
Copyright © SAS Institute Inc. All rights reserved.

Copyright © SAS Institute Inc. All rights reserved.

Arrow/Parquet in SAS Compute
Jerry Adair

Principal Developer, Compute Services, SAS

Copyright © SAS Institute Inc. All rights reserved.

Apache Software Foundation (ASF)

• Where it begins

Arrow/Parquet

• Overview

• Libraries

Open Source File Formats (OSFF)

• Background @ SAS

Compute Parquet

• Current feature set
• Future development

Copyright © SAS Institute Inc. All rights reserved.

The Apache Software Foundation
(ASF) exists to provide software for
the public good. We believe in the
power of community over code,
known as The Apache Way.”

Apache Software Foundation (ASF)
ASF website

Copyright © SAS Institute Inc. All rights reserved.

Arrow & Parquet are
Apache projectsFreely available software

(leader in open source)

Funded by sponsors
(individuals and

corporations)

Hundreds of projects

Run by volunteers
Thousands of contributors

Copyright © SAS Institute Inc. All rights reserved.

Arrow vs Parquet

Parquet does not offer data structures for in-memory computing

Arrow has an on-disk format, but is less efficient than Parquet

A Parquet read requires decompression and decoding of data

Designed with differing purposes, to perform different tasks2

3

4

5

Arrow and Parquet are complementary technologies1Arrow is a library that provides columnar data
structures for in-memory computing. The Arrow
format was designed for high-speed operation by
vectorized computational kernels.

Parquet is a columnar on-disk file format
designed for space and I/O efficiency, though at
the expense of CPU utilization.

They are intended to be compatible and can be
used together, depending on the use case
scenario. A Parquet file can be read into Arrow
data structures. That data can then be utilized
during in-memory processing.

Arrow random access is O(1), Parquet random access is costly6

Copyright © SAS Institute Inc. All rights reserved.

An open source, column-oriented data file
format

Designed for efficient data storage and
retrieval

Efficient data compression and encoding
schemes

Enhanced performance for complex data in
bulk

Language libraries (C++, Java, Python)

Originally designed by the creator of Hadoop

First release July 2013 (Apache Parquet 1.0)

Copyright © SAS Institute Inc. All rights reserved.

Open Source File Formats (OSFF)
Background @ SAS

Copyright © SAS Institute Inc. All rights reserved.

Open Source File Formats (OSFF)
Background @ SAS

Copyright © SAS Institute Inc. All rights reserved.

Open Source File Formats (OSFF)
Background @ SAS

Copyright © SAS Institute Inc. All rights reserved.

Compute Parquet

Compute ORC

Compute Avro

Has the most support @ SAS
Key features delivered
Developing new features

Well supported
Not currently under development

Support for read only
Also not currently being developed

Copyright © SAS Institute Inc. All rights reserved.

Present Capabilities

Compute Parquet Features

Read/Write

• Local disk
• Cloud (GCS/S3)
• File/column compression (write)

Logical Types

• Temporal, String
•Numeric, Embedded
•Nested types unsupported

Partitioned Datasets

•Directories as data
• Parquet partitioning

Copyright © SAS Institute Inc. All rights reserved.

Future Development
Compute Parquet Features

Read/Write to the Cloud (ADLS)

CAS Parquet data connector, unified Parquet @ SAS

Extended data type support during Parquet data creation

Parallelism

Schema Evolution

Access Control List (ACL), password protection

Optional column support during Parquet data creation

Copyright © SAS Institute Inc. All rights reserved.

Apache Software Foundation (ASF)
https://projects.apache.org/
https://projects.apache.org/project.html?parquet

SAS Documentation
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=

default&docsetId=enghdff&docsetTarget=titlepage.htm

Jerry Adair
jerry.adair@sas.com

Further Information

Compute Parquet

Copyright © SAS Institute Inc. All rights reserved.

STRING TYPES
String
Enum
UUID

NUMERIC TYPES
Signed Integers
Unsigned Integers
Decimal

TEMPORAL TYPES
Date
Time
Timestamp
Interval

EMBEDDED TYPES
JSON
BSON

NESTED TYPES
Lists
Maps

UNKNOWN
(always NULL)

Boolean
Int32
Int64
Int96 (deprecated)
Float
Double
Byte Array
Fixed-Length Byte Array

And Primitives Too
Parquet Logical Types

Copyright © SAS Institute Inc. All rights reserved.

