Storage Considerations and Best Practices for SAS® Viya® on AWS

Darryl Osborne Dilip Rajan

Agenda

AWS and SAS – Technical engagement

SAS 9 on AWS Overview

SAS Viya on AWS

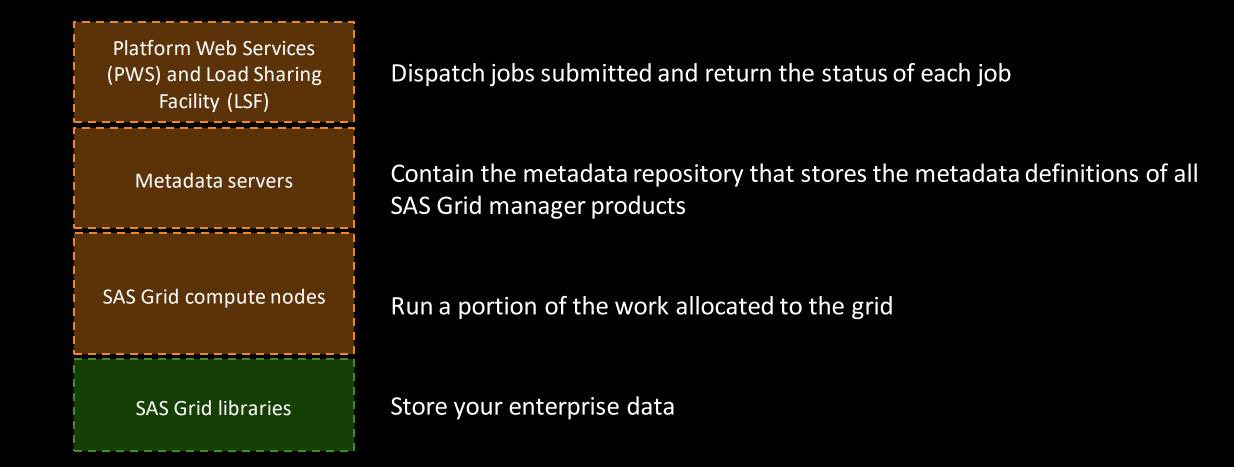
Compute Updates

Storage Overview

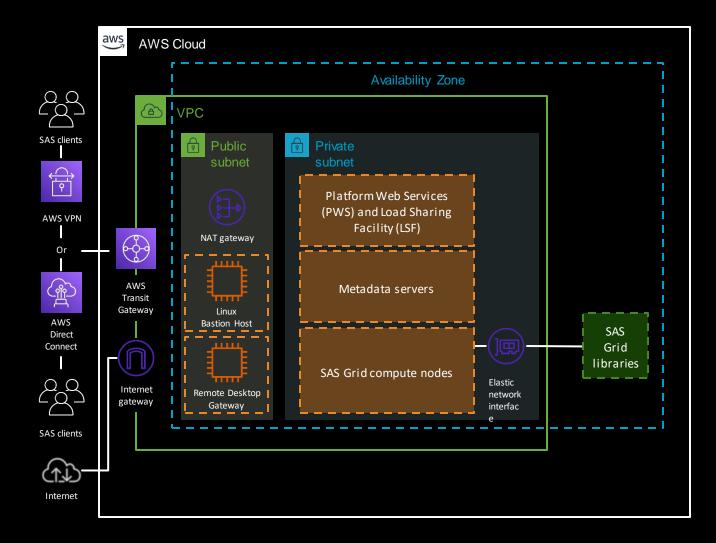
SAS Viya Demo with storage recommendations

Resources

SAS - AWS


Challenges – Why SAS on AWS

Traditional on-premises data-analytics infrastructure does not scale well enough and is too expensive.


To run analytics at scale, we need . . .

