## Oppdag det forventede og uventede ved å bruke tekstanalyse i VA

FANS Nettverksmøte – Onsdag 13.mars 2023

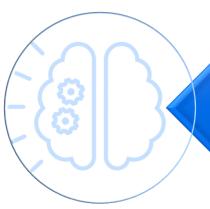


Vegard Hansen

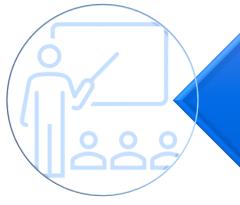
Academic Lead @ SAS
Global Academic Program, Education
vegard.hansen@sas.com
www.linkedin.com/in/vegard-hansen/







Build SAS Skill Aligned with Workforce Demand



Provide Free Teaching and Learning Resources & Platforms and Recognition



Connect Graduates with SAS Customers for Hiring





#### **SAS (Certified) Specialist**







#### **SAS SKILL BUILDER for Students**

Self-study portal for students

Totally free

From Programming to Machine Learning

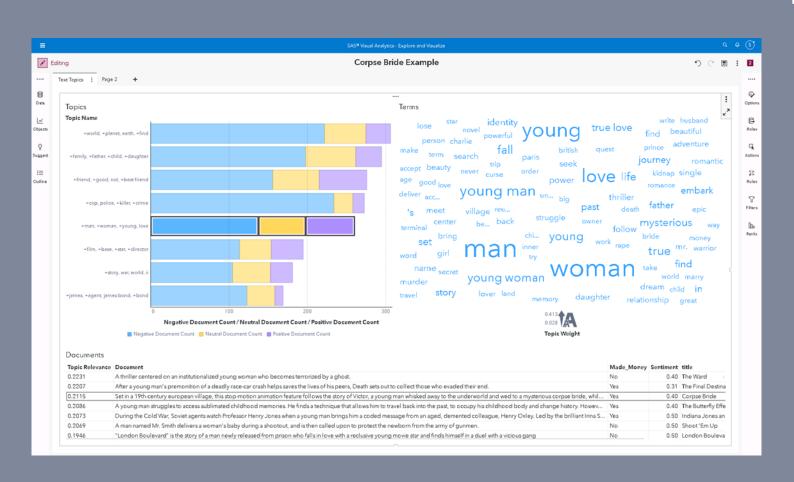
The + of Badges on the CV

#### **SAS EDUCATORS Portal**

Teacher Resource Portal Totally free



# How text/unstructured data can be used to improve the value of your predictive models



Case - Movie Viewer Rating



## Text or unstructured data can significantly improve the value of predictive models

#### 1. Sentiment Analysis:

Analyses sentiments from text data like reviews or comments to understand user preferences and trends, which can be used to make more accurate predictions.

#### 2. Topic Modeling:

Identifies topics within the text data to uncover hidden patterns and insights that can be useful for prediction.

#### 3. Named entity recognition (NER)

NER is a text analytics technique used for identifying named entities like people, places, organizations, and events in unstructured text.

#### 4. Term frequency – inverse document frequency

TF-IDF is used to determine how often a term appears in a large text or group of documents and therefore that term's importance to the document.

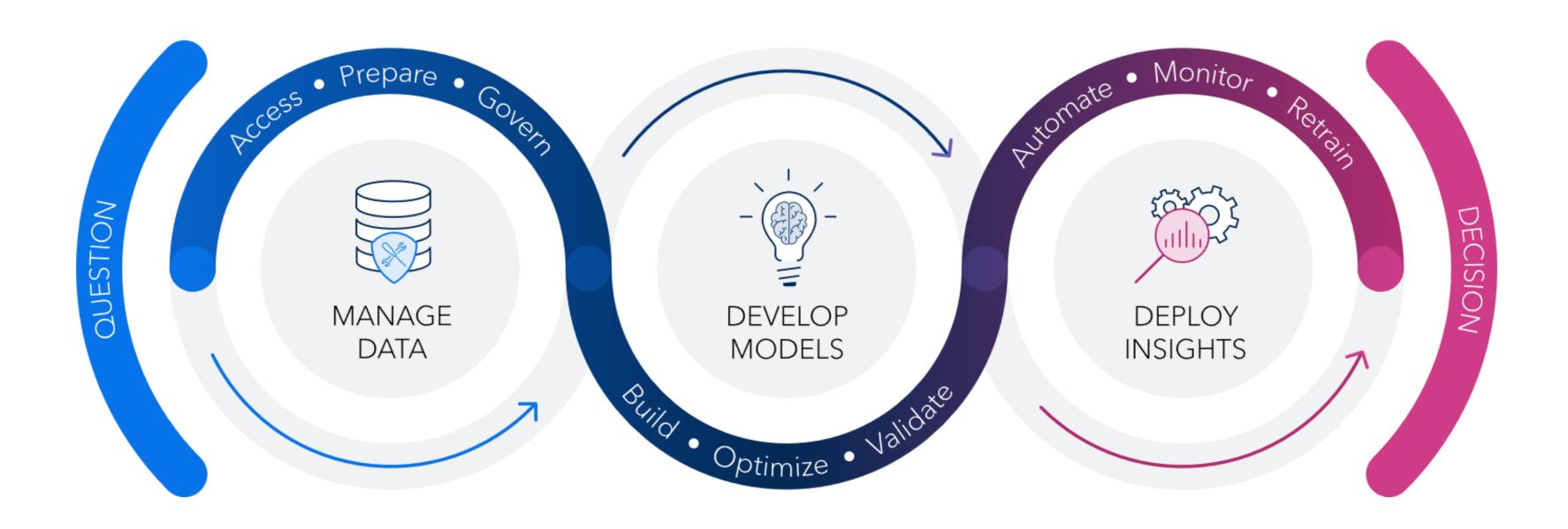
#### 5. Event extraction

This is a text analytics technique that is an advancement over the named entity extraction. Event extraction recognizes events mentioned in text content, for example, mergers, acquisitions, political moves, or important meetings.