Parquet Logical Types

➢ Primitive

➢ Logical

Logical extends primitive Logical stored as primitive
(DATE = Int32)

Interpretation drives result

✓ Minimized set of types

✓ Reuses efficient primitive encodings

What Are They?

Copyright © SAS Institute Inc. All rights reserved.

Parquet Logical Types
Ain’t No School Like The Old School

➢ Primitive

➢ Logical

Converted Type

Older representation of logical type annotations

Flattened enum structure like ORC

Cumbersome to add type parameters

Replaced by the Logical type

Now deprecated – best practice is to only write Logical types

Backward compatibility with old Parquet readers/writers

PM: We support old files containing converted types

Copyright © SAS Institute Inc. All rights reserved.

Parquet Logical Types
Temporal Logicals

D
A

TE

• Days since UNIX Epoch

• No representation of time

• Stored as Int32

• SAS numeric, DATE9. format TI
M

E • Since midnight, without a date

• Millis, Micros, Nanos precision

• Can be adjusted to UTC

• Millis stored as Int32

• Micros, Nanos stored as Int64

• SAS numeric, TIME8. format

• No UTC adjustment in SAS

Copyright © SAS Institute Inc. All rights reserved.

Parquet Logical Types
Temporal Logicals

TI
M

ES
TA

M
P • Time since UNIX Epoch

• Millis, Micros, Nanos precision

• Can be adjusted to UTC

• Millis, Micros, Nanos stored as
Int64

• SAS numeric, DATETIME21.2
format

• No UTC adjustment in SAS IN
TE

R
V

A
L • Time span between two points

• Stored as 12-byte fixed length
byte array

• 4-byte months, 4-byte days, 4-
byte milliseconds

• Each 4-byte component is
independent

• SAS character, $char12. format

Copyright © SAS Institute Inc. All rights reserved.

The Temporal Problem
A Funny Thing About Time

• Only 2 types: character and numeric

• Time-related columns are numeric, annotated by format/informat
• 3 time-related formats/informats: DATE, TIME or DATETIME

SAS

• 19 types in flattened type structure (long-ish enumeration)

• Only 2 time-related types: DATE and TIMESTAMP

ORC

• 23 types in different classifications/representations

• Primitive versus logical types (union of structs)
• 4 time-related types: DATE, TIME, TIMESTAMP, INTERVAL

Parquet

Copyright © SAS Institute Inc. All rights reserved.

Parquet Logical Types
String Logicals

ST
R

IN
G • Annotates the binary primitive

type

• The byte array is interpreted
as a UTF-8 encoded character
string

• The sort order used
for STRING strings is unsigned
byte-wise comparison

EN
U

M

• Annotates the binary primitive
type

• The sort order used for ENUM
values is unsigned byte-wise
comparison

Copyright © SAS Institute Inc. All rights reserved.

Parquet Logical Types
String Logicals

U
U

ID

• Universally Unique IDentifier

• 128-bit label to uniquely
identify an entity

• Annotates a 16-byte fixed-
length binary in Parquet

• The sort order used for UUID
values is unsigned byte-wise
comparison

Copyright © SAS Institute Inc. All rights reserved.

The Problem Of Creation
Just How Are You Gonna Do That?

• Only 2 types: character and numeric

SAS

• 23 types in different classifications/representations

• Primitive versus logical types (union of structs)

• 3 string-related types: STRING, ENUM, UUID

Parquet

• Can create only a subset of Parquet logical column types
from within a traditional SAS program

• Develop support for Parquet types during data creation

The Issue

Copyright © SAS Institute Inc. All rights reserved.

Parquet Logical Types
Numeric Logicals

SI
G

N
ED

 IN
TE

G
ER

S • INT8, INT16, INT32 annotate
INT32 primitive type

• INT64 annotates INT64 primitive
type

• Values larger than maximum
allowed by the annotation =
undefined behavior

U
N

SI
G

N
ED

IN

TE
G

ER
S • UINT8, UINT16, UINT32 annotate

INT32 primitive type

• UINT64 annotates
INT64 primitive type

• Values larger than maximum
allowed by the annotation =
undefined behavior

Copyright © SAS Institute Inc. All rights reserved.