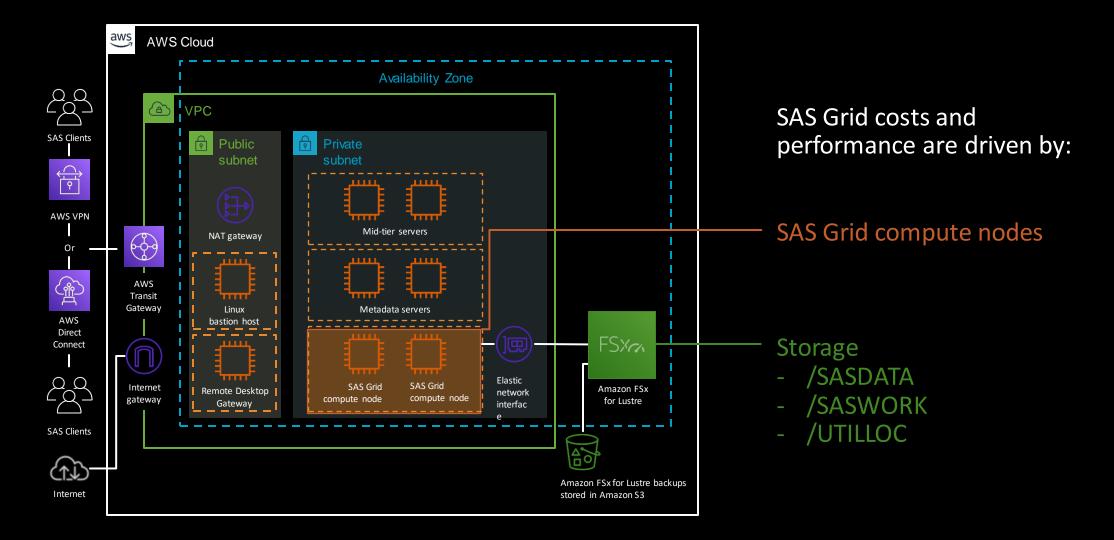
- Agile and flexible compute options
- Scalable and performant storage
- Easy lift-and-shift for existing workflows
- Modernize monolithic applications using microservices
- The ability to burst workloads to the cloud
- The option to consolidate data from disparate data sources

SAS Grid on AWS – Recap 1

SAS Grid on AWS – Recap 2

Why Lustre

The world's most popular high-performance file system


Why Lustre on AWS

Increase agility and reduce costs

Why Amazon FSx for Lustre

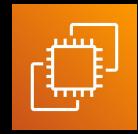
Reduce storage administration and accelerate innovation

SAS Grid on AWS

Instance types vs. compute node requirements

EC2 instance type	Minimum storage (8GB)	Minimum throughput (100 MB/s)
i3en	16 GB	>100 MB/s
i3	15 GB	<100 MB/s
r5n / r5dn	16 GB	>100 MB/s
r5a / r5ad	16 GB	<100 MB/s
r6g / r6gd	16 GB	<100 MB/s
r5	16 GB	<100 MB/s
m5n / m5dn	8 GB	>100 MB/s
m5a / m5ad	8 GB	<100 MB/s
m6g / m6gd	8 GB	<100 MB/s
m5	8 GB	<100 MB/s
c5n	5.25 GB	>100 MB/s
c5a / c5ad	4 GB	<100 MB/s
c6g / c6gd	4 GB	<100 MB/s
c5	4 GB	<100 MB/s

Amazon EC2



8 G B

minimum memory per physical core

125 MB/s

minimum throughput per physical core

Amazon EC2

Compute node recommendations for SAS Grid

	Physical cores	-Per physical cores specification			Instance store volumes	
	(# of physical cores)	Memory (GiB)	Variable network performance (MB/s)	Consistent network performance (MB/s)	NVMe storage capacity (GiB)	Throughput performance (MB/s)
m5n	1, 2, 4, 8, 16, 24, 32, 48	8	396.18 - 1774.61	258.89	Not available	Not available
m5dn	1, 2, 4, 8, 16, 24, 32, 48	8	396.13 - 1915.05	259.17	75 – 3,600	62.48
r5n	1, 2, 4, 8, 16, 24, 32, 48	16	396.12 - 1789.06	259.05	Not available	Not available
r5dn	1, 2, 4, 8, 16, 24, 32, 48	16	396.14 - 1844.39	258.84	75 – 3,600	62.22
i3en	1, 2, 4, 6, 12, 24, 48	16	528.18 - 1745.51	259.81	1250 – 60,000	154.26

