Data Science in Search for Best Predictions of Ski Tour Difficulties

FANS nettverksmøte | Data Science/Analytics | 13.3.2024 | Oslo

Günter Schmudlach, Skitourenguru.com Ulrich Reincke, SAS Institute

FANS nettverksmøte | Data Science/Analytics | 13.3.2024 | Oslo

FANS nettverksmøte | Data Science/Analytics | 13.3.2024 | Oslo

FANS nettverksmøte | Data Science/Analytics | 13.3.2024 | Oslo

FANS nettverksmøte | Data Science/Analytics | 13.3.2024 | Oslo

FANS nettverksmøte | Data Science/Analytics | 13.3.2024 | Oslo

FANS nettverksmøte | Data Science/Analytics | 13.3.2024 | Oslo

Yearly official alpine accident statistics: ~70 fatalities of ~400 severe avalanche accidents ~25 fatalities of ~1000 severe ski tour accidents (non-avalanche)

Knowledge of a tour's difficulties is important for Better tour preparation, reduction of accidents and fatalities

Yearly official alpine accident statistics: ~70 fatalities of ~400 severe avalanche accidents ~25 fatalities of ~1000 severe ski tour

accidents (non-avalanche)

DIFFICULTY = f(SlopeAngle, SpeedMax, Curvature, Forestation,)

坐 SKITOURENGURU

Dependent Variable: Difficulty N=1307 Swiss Ski Tours,

Published in Swiss ski touring literature:

According to the SAC methodology, the difficulty level should only reflect the ski section of a tour up to the ski depot

坐 SKITOURENGURU

Main criteria for the SAC difficulty scale steepness, exposure to fall down, space conditions

space conditions: corridor width

SKITOURENGURU

target variable / dependent variable ski tour difficulty from SAC literature

SKITOURENGURU

Data preparation: from properties to prediction features N=1307 Swiss tours, ~9.3 mill. track meters

Local properties along each Track:

SKITOURENGURU

Properties:

- -SlopeAngle (x,y) "steepness"
- -SpeedMax (x,y) "exposure to fall"

-Risk(x, y):=SlopeAngle (x, y)*SpeedMax (x, y)

- -Width (x,y) "space conditions"
- -Forestation (x,y)
- -Curvature (x,y)
- -Fold (x,y)

Digital Landscape Model 10m*10m

from local track properties to unique tour features

FANS nettverksmøte | Data Science/Analytics | 13.3.2024 | Oslo

Local track properties of tours processed: Risk, Slope Angle, SpeedMax, Acceleration, Forestation, Curvature, Width,....

SKITOURENGURU

坐 SKITOURENGURU

坐 SKITOURENGURU

坐 SKITOURENGURU

坐 SKITOURENGURU

坐 SKITOURENGURU

S.Sas Heren

from local track properties to unique tour features

坐 SKITOURENGURU

from local track properties to unique tour features

from local track properties to unique tour features

Local track properties of tours processed: Risk, Slope Angle, SpeedMax, Acceleration, Forestation, Curvature, Width,...

SKITOURENGURU

from local track properties to unique tour features

Local track properties of tours processed: Risk, Slope Angle, SpeedMax, Acceleration, Forestation, Curvature, Width,...

SKITOURENGURU

from local track properties to unique tour features

Local track properties of tours processed: Risk, Slope Angle, SpeedMax, Acceleration, Forestation, Curvature, Width,...

Sas HENRE

SKITOURENGURU

from local track properties to unique tour features

Local track properties of tours processed: Risk, Slope Angle, SpeedMax, Acceleration, Forestation, Curvature, Width,...

S.Sas HEWER

坐 SKITOURENGURU

from local track properties to unique tour features

Local track properties of tours processed: Risk, Slope Angle, SpeedMax, Acceleration, Forestation, Curvature, Width,...