## Operationalizing Analytics

The Analytics Lifecycle



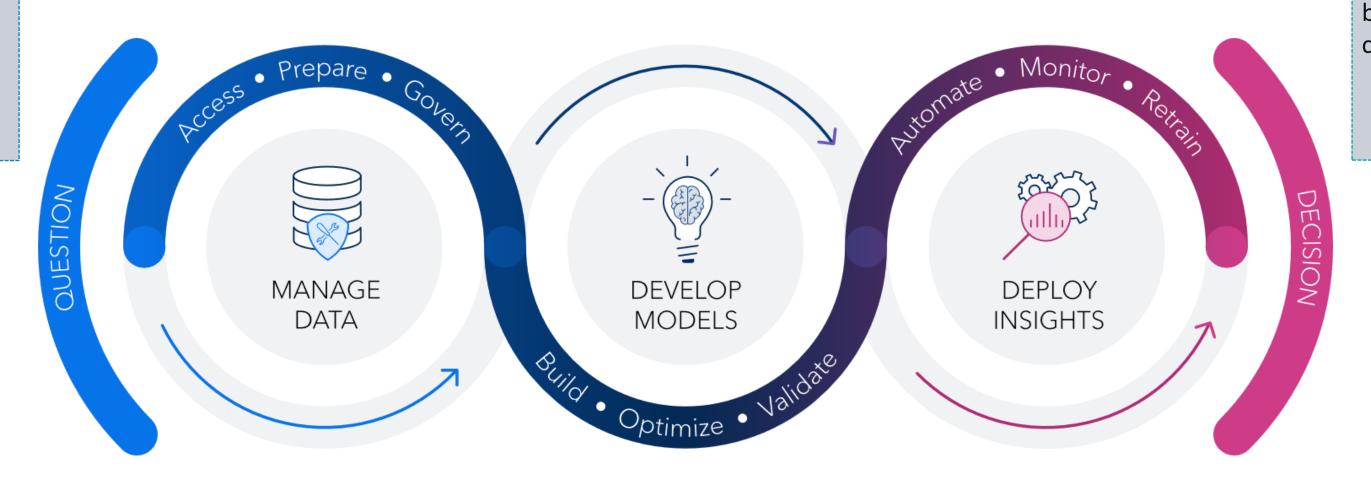


## Sentiment Example: Customer review sentiment classifier

How can texted review data improve a predictive model?

Review: "I absolutely love this product! It's fantastic."

Sentiment Label: *Positive* 



Decide whether a given review is positive or negative based on the text content.

- Data Collection Custom reviews text + sentiment (target)
- 2. Understand and know your data, i.e.:
  - Data preparation and exploration
  - Analyse and find (hidden) insight
- 3. Text preprossesing:
  - Tokenzise, start/stop, stemming etc....
  - Feature Extraction

#### Model Building:

- Train a (ML) model using the feature vectors
- The model learns to associate certain word patterns with positive or negative sentiments
- Validate: Assess the model's performance Sentiment Prediction:
- Compare models and choose champion

- Deploy the model to the e-commerce platform
- Score new reviews when customer submits a new review
  - The model predicts whether the review expresses a positive or negative sentiment
- Monitor performance, retrain, retire, replace....
  - Using metrics like accuracy, precision, recall, or F1-score. Fine-tune hyperparameters if necessary.
  - Preprocess and convert into a feature vector.
  - Feed the vector into the (new) model.





- Name: Movie Recommenders Unlimited, Inc.
- What: A boutique firm specializing in movie consulting
- Specifically: Advise movie production companies on which new movie proposal could be a potential smash hit.
- Analytical task/goal: Based on analyzing the characteristics of historical films find what type of movies that maximise Viewer Rating scores.
- <u>Data:</u> dataset of 1500 historical movies with viewer rating (score 1-5) and synopsis (unstructured text data) together with other data