T-Mobile realizes \$1.5M in annual savings and doubles the speed of SAS Grid workloads using Amazon FSx for Lustre

The challenge

The solution

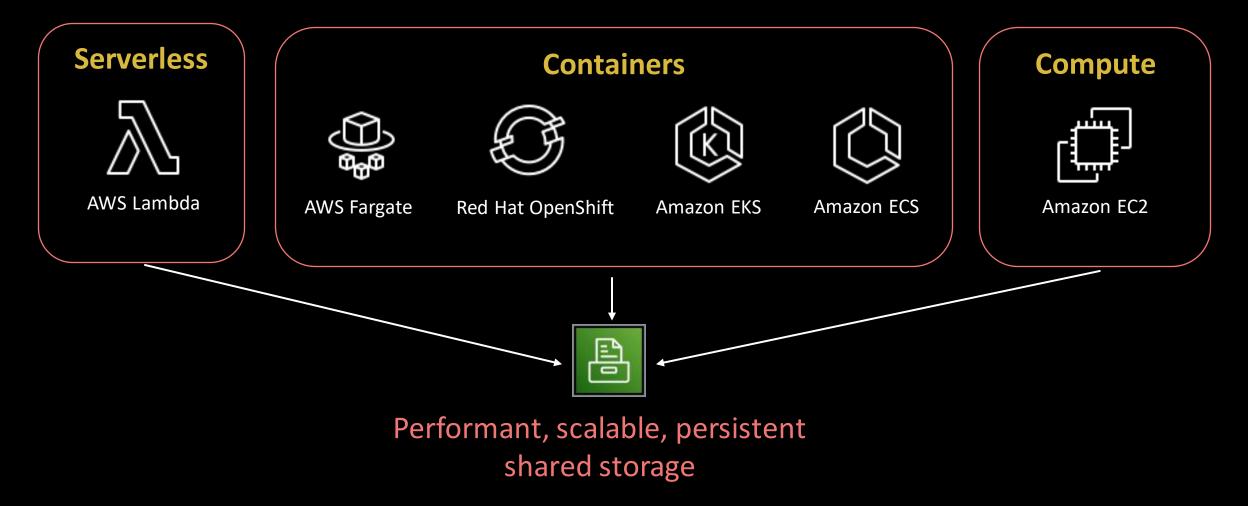
T-Mobile managed their own storage for SAS Grid, which proved to be unscalable and cost prohibitive T-Mobile deployed Amazon FSx for Lustre, a fully-managed highperformance file system, to migrate and scale their SAS Grid infrastructure Reduced TCO by 83% and reduced storage costs by 67%, resulting in \$1.5M in annual cost savings

The benefits

T··Mobile·

Cut the run time of SAS Grid analytics workloads by half

Amazon FSx for Lustre helped us double the speed of our SAS Grid workloads, reduce our Total Cost of Ownership by 83% and completely eliminate our operational burden


Dinesh Korde, Sr. Manager Software Development, T-Mobile

Compute Overview

Running your data analytics at scale

Microservices

Containers and serverless compute

Comparison of operational responsibility

More opinionated		AWS manages	Customer manages
	AWS Lambda Serverless functions	 Data source integrations Physical hardware, software, networking, and facilities Provisioning 	Application code
	AWS Fargate Serverless containers	 Container orchestration, provisioning Cluster scaling Physical hardware, host OS/kernel, networking, and facilities 	 Application code Data source integrations Security config and updates, network config, management tasks
	ECS/EKS Container-management as a service	 Container orchestration control plane Physical hardware software, networking, and facilities 	 Application code Data source integrations Work clusters Security config and updates, network config, firewall, management tasks
	EC2 Infrastructure-as-a-Service	 Physical hardware software, networking, and facilities 	 Application code Data source integrations Scaling Security config and updates, network config,
Less opinionated			 management tasks Provisioning, managing scaling and patching of servers

Compute node recommendations (new compute families)