S.Sas. THE POWER

坐 SKITOURENGURU

How to find good segmentation parameters: **Top**, **Bin1**, **Bin2** "Trial and Error" minimizing Mean Absolute Prediction Error MAE

Optimal quantile regression model with best segmentation parameter TOP, BIN1, BIN2 (out of 5000 trials)

Top	BIN1	Bin2	Opt	MAE_all	MAE_NOL	CNT_OL	Intercept	RiskCnt_3	RiskCnt_3f	RiskCnt_2	RiskCnt_2f	SAC3_BEE_BEW_BVS_FRV	SAC3_TI	SAC3_ZS_GRN_GRS_GL_V
595	855	1229	*	1.12596	1.03841	35	1.83060	0.00866	0.00686	0.00464		-0.83060	0.67489	0

SKITOURENGURU

from 7 properties to 107 "best" features

VARNUM NAME

3 id

6 x

7 ¥

8 z

9 count fm 10 count am

11 count_sm 12 start 13 end 14 StartEle 15 StopEle 16 Be 17 SAC 18 SAC0 19 SAC1 20 SAC2 21 SAC3 22 ACCELM_L_Meter_Ski 23 ACCELM_M_Meter_Ski 24 ACCELM_H_Motor_Ski 25 ACCELM_L_Meter_Foot 26 ACCELM M Meter Foot 27 ACCELM_H_Meter_Foot 28 SAC_Vol 29 Meter 30 Mode 31 Outlyer code 32 Outlyer_Comment 33 ACCELS L Mater Ski 34 ACCELS_M_Meter_Ski 35 ACCELS H Meter Ski

4 id long 5 urt

1 TRN VAL Flag

2 Target_Difficulty

Sample of original local properties along the tour track

ID_Long	Me	eter	Speed	SlopeAngle	Forestation	Fold	Curvature	Accelleration	Width
1000_Sagliains_PizZadrell		1	25	22.9	0.0	-15.45	-2.00	13	135
1000_Sagliains_PizZadrell		2	25	22.9	0.0	-15.45	-2.00	13	135
1000_Sagliains_PizZadrell		3	25	22.9	0.0	-15.45	-2.00	13	135
1000_Sagliains_PizZadrell		4	25	22.9	0.0	-15.45	-2.00	13	135
1000_Sagliains_PizZadrell		5	25	22.9	0.0	-15.45	-2.00	13	135
1000_Sagliains_PizZadrell		6	25	22.9	0.0	-15.45	-2.00	13	135
1000_Sagliains_PizZadrell		7	25	22.9	0.0	-15.45	-2.00	13	135
1000_Sagliains_PizZadrell		8	25	22.9	0.0	-15.45	-2.00	13	135
1000_Sagliains_PizZadrell		9	25	22.9	0.0	-15.45	-2.00	13	135
1000_Sagliains_PizZadrell		10	25	22.9	0.0	-15.45	-2.00	13	135
1000_Sagliains_PizZadrell		11	25	22.9	0.0	-15.45	-2.00	13	135
1000_Sagliains_PizZadrell		12	25	22.9	0.0	-15.45	-2.00	13	135
1000_Sagliains_PizZadrell		13	25	22.9	0.0	-15.45	-2.00	13	135
1000_Sagliains_PizZadrell		14	25	22.9	0.0	-15.45	-2.00	13	135
1000_Sagliains_PizZadrell		15	25	23.0	0.0	-12.78	-5.53	13	147
1000_Sagliains_PizZadrell		16	25	23.0	0.0	-12.78	-5.53	13	147
1000_Sagliains_PizZadrell		17	25	23.0	0.0	-12.78	-5.53	13	147
1000_Sagliains_PizZadrell		18	25	23.0	0.0	-12.78	-5.53	13	147
1000_Sagliains_PizZadrell		19	25	23.0	0.0	-12.78	-5.53	13	147
1000_Sagliains_PizZadrell		20	25	23.0	0.0	-12.78	-5.53	13	147
1000_Sagliains_PizZadrell		21	25	23.0	0.0	-12.78	-5.53	13	147
1000_Sagliains_PizZadrell		22	25	23.0	0.0	-12.78	-5.53	13	147
1000_Sagliains_PizZadrell		23	25	23.0	0.0	-12.78	-5.53	13	147
1000_Sagliains_PizZadrell		24	25	23.0	0.0	-12.78	-5.53	13	147
			$\sum x_{i}\beta$	$\sum x_t \beta_t$	$\sum x_t \beta_t$	$\sum x_{t}\beta$	$\sum x_i \beta_i$	$\sum x_t \beta_t$	$\sum x_t \beta_t$