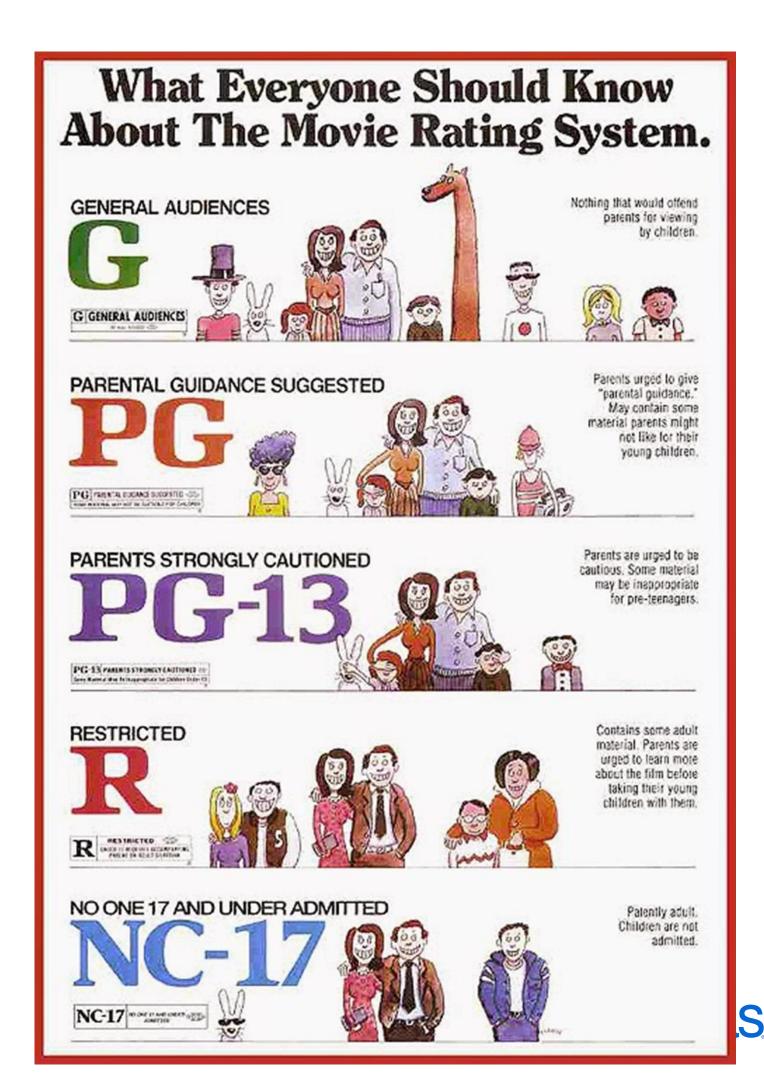


## Data - Moviedata

#### Variables

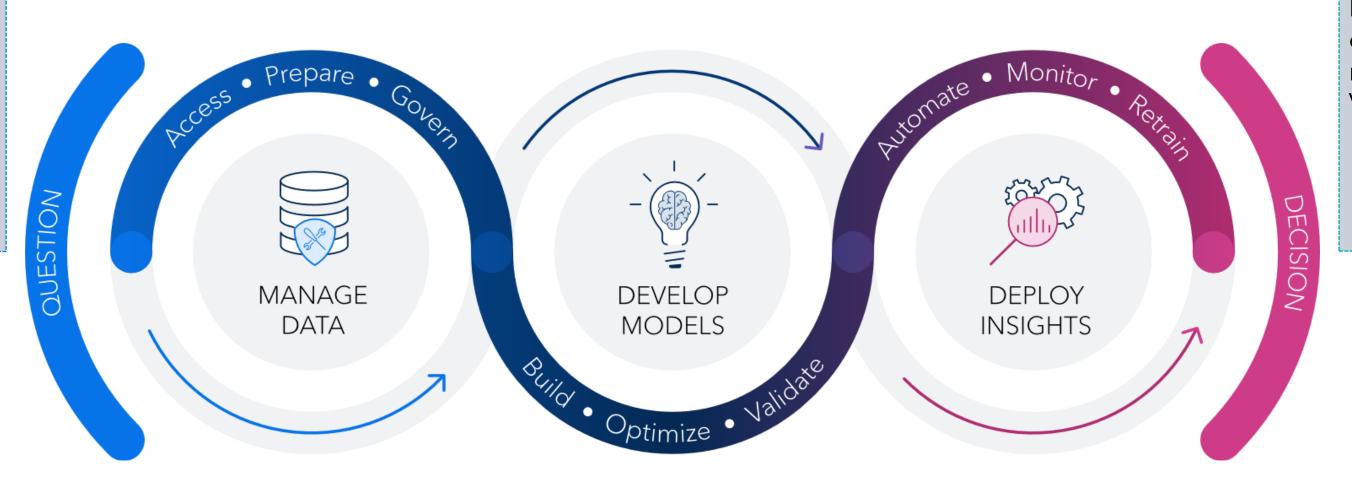
- Synopsis overview text
- Title unique
- MPAARating Rating (R,PG,PG-13 NR,G,NC-17)
- Genre
- Year
- Viewer Rating Target (0-4)
- Size





## Operationalizing Analytics

Which new movie proposal could be a potential smash hit by analysing the characteristics of historical films?



Decide which type of movie that maximizes the Viewer Rating

- Step 1: Data Access: MovieGenres structured + unstructured data
- Step 1: Understand your data:
  - Data preparation and exploration
  - Define your target Viewer Rating
  - Initially analytics and explorations
- Step 2: Add text prepossessing:
  - Create topics for modelling