	_	_	_	_	_	
-					ъ	
_						
_						
_						
_						
		-	-	-		

	Physical cores	-Per physical cores specification		Instance store volumes		
	(# of physical cores)	Memory (GiB)	Variable network performance (MB/s)	Consistent network performance (MB/s)	NVMe storage capacity (GiB)	Throughput performance (MB/s)
M6i/m6in 3 rd Gen, Xeon	1, 2, 4, 8, 16, 24, 32, 48	8	396.18 - 1774.61	258.89	Not available	Not available
M6id/m6idn 3 rd Gen, Ice lake	1, 2, 4, 8, 16, 24, 32, 48	8	396.13 - 1915.05	259.17	118 – 7,200	62.48
R6i/r6id 3 rd Gen, Xeon	1, 2, 4, 8, 16, 24, 32, 48	16	396.12 - 1789.06	259.05	Not available	Not available
R6id/r6idn 3 rd Gen, Ice lake	1, 2, 4, 8, 16, 24, 32, 48	16	396.14 - 1844.39	258.84	118 – 7,200	62.22
l4i 3 rd Gen, Ice Lake	1, 2, 4, 6, 12, 24, 48	16	528.18 - 1745.51	259.81	468 – 30,000	154.26

Storage Overview

We're razor-focused on providing the best file solutions to serve your usage patterns

FSx

Amazon FSx

File systems purpose-built for NAS or scale-out workloads, cloudified

Amazon EFS

Serverless, fully elastic file storage designed for builders

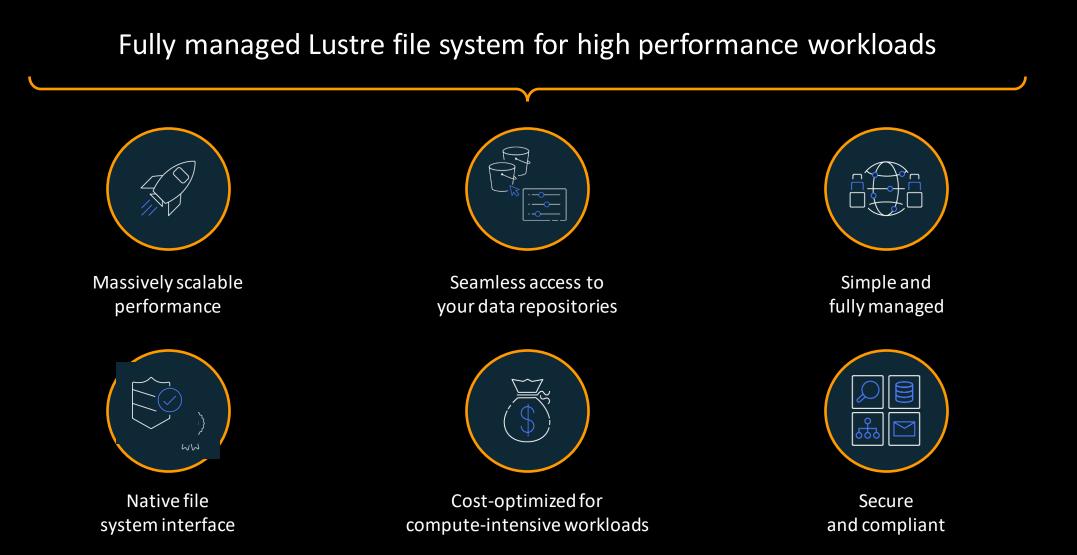
Amazon File Cache

High-speed cache for on-premises or AWS datasets

Run NAS workloads in the cloud

Leverage the cloud's virtually unlimited compute scale

Easily share data in cloud-native apps and workflows



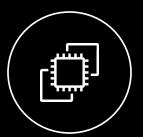
Easily burst your workloads to cloud

Amazon FSx

Amazon FSx for Lustre

Customers continue to increase the size of their workloads on AWS across industry verticals and application areas

Industries and example use cases


Financial services: Modeling and analytics

Automotive: ECU simulations and object detection

Life Sciences: Genome analysis

Semiconductor: Electronic design automation

Media and Entertainment: Rendering and transcoding

Oil and gas: Seismic data processing

Application areas

High-performance computing

For every \$1 spent on high performance computing, businesses see \$463 in incremental revenues and \$44 in incremental profit¹