Final list of prediction feature candidates

VARNUM	NAME	WARNUM	NAME
36	ACCELS_L_Meter_Foot	72	FORESTSLOPE_L_Meter_Foot
37	ACCELS_M_Meter_Foot	73	FORESTSLOPE_M_Mater_Foot
38	ACCELS_H_Meter_Foot	74	FORESTSLOPE_H_Mater_Foot
39	CURVN_L_Meter_Ski	75	RISK L_Meter_Ski
40	CURVN_M_Meter_Ski	76	RISK_M_Meter_Ski
41	CURVN_H_Meter_Ski	77	RISK_H_Meter_Ski
42	CURVN_L_Meter_Foot	78	RISK_L_Meter_Foot
43	CURVN_M_Meter_Foot	79	RISK M Meter Foot
44	CURVN_H_Meter_Foot	80	RISK_H_Meter_Foot
45	CURVP_L_Meter_Ski	81	SLOPE_L_Meter_Ski
46	CURVP_M_Meter_Ski	82	SLOPE_M_Meter_Ski
47	CURVP_H_Meter_Ski	83	SLOPE_H_Meter_Ski
48	CURVP_L_Meter_Foot	84	SLOPE_L_Meter_Foot
49	CURVP_M_Meter_Foot	85	SLOPE_M_Meter_Foot
50	CURVP_H_Meter_Foot	86	SLOPE_H_Meter_Foot
51	FOLDN_L_Meter_Ski	87	SPEEDM_L_Meter_Ski
52	FOLDN_M_Meter_Ski	88	SPEEDM_M_Meter_Ski
53	FOLDN_H_Meter_Ski	89	SPEEDM_H_Meter_Ski
54	FOLDN_L_Meter_Foot	90	SPEEDM_L_Meter_Foot
55	FOLDN_M_Meter_Foot	91	SPEEDM_M_Mater_Foot
56	FOLDN_H_Meter_Foot	92	SPEEDM_H_Meter_Foot
57	FOLDP_L_Meter_Ski	93	SPEEDS_L_Meter_Ski
58	FOLDP_M_Meter_Ski	94	SPEEDS_M_Meter_Ski
59	FOLDP_H_Meter_Ski	95	SPEEDS_H_Meter_Ski
60	FOLDP_L_Mater_Foot	96	SPEEDS_L_Meter_Foot
61	FOLDP_M_Meter_Foot	97	SPEEDS_M_Meter_Foot
62	FOLDP_H_Meter_Foot	98	SPEEDS_H_Meter_Foot
63	FOREST_L_Meter_Ski	99	WIDTH_L_Meter_Ski
64	FOREST_M_Meter_Ski	100	WIDTH_M_Meter_Ski
65	FOREST_H_Meter_Ski	101	WIDTH_H_Meter_Ski
66	FOREST_L_Meter_Foot	102	WIDTH_L_Meter_Foot
67	FOREST_M_Meter_Foot	103	WIDTH_M_Meter_Foot
68	FOREST_H_Mater_Foot	104	WIDTH_H_Mater_Foot
69	FORESTSLOPE_L_Meter_Ski	105	Author_Grp_Blas
70	FORESTSLOPE_M_Meter_Ski	106	SelectionProb
71	FORESTSLOPE_H_Meter_Ski	107	SamplingWeight

Counting your steps like the fitness app of your smart phone 11:33 -......

9/1/18-9/1/19 E	>
Е 	
	Goa 350
CIDE	
	0 cas
(D)	50
	609 12
2 14 2 J + 14 /2 M J 2 M	
to Favorites	
Sources & Access	3
ta Favorites (

FANS nettverksmøte | Data Science/Analytics | 13.3.2024 | Oslo

What predictive modeling approach did we take? Machine Learning vs. Statistical Model