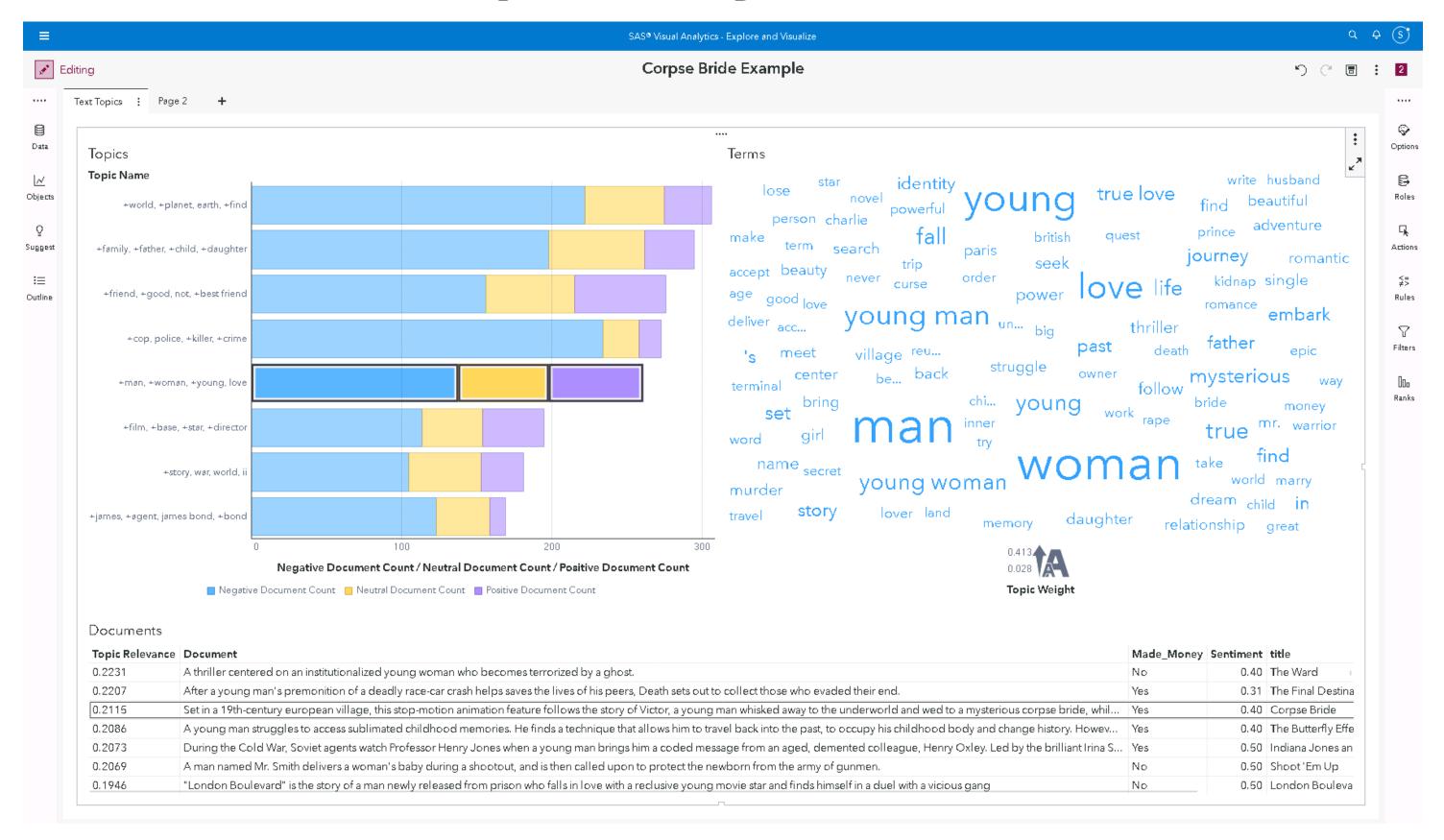
- Step 1: Add a regression model to your (structured) data, measure models performance: ASE
- Step 2: Based on outcome of the text analysis extend your regression model in step 1 with "new" features
- Compare the two models and choose the best one (champion)

#### Finally, you will be ready to;

- Bring your champion model to further analysis and deployment
- Deploy the results in a Dashboard
- Validate samples (type of movies) with experts ASE
- In long Run:
  - Score the model against new data
  - Monitor periodically (quarterly, yearly, when needed...)