FSx for Lustre deployment options

High and scalable performance

In all options, we support encryption at-rest and in-transit*

Multiple FSx for Lustre throughput options and deployment types allow customers to optimize storage cost and performance

Storage type	Baseline throughput	Price per GB-month (in IAD)		
		Persistent storage	Scratch Storage	
HDD	12 MB/s/TiB	\$0.025 \$0.041 (with SSD cache)	-	
	40 MB/s/TiB	\$0.083 \$0.099 (with SSD cache)	-	
SSD	125 MB/s/TiB	\$0.145	-	
	250 MB/s/TiB	\$0.210	-	
	500 MB/s/TiB	\$0.340	-	
	200 MB/s/TIB		\$0.140	

- Scratch file systems are ideal for temporary storage and shorter-term processing of data.
- Data is not replicated and does not persist if a file server fails.
- File systems with SSD storage can burst up to 1.3 GB/s per TiB

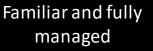
Sample pricing for - US East (N. Virginia)

¹ Prices are subject to change without notice. Pricing varies by AWS Region. For current pricing information, see the <u>Amazon FSx for Lustre Pricing</u> page on the AWS website.

What is Amazon FSx for NetApp ONTAP?

Fully-featured NetApp ONTAP

With the simplicity, agility, and scalability of an AWS service


Amazon FSx for ONTAP: Benefits

Launch and run fully managed file storage built on NetApp ONTAP

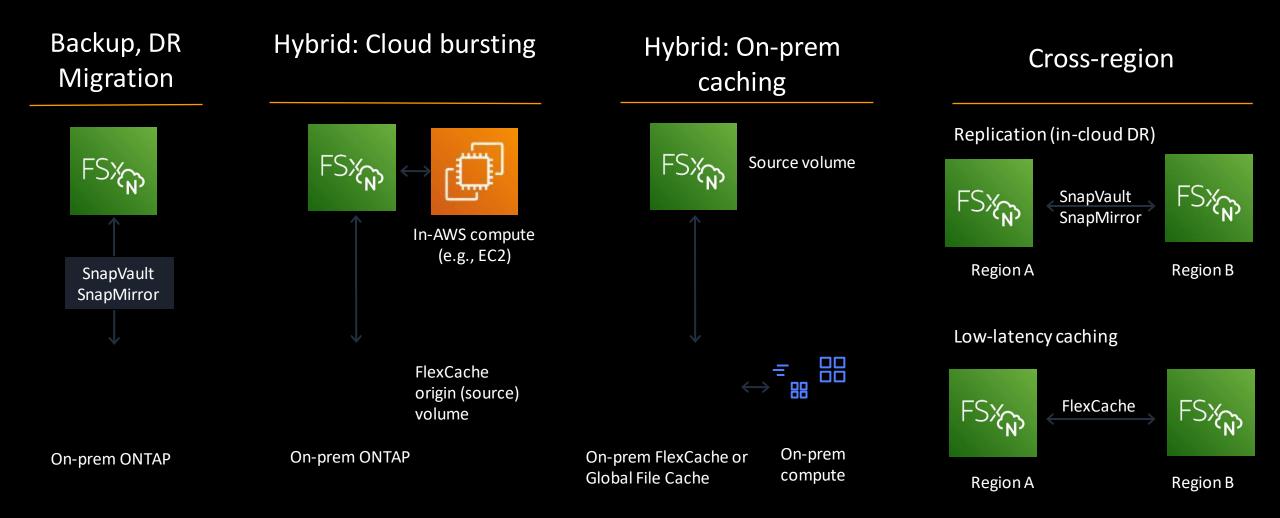
Fast and cost effective

Accessible and Integrated

Secure and Compliant

- Fully Managed
- Use AWS and NetApp tools
- Data replication (SnapMirror),snapshot (SnapVault), caching (FlexCache), and cloning (FlexClone) capabilities
- Multiple GB/s throughput, 100K+ IOPS, sub-ms latencies
- Automatic tiering to low cost, reduce costs 90%
- Deduplication, compression, compaction, thin provisioning