FANS nettverksmøte | Data Science/Analytics | 13.3.2024 | Oslo

Final Ital of prediction feeture candidates

DOM: N NOT	Second Re-	NUT	STOCK.	10.00
1.09()4.762	18	ACCELL, New Pret	11	PRESTRICETLY
J. Taya Ditting		HODE M Plans First	71	FIRESTRUPE, H.
1.4		NODER H. Nam. Fred	74	FORESTSLOPE_H_
11.000		1000,000,00		146, 1, 2004, 244
9. M		LOTTIN, M. MARE, NA.		1100, 12, 1884 (B)
		Difficit in State State		Add of Mann Do.
7.1		CORR & May For	10	2022 (Nov. 714
8.2.		Called, M. Sone, Part	19	otta ya kasa yas
1.0000		DMR.7, IHAY, FAR		108.703946,744
10. met.m		1089.5,8m,20	11	3.0%), Nov.3
T. met,er		13887,3,344,58		1006 State 5
10.000	- 42	[1087-A.069-30		10.00 + 1000 3
(C), and		Daffert L Hear Test	64	2012,1,966,74
11 36/Ex		Diffet is New Tat		SOLUTION D
Sc Ball		(SRA) (Respire		In case, in case, in
10.00	10	FORDMLL, Selection	1.1	WHEN LINES.
17 345		PERSON NAMES AND		SPEEDA IN Man
10.522	13	PERMIT WANT NO.	- 10	CREDIT IN COMM.
10.5421	- M	TOURS, Manufront		service (, mar.)
IE 1963	-	Folder, of Jimler, Fold	1	OPTION IN NAME.
21.0403		Fillen or Stee Free		straight is blass
D .mtm.W., Nair,	jac. 147	FIELD, MARCH		unality plant
Of MICH.M.R. Beer,		F(31P_3), Make 50		owners, M. Mann,
24 140223 * Hom	20 12	F332P + Hwar 56		SPECIDIO - Maker 1
IN AVENU, Nov.]	Feet IP	F0.05_1_Here_Form		UPCEDEParty
3 NULL & MO.	Jun 11	FRDFUT, Mexi, Fort	- 41	104205_0_044e_
17 -H22753R R (Mean)	744 W	1082# m plane / mil.		original Actions, 1
17 BIC 14		PERSONAL NAME OF		10276 L Show St.
II they	1.64	PERSONAL NAME OF	100	OTTO A March
2 24	- 15	108257.11.0000.00		OCCUPATION OF
21.0004,000		FOREST, L, New, Tox	100	10111-1-1010-70
II lidge Dermet	1	FOREV_D, New York	100	14271, pl. Mar., 1
II STERLING	10 10	FOREST, M. BARLEFAR	- 100	territe a state in
N ALPERTON.	* *	FORESTRUCTE L SAME RE	10	Autor Die Nat
31 AUG 3 1 Rev.	94 . TI	104CSTRUPE N Hear Str	105	Sector's
	- 55	VARCENTS, OFT & Many St.	- 407	Complexities for

Data Science Pilot Action

Data Science Pilot Action

Distributed/parallel execution across available compute resources

What predictive modeling approach did we take? Machine Learning vs. Statistical Model

FANS nettverksmøte | Data Science/Analytics | 13.3.2024 | Oslo

What Results did we get?

Transparency, Interpretability, Deployability outweighted Accuracy

99 features

SKITOURENGURU

Accuracy: 1.05 (MAE)

-Transparency -Interpretability, -Deployability -with only 4 features Accuracy: 1.11 (MAE)

FANS nettverksmøte | Data Science/Analytics | 13.3.2024 | Oslo

Variable selection with quantile regression For median of difficulty

The HPQUANTSELECT Procedure Quantile Level = 0.5

	Selecti	ion Summa	iry		Fit Statist	ics
Ston	Effect	Number Effects In	AIC	SBC	Objective Function	72
Jiep	Intercent	1	185 5716	180 3961	R1	
1	RISK H Meter Ski	2	-984 6951	-974 3442	Adj R1	
2	SLOPE H Meter Foot	3	-1216.9940	-1201.4675	AIC	-152
3	Aut_BVS	4	-1246.9930	-1226.2911	AICC	-152
4	Aut_BEW	5	-1277.7180	-1251.8405	SBC	-147
5	SLOPE_H_Meter_Ski	6	-1307.2939	-1276.2410	ACL	
6	SLOPE_M_Meter_Ski	7	-1484.6233	-1448.3949		
7	Aut_TI	8	-1510.2989	-1468.8950		
8	Aut_BEE	9	-1522.1704*	-1475.5910*		

Risk:=SlopeAngle*SpeedMax

25.08515 0.40396 0.40028 22.17042 22.03163 75.59101 0.55477

Method: Quantile Regression - PROC HPQUANTSELECT

Parameter Estimates

Parameter	Estimate	StdErr	tValue
Intercept	0.85899	0.09135	9.40
Aut_TI	0. <mark>8</mark> 1293	0.10582	7.68
Aut_BEE	-0 80018	0.25536	-3.13
Aut_BEW	-0.57861	0.16198	-3.57
Aut_BVS	-1.00000	0.19346	-5.17
RISK_H_Meter_Ski	0.00418	0.0002401	17.41
SLOPE_M_Meter_Ski	0.00415	0.0001890	21.94
SLOPE_H_Meter_Ski	0.00488	0.0001937	25.21
SLOPE_H_Meter_Foot	0.01041	0.0007811	13 33