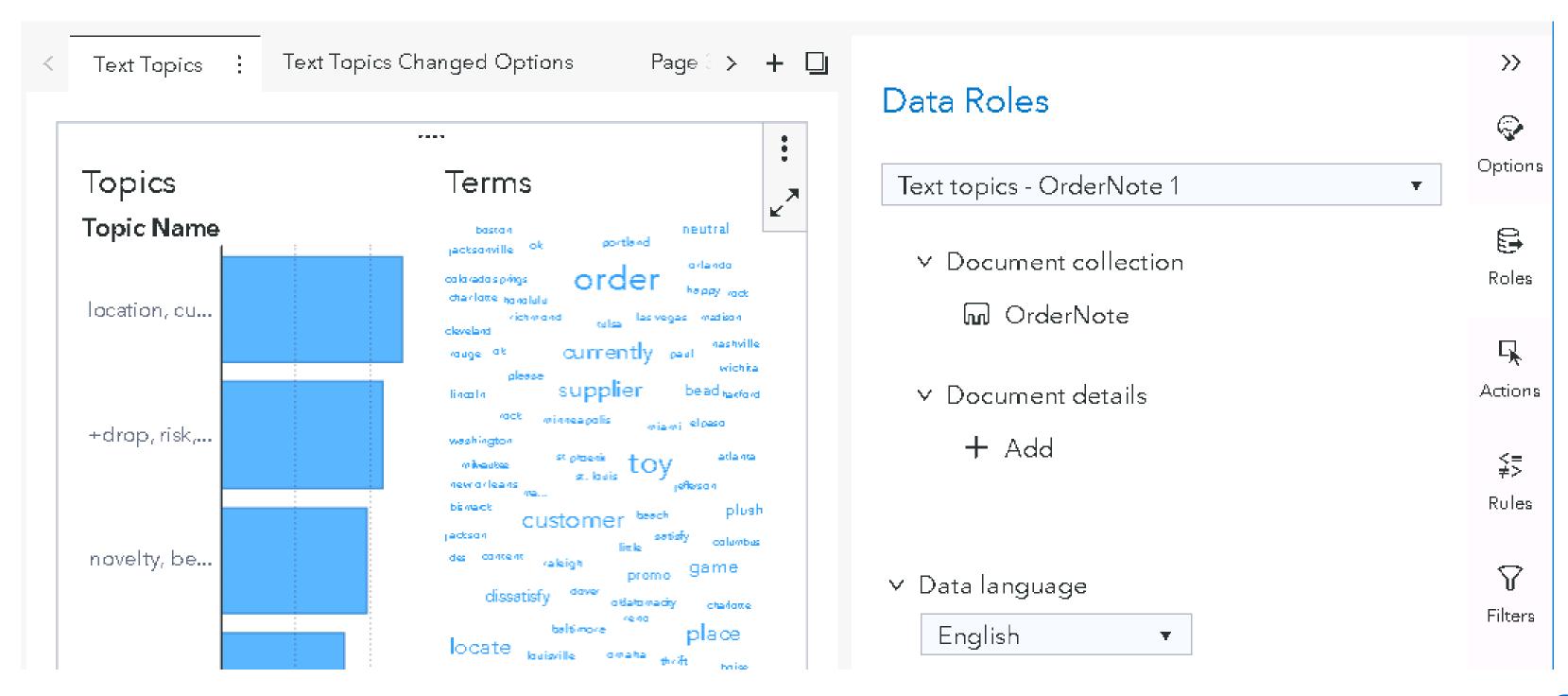
## Meet the Text Topics Object





#### **Data Roles**

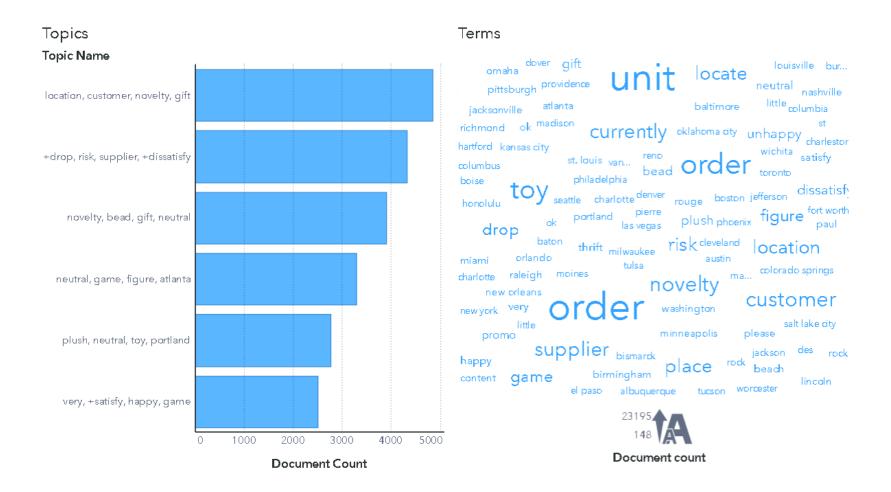
#### There must be a unique ID in your data!





## Output

- Suggested topics
- Document count for each topic
- Word Cloud with word frequency

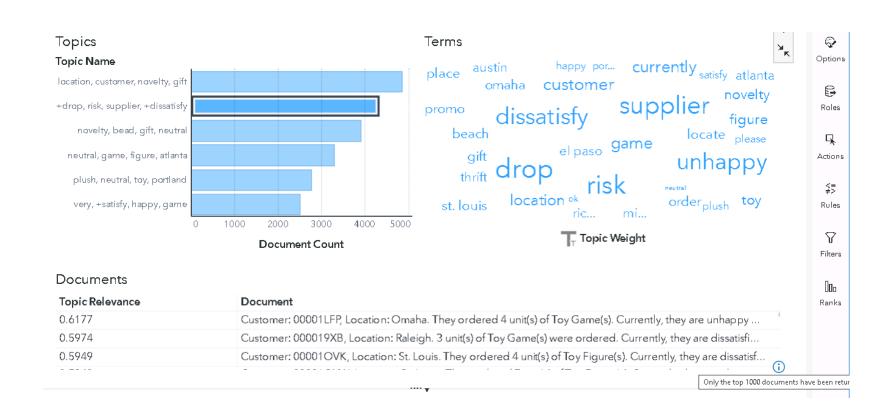




## **Selected Topic**

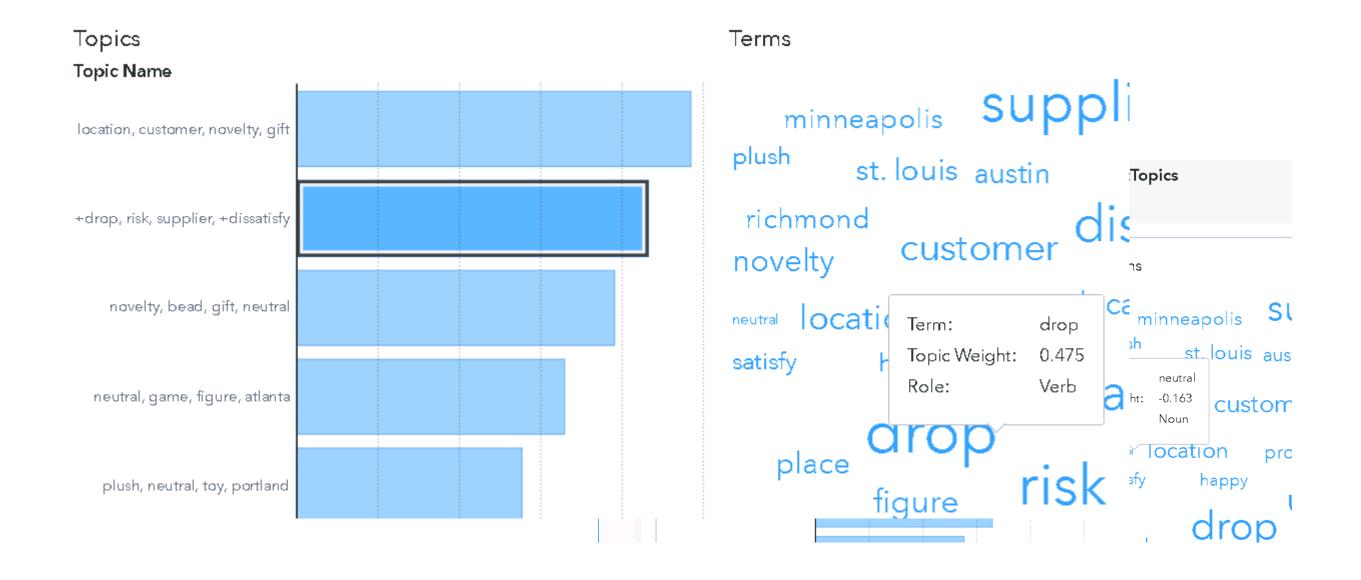
#### Click on a topic

- Word Cloud shows term weights related to the selected topic
- Documents are shown ranked by topic relevance