- Multi-protocol (NFS, SMB, iSCSI)
- Accessible from Linux, Windows, MacOS
- EC2, EKS, Workspaces, Appstream 2.0, VMware Cloud
- Concurrent, multi-protocol access


- Encrypted at-rest and intransit
- Integration with software for Anti-Virus and Auditing
- Active Directory for identity-based authentication
- ISO, PCI-DSS, SOC compliant and HIPPA eligible

Amazon FSx for NetApp ONTAP: Automatic performance and cost optimization

Intelligent policy-based data movement between tiers

Amazon FSx for ONTAP: Getting Started

Amazon FSx for NetApp ONTAP: Pricing Dimensions

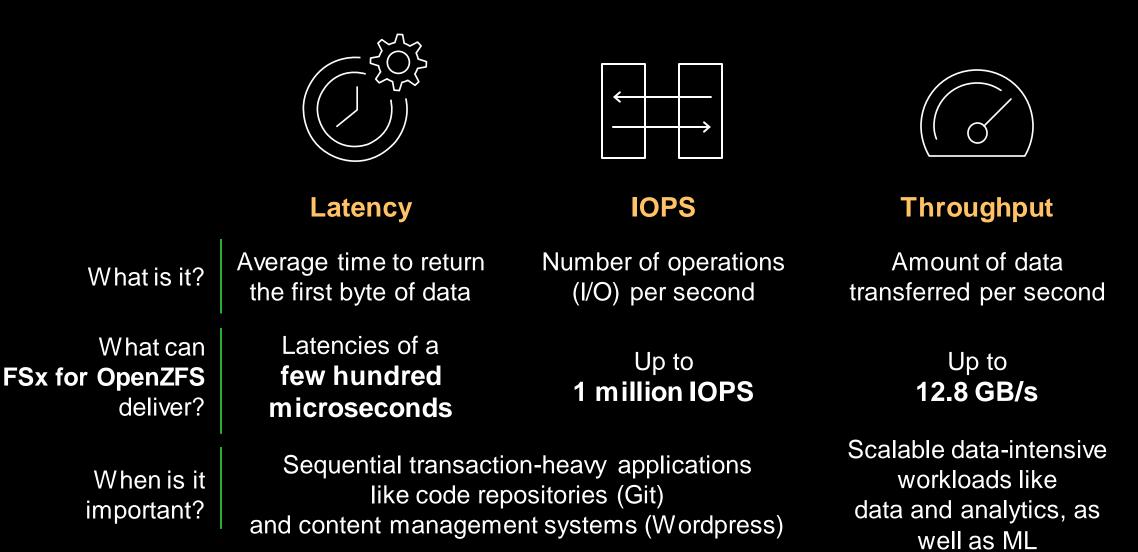
Provisioned pricing dimensions

- SSD storage (\$0.250 per GB-month)
- Throughput capacity (\$1.200 per MBps-month)
- [Optional] SSD IOPS \$0.0340 per IOPS-month)

Elastic pricing dimensions

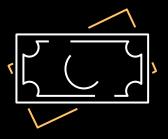
- Capacity pool storage (\$0.0438 per GB-month stored)
- Capacity pool requests \$0.0004 per 1,000 read requests
- Capacity pool requests \$.005 per 1,000 write requests
- Backup storage (\$0.05 per GB-month stored)

Introducing Amazon FSx for OpenZFS


Shared file storage that delivers **high speeds at a low cost**, accessible through NFS

Built on the AWS Graviton family of processors and the popular opensource OpenZFS file system