80 2 16 14 10 3 11 5 60 39 55 24 4 4 COUNT 1 48 68 57 12 - 20 6 7 8 9 10 11 12 Predicted Difficulty

Four out of 12 selected author dummy variables

Percent 20%

10%

Significant author dummy variables

Systematic Overrating vs Underrating bias detected for difficulty

Method: Quantile Regression - PROC HPQUANTSELECT

Parameter Estimates

Parameter	Estimate	StdErr	tValue
Intercept	0.85899	0.09135	9.40
Aut_TI	0.81293	0.10582	7.68
Aut_BEE	-0 80018	0.25536	-3.13
Aut_BEW	-0.57861	0.16198	-3.57
Aut_BVS	-1.00000	0.19346	-5.17
RISK_H_Meter_Ski	0.00418	0.0002401	17.41
SLOPE_M_Meter_Ski	0.00415	0.0001890	21.94
SLOPE_H_Meter_Ski	0.00488	0.0001937	25.21
SLOPE_H_Meter_Foot	0.01041	0.0007811	13 33

Selected four out of ~20 000 ski tour features derived from local track properties

SKITOURENGURU

80

60

4 COUNT

- 20

Model deployment to expand services of skitourenguru.ch to 4 neighboring countries with ~10 000 additional unrated ski tours

👱 SKITOURENGURU

🍭 SKITOURENGURU

East Alps

What's Skitourenguru

Skitourenguru supports you in the selection and planning of a suitable ski tour with low avalanche risk. For this purpose, Skitourenguru assigns daily an avalanche risk to thousands of ski tours in the alpine region:

Values	Avalanche risk	
0-1	Low avalanche risk	
1-2	Elevated avalanche risk	
2-3	High avalanche risk	
	Values 0-1 1-2 2-3	Values Avalanche risk 0-1 Low avalanche risk 1-2 Elevated avalanche risk 2-3 High avalanche risk

In addition Skitourenguru marks static route cruxes with grey rings:

Symbol	Class	Meaning
0	1	Avalanche terrain
0	2	Typical avalanche terrain
0	3	Very typical avalanche terrain

On site and in the individual slope usually information becomes accessible that is not available to Skitourenguru. The information presented on Skitourenguru is subject to uncertainties (see Handbook). Therefore Skitourenguru must not be the only criterion to access a slope.

Choose a region

0.520

Region	State	Edition	Valid
Switzerland	On	17.30 h	16.4.2021-17.00 h
East Alps	On	18.30 h	16.4.2021-18.00h
France	Test	16.30 h	16.4.2021-18.00 h
Nothwest-Italy	Test	16.30 h	16.4.2021-16.00 h
Notheast-Italy	Test	17.30 h	16.4.2021-16.00 h

Partners

Skitourenguru is supported among others by the following nartners

Q Type here to search

G 0 ۳.6

Off course, skitourenguru does not exempt you from applying the recommended avalanche and risk assessment strategies

Takeaways: What did we achieve?

DIFFICULTY	DIFFICULTY LABEL
1	Easy
2	Easy (+)
3	Less Difficult(-)
4	Less Difficult
5	Less Difficult (+)
6	Quite Difficult (-)
7	Quite Difficult
8	Quite Difficult (+)
9	Difficult (-)
10	Difficult
11	Difficult (+)
12	Very Difficult (-)
13	Very Difficult
14	Very Difficult (+)
15	Extremely Difficult (-)
16	Extremely Difficult
17	Extremely Difficult (+)
18	Extremely Difficult

SSAS THE

- We are proposing a new definition of **difficulty** metric derived from interaction of two local track properties: **slope angel and speed of falling** acting as proxies for accident probability and severity
- Overall, this metric is consistent with the unique human and cultural expertise published in the extensive SAC ski touring literature from which our model was trained.
- The discretionary range of the SAC methodology and prediction error margin is in the range of 1.1 to 1.8 levels of the 18-step SAC difficulty scale (i.e. "+" or "-")
- An additional advantage of this methodology is its independent from prevailing weather and snow conditions at the moment of manual rating.
- We still have ongoing discussions with incorporation of the foot section in this model.
- The model provides the basis for fast and automatic bulk scoring prediction for up to ~10000 tours throughout the alps in AT, DE, IT, FR. It will support the expansion of Skitourenguru's services.