Parquet Logical Types
Numeric Logicals

D
EC

IM
A

L • Annotated as INT32 or INT64

• INT32<= 9 digits of precision

• INT64 <= 18 digits of precision

• Primitive type stores an unscaled
integer value

• 0 <= scale < precision (default = 0)

Copyright © SAS Institute Inc. All rights reserved.

The Problem Of Creation
Just How Are You Gonna Do That?

• Only 2 types: character and numeric

• 4. -> INT8 5. -> UINT8 6. -> INT16 7. -> UINT16
• 11. -> INT32 12. -> UINT32 20. -> INT64 21. -> UINT64

• DECIMAL

SAS

• 23 types in different classifications/representations

• Primitive versus logical types (union of structs)
• 9 numeric-related types: INT8-64, UINT8-64, DECIMAL

Parquet

• SAS program creates only a subset of Parquet logical column types

The Issue

Copyright © SAS Institute Inc. All rights reserved.

Parquet Logical Types
EMBEDDED LOGICALS

JS
O

N • Lightweight data-interchange
format

• Easy for humans to read and
write

• Embedded JSON document

• Annotates byte
array primitive type

B
SO

N • Binary format

• Zero or more ordered
key/value pairs = a single
entity

• Each entity = document

• Embedded BSON document

• Annotates byte
array primitive type

Copyright © SAS Institute Inc. All rights reserved.

Parquet Logical Types
NULL LOGICAL

N
U

LL

• The entire data in a given column is NULL

• Can annotate any primitive type

• Use case: writing data from loosely typed systems to
Parquet

• Type cannot be inferred if all data in a column is NULL

• The NULL logical type can be utilized

• If schema evolution is supported, type can be
developed later

Copyright © SAS Institute Inc. All rights reserved.

The Problem Of Creation
JUST HOW ARE YOU GONNA DO THAT?

• Only 2 types: character and numeric

• Can only read embedded logical types (character)
• Same applies to NULL logical type (primitive type dependent)

SAS

• 23 types in different classifications/representations

• Primitive versus logical types (union of structs)
• No means of determining which embedded or NULL type is needed

Parquet

• SAS program creates only a subset of Parquet logical column types

The Issue

Copyright © SAS Institute Inc. All rights reserved.

Partitioned Data Background
What are we talking about here?

ORC Format

Copyright © SAS Institute Inc. All rights reserved.

SAS HDFF Partitioned Data
All In The Folder

All files must possess
identical schema

All data files located
in one folder

(no other content)

Separate files,
Independent,
Disconnected

Copyright © SAS Institute Inc. All rights reserved.

A Tale Of Two Partitions
Well kinda… sorta…

ORC/Parquet support one variant
of partitioned data

PM wanted something
different

Copyright © SAS Institute Inc. All rights reserved.

Parquet Partitioned Data
What is it? Why does anyone care?

Data distributed amongst
partitions in a folder tree
based on key-value pairs

(Hive Partitioning)

Relative elapsed query times of a partitioned parquet filter as a ratio to

elapsed query times against a non-partitioned parquet file.

• Queries against a partitioned column improve performance
• Other operations are (much) slower
• The number of unique values impacts performance
• Time required to configure the metadata is longer
• Different partitioning types are available

Unique values in partitioned column 2 5 1000

Query against partitioned column 74.5% 46.3% 16.66%

Query against other columns 89.51% 191.01% 556.99%

Total count query 136.79% 163.68% 1194.88%

Copyright © SAS Institute Inc. All rights reserved.

Parquet Partitioned Data
Fer Example

 // Create a table with the following schema:

 // field("first_name”)

 // field("last_name”)

 // field("residence_area")

 // AppendValues({ "Tim", "Fred", "Wilma", "Joan", "Burt",

 "Lance", "Robert", "Lane", "Karl", "Ted" });

 // AppendValues({ "Smith", "Jones", "Johnson", "Myers", "Lenay",

 "Richards", "Tuni", "Peters", “Zimmer", "Rhodes" });

 // AppendValues({ "City", "City", "Suburb", "Country", "City",

 "City", "Suburb", "Suburb", "Country", "City“ });

 // Create a partitioned dataset based on the “residence_area” column.