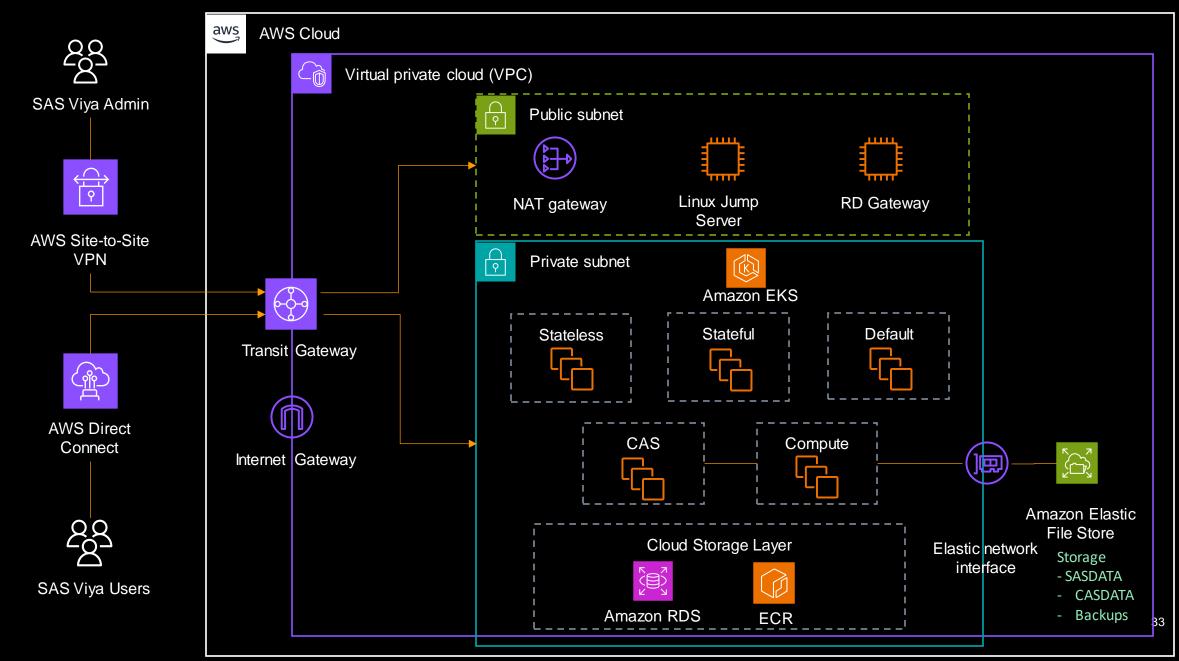
Deliver results faster with high-performance storage


Do more with less and adapt faster to changing business needs

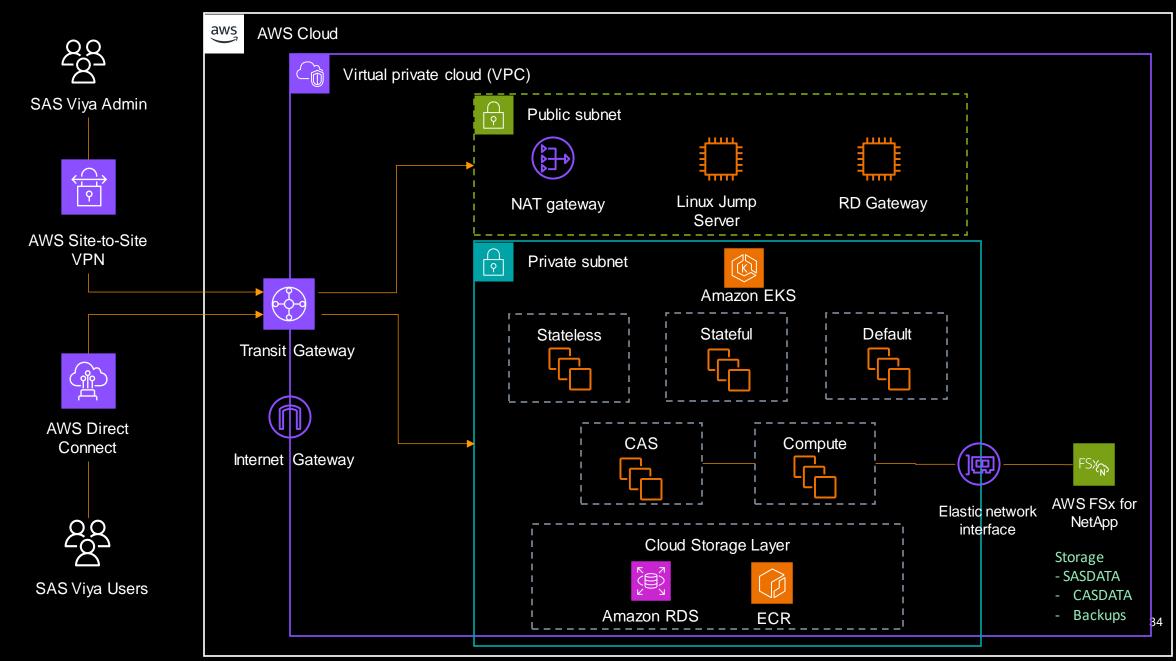
Storage and performance scaling in minutes*

