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Common Loan Origination/Application Flow

st

| [& Random_Digit

No
\ J
[). ymea-\ﬁslual va ]
‘r’%s
|m\r\e31 e (1.0} [ [agAm_A ove (1.0} ‘

Mo
¥
[}\ G 23 - \"Ta\ Investiga... i ]
Y%s \
|ﬁ§|-westiga e (1.0} ] [ﬁgAm_A rove (1.0}

B Auto_Reject (1.0)

Copyright © SAS Institute Inc. All rights reserved.



Ensuring Fairness in Fraud Detection Process using Network Analytics

Common Loan Origination/Application Flow
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Editing

Origination Statistics

Data

The Decision Results will be sent
automatically to the fairness dashboard
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accted - 4

app_browser - &
app_browser_version - 41

app_date - 2¢
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app_datetime - 9,4K
app_os - 28
app_os_version - 40
app_time - 8.3K
Business_credit_Report - 7
card_type - 2
Checking_account - 4
City - 7.4K

Country - 1

CountryFull - 1
credit_score_group - 5
Device_id - 9.4K
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What are the characteristics of Status_App?

APP is the most common value representing 66.23% (6.2K of 9.4K) of Status_App. Other
common values are REJ (at 28.94%) and INV (at 4.83%). The three most related factors are
EM_EVENTPROBABILITY, GRP_time_to_fill, and WOE_time_to_fill.

What is the relationship between Status_App
and EM_EVENTPROBABILITY?

What factors are most related to Status_App?

EM_EVENTPROBABILITY

GRP_time_to_fi 5,000
suetes 4,000
GRP_requested_limit l:l
GRP_Checking_account l:l
WOE_device_score l:l
CO_SCORE
FICO_SCORE 2,000
Business_credit_Report
time_to_fill
Loan_rate 000
device_score
Principal_income 0
-0.05 0.15 0.35 0.55 0.75 0.95

requested_limit
EM_EVENTPROBABILITY

Checking_account
APP @ NOT APP

network_score
8pp_os_version The average EM_EVENTPROBABILITY is 0.03 when
Status_App is APP, with a minimum of 0 and a maximum of
0.22. The average EM_EVENTPROBABILITY is 0.62 when
Status_App is NOT APF, with @ minimum of 0.21 and a
maximum of 1. Average EM_EVENTPROBABILITY is 0.18, and
itranges from Oto 1.

ip_country_code
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Editing Fairness Dashboard
Origination Sttistics  §  Protect Variables Hidden Biss - ETH Impact Analysis Bias Measures +
Data
) : - REJ
ORIGINATION_OUTPUT - B Frequency, Credit_amount by Status_App » What are the characteristics of Status_App?
%

APP is the most common value representing 66.23% (6.2K of 9.4K) of Status_App. Other
common values are REJ (at 28.94%) and INV (at 4.83%). The three most related factors are
EM_EVENTPROBABILITY, GRP_time_to_fill, and WOE_time_to_fill.
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What factors are most related to Status_App? What is the relationship between Status_App

Status_App is APP, with a minimum of 0 and a maximum of
i R | T s 0.62 when

of 0.21and a
BABILITY is 0.18, and

EM_CLASSIFICATION - 3
EmailAddrass - 9.4K

v Category - and EM_EVENTPROBABILITY?
EM_EVENTPROBABILITY I_l
[l _recordCorrelationKey - 9.4K
\ GRP_time_to_fi 5,000
[ _WARN_ -1
i \ wor.sme.sot [
[l app_browser - & ) 4,000
[l app_browser_version - 61 \
I3 app_date - 29 .\
t% app_datetime - 2.4K \‘_ Frequency 3,000
fl app_os - 28 '—“ Credit_amount
[l app_os_version - 40 { FICO_SCORE 2,000
[l app_time - 8.3K f' Business_credit_Report
[l Business_credit_Report - 7 i time_to_fill
[ card_type - 2 / Loan_rate oo
[l Checking_account - 4
device_score
[l City - 7.4K
Principal_income .
[l Country -1 . -0.03 015 0.35 0.55 0.75 0.95
requested_limit
[l CountryFull - 1 EM_EVENTPROBABILITY
Checking_account
fnl credit_score_group -5 APP @ NOTAPP
5 Deviee i 04K nesworicscore |
%) DOB - 7.9K ” The average EM_EVENTPROBABILITY is 0.03 when
[l
[l
[l
[oal

srese Decision Flow is considered a Machine Learning Model where the

aendar 2

Target Variable is Status Credit : Approved / Rejected
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Join conditions

ORIGINATION_OUTPUT:
&0

Columns for new date (41 selected)

Choose Columns.