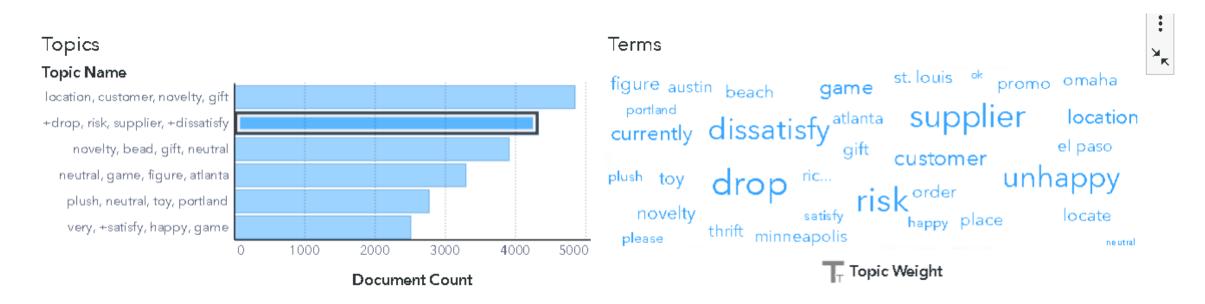


## Term Weights can be positive and negative





## **Details Table**



#### **Documents**

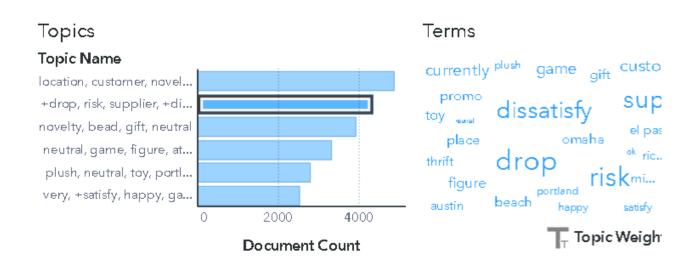
| Topic Relevance | Document                                                                                                                |
|-----------------|-------------------------------------------------------------------------------------------------------------------------|
| 0.6177          | Customer: 00001LFP, Location: Omaha. They ordered 4 unit(s) of Toy Game(s). Currently, they are unhappy with us as      |
| 0.5974          | Customer: 000019XB, Location: Raleigh. 3 unit(s) of Toy Game(s) were ordered. Currently, they are dissatisfied with u   |
| 0.5949          | Customer: 00001OVK, Location: St. Louis. They ordered 4 unit(s) of Toy Figure(s). Currently, they are dissatisfied with |
|                 |                                                                                                                         |

| Topics Terms Text Topics Summary   | <i></i> <b>▼</b> |                |
|------------------------------------|------------------|----------------|
| Topic Name                         | <b>A</b>         | Document Count |
| location, customer, novelty, gift  |                  | 4859           |
| +drop, risk, supplier, +dissatisfy |                  | 4331           |
| novelty, bead, gift, neutral       |                  | 3913           |
| neutral, game, figure, atlanta     |                  | 3301           |
| plush, neutral, toy, portland      |                  | 2777           |
| very, +satisfy, happy, game        |                  | 2514           |



