAS Report Viewer content to be embedded into any host.
If you want to restrict the host list from any host to specific hosts, leave the x-frame-options-enabled
setting on, but specify a host list that is allowed to access the content. Here is an example:
		

	
		
Image	6.	Allow	embedding	from	a	specific	host	
	
In this scenario, SAS Report Viewer content could be embedded only to HTML running on the host that is
specified. However, not all browsers (Chrome, for example) support the ALLOW-FROM x-frame-option.

Whichever configuration you choose, you must restart the SAS Report Viewer service for the change to
take effect.
	
[root@viya123 ~]# service sas-viya-sasreportviewer-default restart
sas-viya-sasreportviewer-default is stopped
sas-viya-sasreportviewer-default is running
		
After you complete these steps, report content will be loaded in an external HTML page without prompting
for any login credentials.

WEB APPLICATION SCORING
In addition to looking at report information, you might want your application to make a call to score new
data against a model that you’ve built in SAS Viya. This can be easily accomplished with the features in
SAS® Model Studio, a tool that is included with SAS Visual Data Mining and Machine Learning, SAS®
Visual Forecasting, or SAS® Visual Text Analytics.

In SAS Model Studio, after building your pipeline and determining your model champion in the Pipeline
Comparison view, simply select the overflow icon and you can download score code for that model.
	

8

	
	Image	7.	Downloading	score	code	for	a	model	
	
In the Download score code option, we can choose between score code in the SAS language, Python, or
REST.
	

	
	
Image	8.	REST	Score	code	example	
	
This score code can be integrated into your web-based application with the REST option. This will allow
you to call the scoring action on your champion model with your new data.
	

WEB APPLICATION CHATBOT INTEGRATION
Chatbots are programs that conduct a conversation to simulate how a human would engage with
someone. Chatbot programs are growing in usage, and that is producing many different options to
implement in your company. You can build from scratch or choose a third-party tool to help generate
your chatbot. A chatbot can be simple when it echoes the user input, but not very useful. Creating a
chatbot to deal with specific common questions can require complex programming with business logic,
but still be static and require rewrites to add more questions. Creating a chatbot that can adapt brings up
words like artificial intelligence (AI) and sounds nearly impossible.

9

But, by integrating analytics into the chatbot, you can make a chatbot become more adaptive in
addressing its AI capabilities. With the many forms of chatbot, adding analytics can be very restrictive
(limited list of capabilities) or hard to implement. SAS can provide simple APIs to integrate into the
various different types of chatbot implementations. The most common integration is using REST API
calls to SAS Viya.

Here is an example when using Motion AI to create a chatbot that uses the power of SAS Viya. The bot's
editor page is where you can add various modules to design your chatbot. We added a generic “Node.js”
module, allowing us to customize the integration in the chatbot flow. Here is a picture of a bot editor
where we added an Existing Sentiment module to check the user’s experience during the conversation:

	
Image	9.	Configuring	a	chatbot	example	
	
In the Node.js module, you make a REST call to SAS Viya and review the response to determine the
chatbot action.

A tip with a chatbot: Since most times chatbots deal with anonymous users, we did not want to expose
SAS Viya directly to anonymous users. Therefore, we created a Python REST interface for Node.js to
call, thus allowing for a generic login. Then a Python server would authenticate to SAS Viya. This would
keep the	chatbot code simpler (see below) and allow for us to add better input validation and avoid
potential attacks.
	

Example Motion AI Node.js Module Code
server2 = 'http://viyapython.sas.com/run?model=SentimentCheck'
 request.post(server2, function (error, response, body) {
 var body = JSON.parse(body)
 response = body.sentiment
 if (response == 'Positive') {
 var sentence = 'Thank you, I am flattered by your positive response! '
 var nextmod = 1120747
}

10

if (response == 'Neutral') {
 var sentence = 'Thank you for your time and feedback! '
 var nextmod = 1120747
}

if (response == 'Negative') {
 var sentence = 'I am really sorry! I will try to do better next time!
'
 var nextmod = 1023957
}
	

CONCLUSION
	
In this paper, we have shown how SAS capabilities such as viewing reports and scoring new data can be
integrated into other applications. These applications can range from web pages to chatbots, and many
in between, thanks to the SAS Viya ability to allow third-party languages such as Python and Java to
access the SAS® analytics engine. The various ways this can be achieved are countless, but we hope
this paper has shown a few options to consider when planning your application’s integration with SAS
analytics.

RESOURCES

SAS VISUAL ANALYTICS, SAS VISUAL STATISTICS, SAS VISUAL DATA MINING AND
MACHINE LEARNING – CUMULATIVE FUNCTIONALITY

http://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&docsetId=viyaov&docsetTarg
et=n00000sasviya000architecture.htm&locale=en#n15iagnf1rd897n1id2f3oq997hj

SHARING REPORTS WITH OTHER USERS
http://go.documentation.sas.com/?docsetId=vareports&docsetTarget=n0objrswfw1dcmn1c210zb1diksc.ht
m&docsetVersion=8.2&locale=en

SHARING REPORTS OR OBJECTS
http://go.documentation.sas.com/?docsetId=vavwr&docsetTarget=p05l1xrrfv3s4en18yy6j4ajx6ut.htm&do
csetVersion=8.2&locale=en

USING URL PARAMETERS TO VIEW A REPORT
http://go.documentation.sas.com/?docsetId=vavwr&docsetTarget=p0l4zt68r3id4wn1fk3y3kconfg4.htm&d
ocsetVersion=8.2&locale=en

ENABLING GUEST ACCESS
http://go.documentation.sas.com/?docsetId=calauthmdl&docsetTarget=n067qoyrgu1yohn19nq4ehy8o0b3
.htm&docsetVersion=3.3&locale=en

SAS ADMIN SCRIPTING UTILITY

http://go.documentation.sas.com/?cdcId=calcdc&cdcVersion=3.3&docsetId=calcli&docsetTarget=n01xwtc
atlinzrn1gztsglukb34a.htm&locale=en

11

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors:

James Kochuba
100 SAS Campus Drive
Cary, NC 27513
SAS Institute Inc.
James.Kochuba@sas.com
http://www.sas.com

David Hare
100 SAS Campus Drive
Cary, NC 27513
SAS Institute Inc.
David.Hare@sas.com
http://www.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