Günter Schmudlach, Skitourenguru GmbH, Zürich CH

Ulrich Reincke, Principal Data Scientist, SAS, Heidelberg, DE

Thank you for your attention. And don't forget: Always put safety first

Example SAS Hackathon 2023 Productivity, Speed, Fast, Reliable, Trustworthy , Fair Results without Bias

Outlyer list with absolute prediction error gt 3.5

Type=Overrating

id_long	Difficulty	Р	Е	SAC0	Outlyer_Comment	StartEle	StopEle	Ele	RISK_H_Meter_Ski	SLOPE_H_Meter_Ski	SLOPE_M_Meter_Ski	SLOPE_H_Meter_Foot
1258_Hasen_Gotterli	1	5	-4	ZS		449	1394	945	0	748	0	0
171_Cons_PizTerri	7	11	-4	GRN		1468	3146	1789	595	748	0	360
564_Küblis_Chrüz	1	5	-4	GRN	Different Route	809	2190	1384	157	372	376	0
255_Furggels_Stelli	1	5	-4	GRN	Manual Underrat	1198	2047	976	147	643	105	0
912_Mühlebach_Ärnergale	1	5	-4	VSE	Different Route	1232	2621	1391	169	629	119	0
387_MittlerRossfal_Hochalp	1	5	-4	GL	Compromise	899	1527	650	234	264	484	0
535_Ladstafel_Mittaghorn	5	9	-4	VSE		1924	3004	1080	595	748	0	220
358_Latsch_CuolmdaLatsch	1	6	-5	GRS	Road above 1600	1609	2294	686	244	748	0	0
1035_HospizSimplonp_MonteLeone	5	10	-5	VSE		1998	3548	1657	508	698	50	290
1466_Sufers_VizanPintg	1	6	-5	GRN	Road above 1600	1413	2513	1120	423	748	0	0

Type=Underrating

id_long	Difficulty	Ρ	Е	SAC0	Outlyer_Comment	StartEle	StopEle	Ele	RISK_H_Meter_Ski	SLOPE_H_Meter_Ski	SLOPE_M_Meter_Ski	SLOPE_H_Meter_Foot
903_MayensdeMérib_PointedeVouasso	12	6	6	BVS		1728	3481	1755	595	748	0	0
367_ZurEich_GrosBrun	12	6	6	BEW	Compromise	951	2098	1147	595	748	0	0
1231_Engi_Gufelstock	11	6	5	GL	Compromise	812	2434	1622	260	748	0	0
706_ChantSura_PizRadönt	10	5	5	GRS	Other Ski Depot	2330	3056	751	28	120	147	300
407_Urnerboden_Läckistock	11	6	5	ZS	Compromise	1376	2483	1107	455	697	51	0
725_Dürrboden_Leidhorn	9	5	4	GRS	Compromise	2006	2930	925	150	292	456	0
507_H.d'Allières_VanildesArtses	11	7	4	FRV	Other Ski Depot	1006	1986	980	127	0	707	250
613_Diavolezza_PizCambrena	11	7	4	GRS		2978	3595	855	595	748	0	0
736_Brigels_Bifertenstock	11	7	4	GRN		1285	3416	2173	595	748	0	0
818_Jochstock_ReissendNollen	11	7	4	ZS		2508	3002	493	595	748	0	0
886_LeFlon_Chambairy	10	6	4	BVS		1046	2198	1151	595	748	0	0
916_BourgSt.Berna_MontVélan	10	6	4	BVS		1916	3721	1805	595	748	0	0
1448_Münster_HejiZwächte	9	5	4	BEE	Compromise	1387	3083	1696	323	748	0	0
1236_Elm_Grüenenspitz	9	5	4	GL	Other Ski Depot	960	2354	1394	94	316	432	60
1227_Horb_Frümsel	11	7	4	GL	Other Ski Depot	887	2261	1374	22	113	635	300
591_Tschlin_Muttler	8	4	4	GRS	Other Ski Depot	1533	3290	1758	44	22	726	30

SSAS THE FORMER

FANS nettverksmøte | Data Science/Analytics | 13.3.2024 | Oslo

Prediction Residuals / Error Test for normality (N=1307)

S.Sas HEWER

SKITOURENGURU

Target Variable Difficulty Test for normality (N=1307)

SKITOURENGURU

Data preparation: from properties to features

Local track properties of tours processed: Risk, Slope Angle, SpeedMax, Acceleration, Forestation, Curvature, Width,...

SKITOURENGURU