## Terms Table

#### is a numerical representation of the Word Cloud



#### Documents

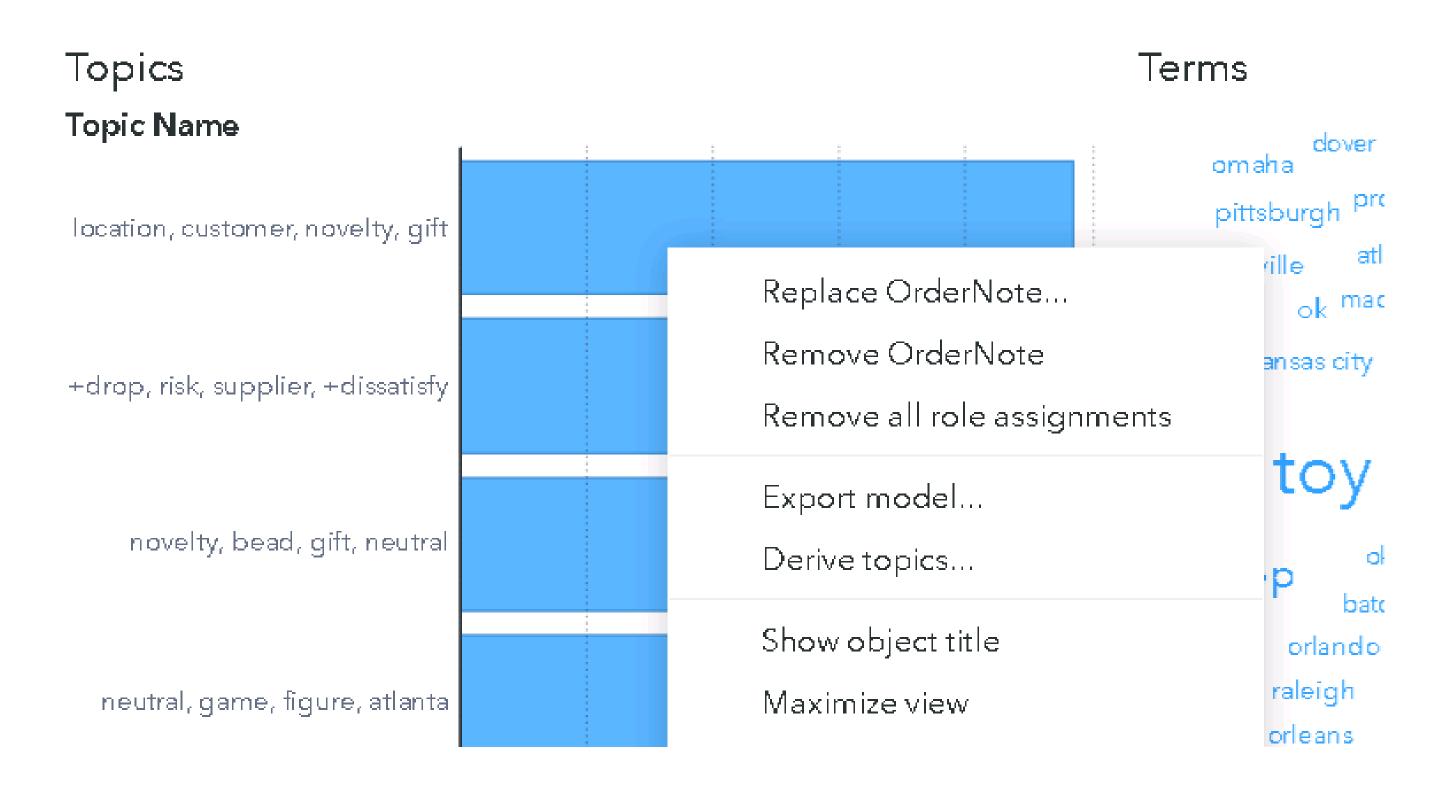
| Topic Relevance | Document                                                        |
|-----------------|-----------------------------------------------------------------|
| 0.6177          | Customer: 00001LFP, Location: Omaha. They ordered 4 unit(s) of  |
| 0.5974          | Customer: 000019XB, Location: Raleigh. 3 unit(s) of Toy Game(s) |
| 0.5949          | Customer: 00001OVK, Location: St. Louis. They ordered 4 unit(s) |
|                 |                                                                 |

| Topics Terms Text Topics Summary |              |             |
|----------------------------------|--------------|-------------|
| Term                             | Topic Weight | Role        |
| drop                             | 0.475        | Verb        |
| risk                             | 0.438        | Noun        |
| supplier                         | 0.408        | Noun        |
| dissatisfy                       | 0.356        | Verb        |
| unhappy                          | 0.347        | Adjective   |
| customer                         | 0.156        | Noun        |
| game                             | 0.139        | Proper noun |
| currently                        | 0.138        | Adverb      |
| ocation                          | 0.106        | Noun        |



