BookmarkSubscribeRSS Feed
fengyuwuzu
Pyrite | Level 9

I want to use LOCF to impute missing values, but the missing visits are not present in the dataset. 

In this case, how do I check the missing visits and set the value to missing value first, and then use retain to do LOCF? 

 

data visit;
input ID $ avisitn result;
datalines;
A 0 4.1
A 1 3.9
A 2 4.3
A 4 5.0
A 8 4.5
A 12 5.1
A 16 5.3
A 18 4.9
A 20 4.7
B 0 4.2
B 1 3.7
B 2 4.4
B 4 5.2
B 12 4.5
B 16 5.2
B 18 4.8
B 20 4.9
C 0 4.6
C 1 4.9
C 2 5.3
C 8 5.5
C 16 5.6
C 18 5.9
C 20 5.7
;
run;

/* avisitn is 0, 1, 2, 4, 8, 12, 16, 18, 20* /
/* A has all visits, B misses avisitn 8, C misses avisit 4 & 12 */
3 REPLIES 3
maguiremq
SAS Super FREQ

I think this takes care of it. The `PROC FREQ` with the `SPARSE` option expands the table to include the missing `avisitn` records.

 

The rest just is some PDV manipulation.

 

proc freq
	data = visit noprint;
		tables id * avisitn / out = visit_1 (drop = percent count) sparse;
run;

data visit_2;
	merge
			visit
			visit_1;
	by		id avisitn;
	retain 	result2;
		
		if	first.id then result2 = .;
		if 	result ~= . then result2 = result;
			
run;
ID avisitn result result2 
A 0 4.1 4.1 
A 1 3.9 3.9 
A 2 4.3 4.3 
A 4 5.0 5.0 
A 8 4.5 4.5 
A 12 5.1 5.1 
A 16 5.3 5.3 
A 18 4.9 4.9 
A 20 4.7 4.7 
B 0 4.2 4.2 
B 1 3.7 3.7 
B 2 4.4 4.4 
B 4 5.2 5.2 
B 8 . 5.2 
B 12 4.5 4.5 
B 16 5.2 5.2 
B 18 4.8 4.8 
B 20 4.9 4.9 
C 0 4.6 4.6 
C 1 4.9 4.9 
C 2 5.3 5.3 
C 4 . 5.3 
C 8 5.5 5.5 
C 12 . 5.5 
C 16 5.6 5.6 
C 18 5.9 5.9 
C 20 5.7 5.7 
Tom
Super User Tom
Super User

Build up a dataset with every visit for every subject.

proc sql noprint;
 create table skeleton as
 select id,avisitn
 from (select distinct id from visit)
    , (select distinct avisitn from visit)
 order by id,avisitn
 ;
quit;

data full ;
  merge skeleton visit (in=in1);
  by id avisitn ;
  realdata=in1;
run;

Then you can use LOCF technique to replace the missing values.

data locf ;
  update full(obs=0) full;
  by id;
  output;
run;

Results:

Obs    ID    avisitn    result    realdata

  1    A         0        4.1         1
  2    A         1        3.9         1
  3    A         2        4.3         1
  4    A         4        5.0         1
  5    A         8        4.5         1
  6    A        12        5.1         1
  7    A        16        5.3         1
  8    A        18        4.9         1
  9    A        20        4.7         1
 10    B         0        4.2         1
 11    B         1        3.7         1
 12    B         2        4.4         1
 13    B         4        5.2         1
 14    B         8        5.2         0
 15    B        12        4.5         1
 16    B        16        5.2         1
 17    B        18        4.8         1
 18    B        20        4.9         1
 19    C         0        4.6         1
 20    C         1        4.9         1
 21    C         2        5.3         1
 22    C         4        5.3         0
 23    C         8        5.5         1
 24    C        12        5.5         0
 25    C        16        5.6         1
 26    C        18        5.9         1
 27    C        20        5.7         1
fengyuwuzu
Pyrite | Level 9

Thank you very much, Maguiremg and Tom!

I learned from both of you. very nice ideas.

hackathon24-white-horiz.png

The 2025 SAS Hackathon Kicks Off on June 11!

Watch the live Hackathon Kickoff to get all the essential information about the SAS Hackathon—including how to join, how to participate, and expert tips for success.

YouTube LinkedIn

How to Concatenate Values

Learn how use the CAT functions in SAS to join values from multiple variables into a single value.

Find more tutorials on the SAS Users YouTube channel.

SAS Training: Just a Click Away

 Ready to level-up your skills? Choose your own adventure.

Browse our catalog!

Discussion stats
  • 3 replies
  • 1731 views
  • 1 like
  • 3 in conversation