Pseudo-code:

Copyright © SAS Institute Inc. All rights reserved.

Parquet Partitioned Data
The Three Tenors

Hive Partitioning Directory Partitioning

Filename Partitioning

Value_part# filenames

Copyright © SAS Institute Inc. All rights reserved.

While we would prefer to
stream the data to disk in

chunks

Parquet Partitioned Write

Copyright © SAS Institute Inc. All rights reserved.

Parquet Partitioned Write
There is no means to do that via

the Arrow datasets library.
Therefore we must fill the buffer

and write once.

However I found a path forward.
It will require research, design

and implementation.

With input from PM we can
schedule that work for a future

sprint.

Copyright © SAS Institute Inc. All rights reserved.

Parquet Partitioned Write

• Arrow was designed to perform
data analysis on in-memory
tables.

• It is therefore efficient in storing
data via its in-memory datasets.

• However, be mindful of your
memory footprint when writing
Parquet partitioned data.

Copyright © SAS Institute Inc. All rights reserved.

ORC vs Parquet
The Two Columnar Data Stores

• Inspired from RCFile developed by
Facebook

• Development supported by
Hortonworks/Facebook

• Supports only Hive and Pig

• Optimized for Hive

• Provides ACID support (Hive)

• Files organized into data stripes

• Better suited for write-heavy
operations

• More efficient in writing data

• Inspired by nested data format (Dremel
paper)

• Development supported by
Cloudera/Twitter

• Broad range of support for Hadoop projects
• Works well with Apache Spark
• Stores data in pages with definition and

repetition levels

• Excels in write-once, read-many scenarios
• Highly efficient data compression and

decompression
• Supports multiple programming languages

• Columnar compression

Copyright © SAS Institute Inc. All rights reserved.

Parquet Model (Dremel Paper)
AT A GLANCE – A QUICK 411

Minimalistic, columnar storage model in which data structures are
used to represent schema

Nested data = groups of fields

Repeated data = repeated fields

Combination of the above eliminates need for complex
types such as maps

Schema root is a group of fields called a message

Fields have a name, type, and a repetition

Definition level specifies where the value is NULL, repetition level
defines the level at which a new list begins

•required: exactly one occurrence

•optional: 0 or 1 occurrence

•repeated: 0 or more occurrences

	Default Section
	Slide 1
	Slide 2: Arrow/Parquet in SAS Compute
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Arrow vs Parquet
	Slide 7
	Slide 8: Open Source File Formats (OSFF)
	Slide 9: Open Source File Formats (OSFF)
	Slide 10: Open Source File Formats (OSFF)
	Slide 11
	Slide 12: Compute Parquet Features
	Slide 13: Compute Parquet Features
	Slide 14: Compute Parquet

	Detailed Information Slides
	Slide 15: Parquet Logical Types
	Slide 16: Parquet Logical Types
	Slide 17: Parquet Logical Types
	Slide 18: Parquet Logical Types
	Slide 19: Parquet Logical Types
	Slide 20: The Temporal Problem
	Slide 21: Parquet Logical Types
	Slide 22: Parquet Logical Types
	Slide 23: The Problem Of Creation
	Slide 24: Parquet Logical Types
	Slide 25: Parquet Logical Types
	Slide 26: The Problem Of Creation
	Slide 27: Parquet Logical Types
	Slide 28: Parquet Logical Types
	Slide 29: The Problem Of Creation
	Slide 30: Partitioned Data Background
	Slide 31: SAS HDFF Partitioned Data
	Slide 32: A Tale Of Two Partitions
	Slide 33: Parquet Partitioned Data
	Slide 34: Parquet Partitioned Data
	Slide 35: Parquet Partitioned Data
	Slide 36: While we would prefer to stream the data to disk in chunks
	Slide 37: Parquet Partitioned Write
	Slide 38: Parquet Partitioned Write
	Slide 39: ORC vs Parquet
	Slide 40: Parquet Model (Dremel Paper)