O app_date - 29
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_recordCorrelstionKey, Business_credit_Report, Checking_account, Grade, Housing, PsthiD, Purpese, REGION, rulsFiredFlags, Saving_sccounts, Status_Credit, Age, CPI_World, Credit_smount, Durstion, EBIT_interest_coverage, EBITDA_interest_coverage, EM_EVENTPROBABILITY, FFO_to_total_debr, FOCF _to_total_debs, GDP_world, ID, Job, Loan_Amt, Loan_number, Loan_rats, Loan_term, Operating_income_to_sales,
own_income, Owner_FICO_Score, Prime_rate, Principal_income, Rules Fired Count, Sales_quarterly, SCORECARD_POINTS, Y=
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The Dashboard allows the import of protected variables to evaluate
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potential Hidden Bias
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Data
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Fairness Dashboard

Origination Statistics Protect Variables HiddenBiss-ETH i  Impact Anslysis Bias Measures +
Wt ore e horacioritics of Remonect Analysis compares each protected attribute category

What factors are most related to ETH? What is the relationship between Measure and Category?

= ]
F
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> % A a

- -
Automated Explanation Algorithm will be used to understand
. which variable from the Decision Process is responsible for the
ol correlation with the protected variable
.|
core ||
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Lending Statistics Hidden Bias - Protected Variables Hidden Bias - ETH Hidden Bias - Religion Hidden Bias - Region Bias Statistics 1 Group Statistics Diff Statistics Trade - off Amalysis with Interactive Tree Counterfactual Analysis Explain Rejected +

ETH
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Data H "

Y Considering the Decision as a model, it is possible for the Reviewer to do trade-off analysis comparing
& the impact of using alternative dataand removing variables that are correlated with protected variables
+ N m
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& Duration
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& _ . 9
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g

& M sveNTRROBABLLITY & This interface runs a Quick Model considering the impact of changing

& FFO_to_total_debt &

the inputs on the decision process and the ability of forecasting
delinquent/riskier customers

SAS E ‘\P Lo R E Copyright © SAS Institute Inc. All rights reserved. SSaS



Ensuring Fairness in Fraud Detection Process using Network Analytics

[#] Edring Fairness Dashboard
ing Stati Hidden Biss - Protected Variables Hidden Bias - ETH Hidden Biss - Religion Hidd=n Biss - Region Bias Sestistics Group Stistics D T # o cerfactual pleinR +
-

4| Owner_FICO. Score dif_Owner_FICO_SCORE EBI_intrestcoveroge i EBMDA intorost coveroge |
- 174 653 19 71217067918 5434320817 0.1 0
-

What risties of dif_Owner_FICO_SCORE?

if_O 14410 97 Average dif_Owner_FICO_SCORE is-0.71. Most cases (3.3K of 4.1K) have & dif_Owner_FICO_SCORE between -9 and 8. dif_Own_income best differentistes the highest (top 10%) and the lowest (bottom 10%) dif_Owner_FICO_SCORE cases. The three most related factors are Gwner_FICO_Score, Credit_smount,
with dif_Owiner_FICO_SCORE grester then or equl <o 1; 771 outliers with dif_Owner_FICO_SCORE less then or equal to -1
What

d to dif_Owner_FICO_SCORE? What s the relationship between dif_Owner_FICO_SCORE and Business_credit_Report?

Counterfactual Analysis: It is the output of
a KNN algorithm to compare the profile of
the closest approved neighbor and the

magnitude of the difference considering
the most importantattributes for the
Decision Flow (Origination Flow in this
Demonstration)
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Solution Workflow
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Common Loan Origination/Application Flow

Gray Area- Investigation

How to Manage the Gray
Area Investigationin the
Fairness perspective?

‘ff s
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. i
B§ Auto_Reject (1.0)

SAS EXPLORE

A 5B Testing :

‘ffs I\l::
%* Forest (Fraud_Scars 1 Logistic Regression (Cha
Fi§ Detection Ru = |
BE °°l Fraud_SCR_Coff Champion

(Aswae | = 1 | Gray Area — Visual Investigator

s f— 5 I;ic- ‘f-'g 5 B I\lc
[ Investigate (1.0) fl§ Auto_Approve (1.0) ‘ |m|—r.-estigate-;'.o: H F§ Auto_Approve (1.0} t |

| | I | |

(e 3

Copyright © SAS Institute Inc. All rights reserved.



Ensuring Fairness in Fraud Detection Process using Network Analytics
Nodes and Links
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In cases where we can’t conclude about the presence of fraud,
could we use the existent relationships to classify an application?

"Tell me who your friends are, and I'll tell you who you are.”

But is this always true, or just another way
to perpetuate the bias in my decision?

SA S E ‘\ P Lo R E Copyright © SAS Institute Inc. All rights reserved. Ssas
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An introduction to the concept of homophilic networks.

 Homophily is a concept borrowed from sociology, and means that people have a strong
tendency to associate with others whom they perceive as being similar to themselves in
some way (Newman 2010)

* So, we define a homophilic network as a network where fraudsters are more likely to be
connected to other fraudsters, and legitimate people are more likely to be connected to
other legitimate people.

