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(1) | just discovered that the
data system we have been
working on for the last five
yvears has major data quality
problems

(3) Ouch!! That's
why | am a
vegetarian!
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(2) That is why | treat data
systems the same way | do
sausage - | do not want to
know what is inside either



Copilot - What to think of in data preparation

for analytics?

1. Data Collection and Sourcing:

* Gather relevant data from various sources. Ensure data quality by addressing
missing values, duplicates, and inconsistencies.

« Verify the data’s accuracy and reliability.

2. Data Cleaning and Preprocessing:

« Handle missing data: Impute missing values using techniques like mean, median, or
regression.

 Remove duplicates and outliers.

« Standardize or normalize features to a common scale.

« Address data inconsistencies (e.g., typos, variations in formatting).

3. Feature Engineering:
« Create new features from existing ones (e.g., aggregations, transformations).
» Select relevant features based on domain knowledge and statistical significance.

4. Exploratory Data Analysis (EDA):

* Visualize data distributions, correlations, and patterns.
« |dentify relationships between variables.

* Detect anomalies or unexpected behavior.

5. Data Transformation:

* Apply necessary transformations (e.g., log, square root) to achieve normality.
» Encode categorical variables (one-hot encoding, label encoding).

« Consider dimensionality reduction techniques (PCA, t-SNE) if needed.
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6. Data Splitting:
« Divide the dataset into training, validation, and test sets.
* Ensure that the split maintains the distribution of target variables.

/. Handling Imbalanced Data:
« Address class imbalance using techniques like oversampling, undersampling, or
synthetic data generation.

8. Feature Selection:
» Use statistical tests (e.g., chi-squared, ANOVA) or feature importance scores (from
models) to select relevant features.

9. Data Validation and Quality Assurance:
« Validate data against business rules and domain knowledge.
* Monitor data quality over time.

10. Document the Process:

* Maintain clear documentation of data preparation steps.
* Record assumptions, transformations, and any decisions made during the process
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Copilot - is it preferable to use categorical variables
Instead of continuous

1. Continuous Variables: 2. Categorical Variables:

« Continuous data represents measurements that can take any value within a  Categorical data represents distinct categories or groups (e.g., gender, color,
range (e.g., height, temperature, weight). program type).

 Advantages: ’ Adva.ntages: , , . . : :

- Provides more information due to the fine-grained nature of measurements. - Simplifies complex relationships by grouping data into meaningful categories.

- Allows for precise modeling of relationships. - Handles non-linear relationships more effectively.

- Well-suited for linear regression and other models that assume linearity. - Robust to outliers.

. Disadvantages: ° DisadvantageSI' .

- Assumes a linear relationship, which may not hold in all cases. - May lose information due to grouping.

- Sensitive to outliers. - Requires encoding (e.g., one-hot encoding) for modeling.

- Requires more data points for accurate estimation. - Limited to the defined categories.

 When to use:  When to use:

- Use when the relationship with the response variable is expected to be linear. - Use when the relationship is non-linear or when there are clear groupings.

- Suitable for regression models, correlation analysis, and ANOVA. - Useful for decision trees, random forests, and logistic regression.

- Especially valuable when capturing interactions or nonlinear effects.

Considerations:

* Interaction Effects: Categorical variables allow modeling of interactions (e.g., gender and age).
« Data Context: Consider the context and domain knowledge. Some variables may naturally be categorical (e.g., program type).

« Data Exploration: Explore relationships visually (scatter plots, histograms) to decide how to treat variables.
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Copyright © SAS Institute Inc. All rights reserved.



Copilot - is it best to have continuous or binary

target?

1. Continuous Target (Regression):

« Definition: A continuous target variable can take any numeric
value within a range. It has a natural order and can be measured
with precision.

 Use Cases:

- When you want to predict a numerical value, such as predicting
house prices, temperature, or stock prices.

- In scenarios where the relationship between predictors and the
response is linear or can be approximated by linear models.

- When you need to estimate the mean change in the dependent
variable given changes in independent variables.

« Advantages:

- Provides more information due to the greater number of possible
values.

- Allows for a wider variety of analyses.

- Can handle non-linear relationships using techniques like
polynomial regression.

3. Hybrid Approaches:

2. Binary Target (Classification):

* Definition: A binary target variable has only two possible
outcomes (e.g., yes/no, true/false, 1/0).

 Use Cases:

- When you want to perform classification tasks, such as spam
detection, disease diagnosis, or customer churn prediction.

- In scenarios where you need to assign instances to predefined
classes.

- When the outcome of interest is binary (e.g., whether a customer
will buy a product or not).

 Advantages:

- Simplicity: Binary targets are straightforward to interpret.

- Commonly used in practical applications.

- Suitable for algorithms like logistic regression, support vector
machines, and decision trees

Sometimes, you might encounter situations where a continuous target can be transformed into a binary one. For instance:
* Threshold-based classification: Convert a continuous target (e.g., probability) into binary outcomes by setting a threshold (e.g., 0.5).
* Risk prediction: Predicting the likelihood of an event (e.g., defaulting on a loan) using continuous scores and then categorizing into

low/high risk.

* Ordinal regression: When the target has ordered categories (e.g., low/medium/high), you can use ordinal regression.

Consideration: If you can collect continuous data, it's often better to do so because it provides more information.
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VIMO!

* \alid

* |nvalid
* Missing
e Qutlier
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Missing values and outliers

Missing values: Outliers:

s due toinformation loss,  are extreme values that'’s
dropouts and none- outside the overall pattern
responses. of a distribution of

* gjve smaller sample size, variables.
could compromises the e arises from respons and
study and entail bias. data errors.

* could be ignored or  (Could lead to under- or
imputed based on the over-estimated values
present values. * |Tyou are sure the outliers

are wrong, then ignore them
or Impute.
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How to check VIMO!

Information catalog on Viya Visual Analytics

SAS® Information Cetalog - Discover Information Assets

Catalog Home > CHARGES
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The data - medical charges of a specific patient

e age: age of primary beneficiary

* sex:insurance contractor gender, female, male

* bmi: body mass index, providing an understanding of body, weights that are relatively high or low
relative to height objective index of body weight (kg / m ™ 2) using the ratio of height to weight, ideally
18.5t0 249

* children: number of children covered by health insurance / Number of dependents

* smoker: smoking

* region: the beneficiary’'s residential area in the US, northeast, southeast, southwest, northwest

» charges (insurance price): Individual medical costs billed by health insurance

https:/www.kaggle.com/datasets/nanditapore/medical-cost-dataset

Osas
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https://www.kaggle.com/datasets/nanditapore/medical-cost-dataset

The Analytics Life Cycle

QUESTION Value
: Given certain
;V:;’E: z the factors, we could

say what the
medical expenses is
for a patient

expenses of
specific patient?

* Access e Build  Validate
* Prepare * Train * Deploy
* Visualize * Evaluate  Monitor
 Govern * Select e Embed
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Data preparation in VA -

How does the target look like?

Frequency of charges
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Data preparation in VA -

How does the measure variables look like?
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Data preparation in VA -

How does the categorical variables look like?

Frequency of region Frequency, charges by region
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Data preparationin VA -

The correlation between the measure variables?

Gsas



Data preparation in VA -

Re-define the measure variables as categorical
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References

 Process for Data Quality Assurance at Manitoba Centre for Health Policy (MCHP):
https://umanitoba.ca/manitoba-centre-for-health-policy/sites/manitoba-centre-for-health-policy/files/2021-11/data-
quality-framework-document.pdf

« Statistical data preparation: management of missing values and outliers:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548942/
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