SSD storage **\$0.09/GB-month** (\$0.045/GB-month w/ compression*)

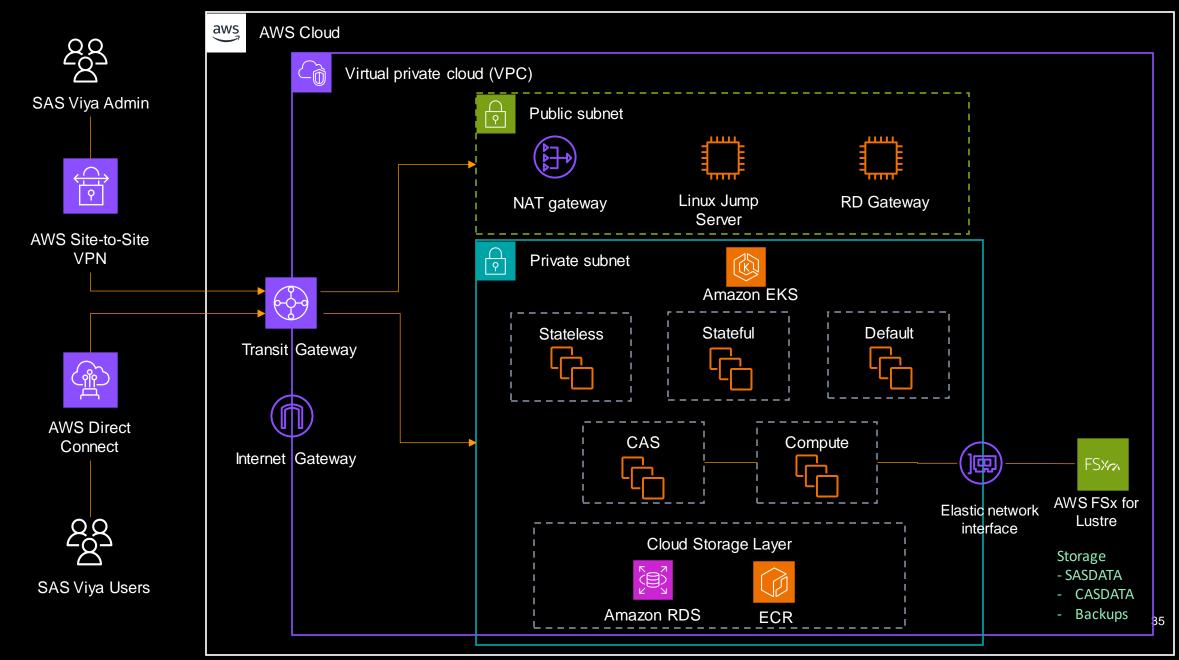
Zstandard compression (reduce storage usage by up to ~50%)



Throughput \$0.26/ MBps-month


*Pricing assumes average compression savings of ~50% and is an effective price. *Pricing is for Single-AZ

SAS Viya on AWS


SAS Viya on AWS with Amazon Elastic File System (laC)

SAS Viya on AWS with FSx for NetApp (laC)

SAS Viya on AWS with FSx for Lustre (Manual deployment)

SAS Viya with FSx Ontap Demo

Resources

Infrastructure as Code: <u>https://github.com/sassoftware/viya4-iac-aws</u>

Coming soon – Blog and prescriptive guidance

Thank you

Dilip Rajan – <u>rajand@amazon.com</u> Darryl Osborne – <u>darrylo@amazon.com</u>