* In a non-homophilic network, people associate each other regardless of their labels, thus
generating many cross-labeled edges, that is, an edge between a fraudster and a legitimate
node. In a homophilic network the proportion of cross-label edges is less than would be
expected in a random network.

Sl \S E \I Lo R E Copyright © SAS Institute Inc. All rights reserved.
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Checking if my network is homophilic

In a random network we would expect that the proportion of cross-labeled edge is:
2 X Nodes with a legitimate label (1) x Nodes with a fraud label (f) ->2XIX f

In a random network the proportion of cross-labeled edges is:

Obs random_network
1 0.36662

In our network the proportion of cross-labeled edge is:

The fraction of cross-labeled edge in this network is:

Obs prop_cross_labeled
1 0.23147

Since the observed proportion of cross-labeled edges is less than the expected proportion in a random network,
then, the null hypothesis Hyis rejected with a significance level of @=0.05. That is, our network IS HOMOPHILIC!!

SAS E ‘\P Lo R E Copyright © SAS Institute Inc. All rights reserved. Ssas
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Relational Neighbor Classifier

My network is homophilic. And now, how to infer guilt to an application based on its connections (guilt-by-association)?

Application
+ Application Fraudulent direct nodes
4 P(Fraud) =
} |

Direct Nodes
| New
{application

1
P(Fraud) = 7 = 0,25
3
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Expanded Relational Neighbor Classifier

Is it only the first-level relationshipsthat matter for classifying an entity?

Applica
aw q
Application
tion 4 1 Appllcatlon App|lca
tion 9
. New ‘
apphcatlon
Applica Application Application
tion 6 2 & !

Applica Applica
. q tion 8 A tion 7

SAS EXPLORE

P(Fraud) =

Copyright © SAS Institute Inc. All rights reserve

max dist |, s Fraudulent nodes in distance i
=1 ¢ Nodes in distance i

i
gr;ajllx lStWi
. B 1
where Wi = Jistance i
1.1 1.3 1 3 1.2
(1%2)+(2%8) * (33) + (3%3)
P(Fraud) = T 1 1 1
1tz%t3%2
1/4) + (3/12) + (3/21) + (2/16
P(qud)z(/) ({ )1 (1/ 1) (2/16)
1t2t3%3g

P(Fraud) = 0,3685

*If there are multiple paths between 2 nodes, then the
shortest path is used.

Ggsas
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Expanded Relational Neighbor Classifier

proc network
links = public.application links;
linksvar
from = from_application
to = to_application;
shortestPath
outPaths = PUBLIC.SHORTPATH;
run;

SAS EXPLORE

Copyright © SA|

Expanded Relational Neighbor Classifier

Obs APPLICATION_ID EXPANDED_ERNC

1 17482741 0.667
2 3059607895 0.818
3 3748403515 0.667
= 3766289313 0.887
3 4805242533 0.818
6 5283601049 0.667
7 5457417795 0.951
8 6256254723 0.667
9 9440549304 0.667
10 520605627 0.545
11 1506416170 0.818
12 4463460927 0.545
13 5371881428 0.620
14 5430370092 0.880
15 5433988793 0.818
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Visual Investigator

SAS5® Visual Investigator - Investigate and Search Data - Search

SAS EX

= st asE6@
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B 4462044 Apphca‘tlon 4462 046 | Jasmine Moore 1,995 | Branded
B 4733414 Application 4,733,414 | Victoria Andrews 2473 | Branded
B 7s06381 Application 7,806,881 | Dominic Nelson 4771  CoBranded
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B 23397971  Application 23,397,271 | Rachel Ahmed 5,117 | Branded
E 23416886  Application 23,416,886 Harriet Dixon 2,210 | CoBranded

1 2 3 >
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Relationship Network: a matrix to calculate proactive networks

SAS® Visual Investigator - Investigate and Search Data - 4632454791

= & A s = 4 N = I o A B E= oA B R= & A BE & L B 4632454791 x
| ) (HI! H e} T HG!
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4632454 791.0 i PeterHolloway@d

Sophie il 222.00 Distance: 0.77630929

i . . 1° Principal C t: -0.410239114
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5,000.00 M 926.00 2 2° Principal Component: 1.65%8018288
Contact Info [ ]

Product Type Surname Stroot address Credit Score Grou v
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30.00 ROESOUND 3.66

L

Gender Country ¢ o

F GB [ ] o
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030 Law Enforcement ZE20YD ¢ b *
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Card Type
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[
Fraud Fla *
9 L]
o] " 0 2
1° Principal Component
Fraud Flag @ Applicstion @ No @ Yes
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IP Addrass
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Relationship Network: a graph to understand the relationships

SAS® Visual Investigator - Investigate end Search Data - Loading...
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Contact Information

aline.riquetti@sas.com
luiz.kauffmann@sas.com
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