## **Derive Topics**

#### with a right mouse click

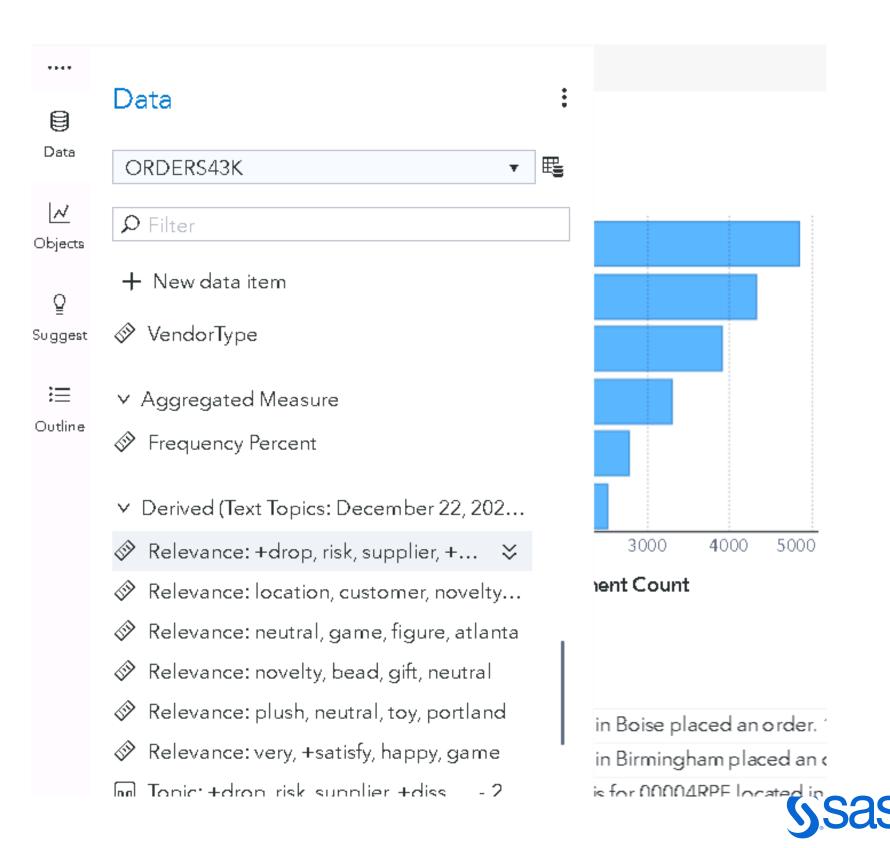




## **Derive Topics**

#### with a right mouse click

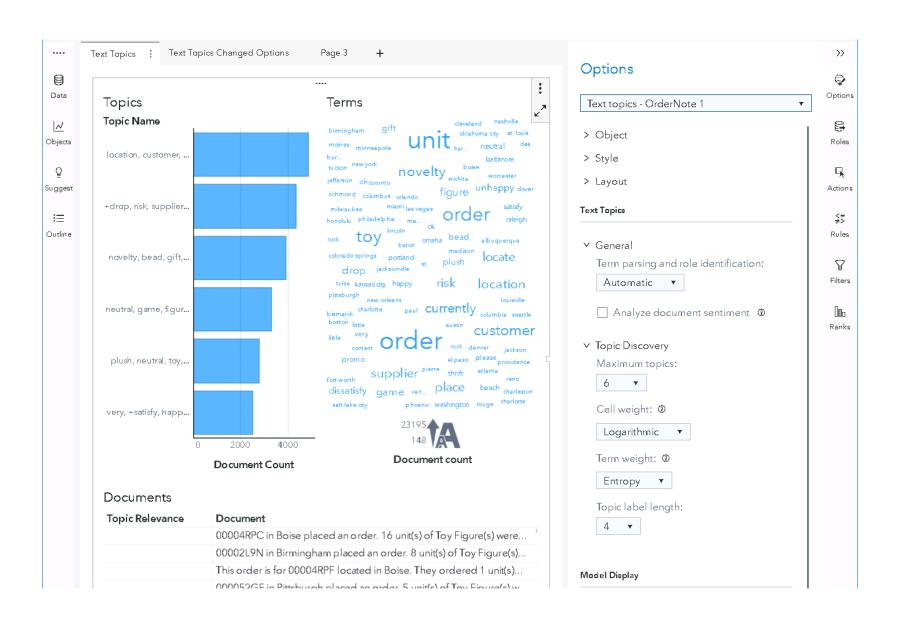




## **Options for Text Topics**

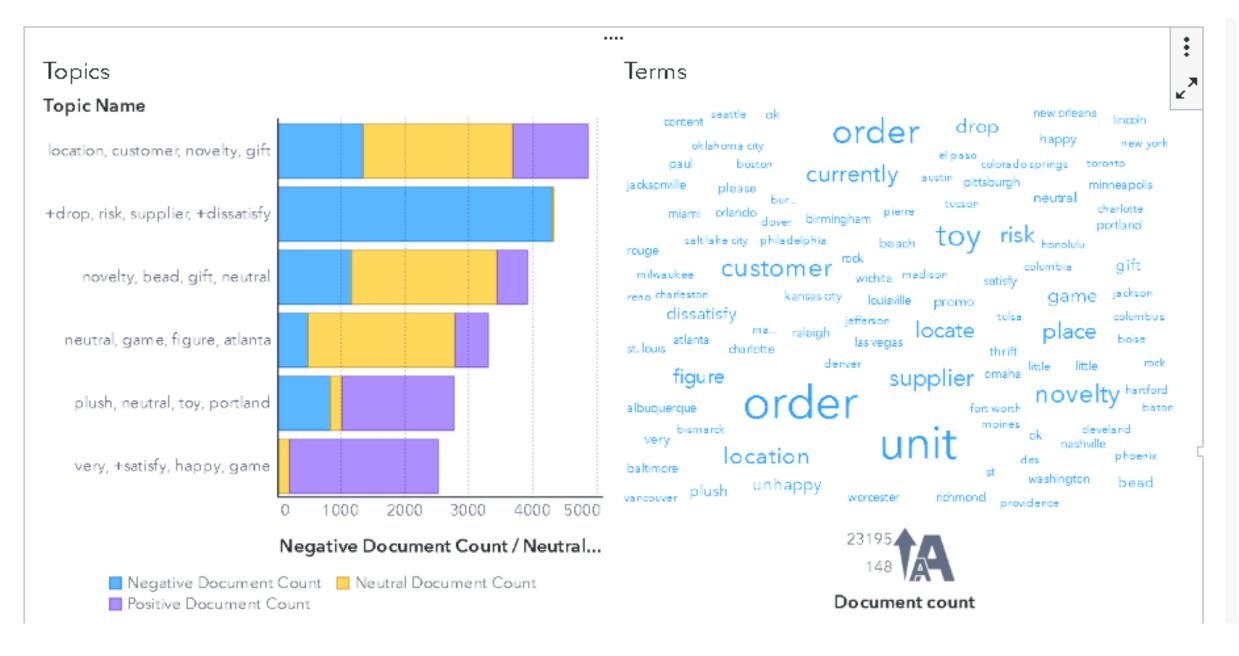
#### You can adjust:

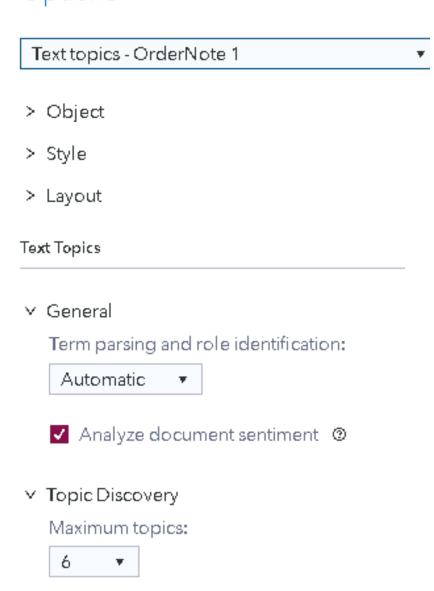
- Parsing (how the terms are built)
- The maximum number of topics
- Emphasize rare terms
- The length of the topic name
- Sentiment Analysis





## And if you do choose to analyze sentiments...







## Spørsmål?

Hearnsas

#skillbuilder

Hifelonglearner



#securethefuture

tsassoftware

#weareallacademics

Vegard Hansen

Academic Lead @ SAS

vegard.hansen@sas.com

www.linkedin.com/in/vegard-hansen/

Sas.